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1 Introduction

In the paper, we shall prove the boundedness of some anisotropic sublinear op-
erators with rough kernel on a weighted L, space. We point out that the condition
(1) in the isotropic case was first introduced by Soria and Weiss in [1]. The condi-
tion (1) is satisfied by many interesting operators in harmonic analysis, such as the
anisotropic Calderon-Zygmund operators, anisotropic Hardy-Littlewood maximal
operators, anisotropic R. Fefferman’s singular integrals, anisotropic Ricci-Stein’s
oscillatory singular integrals, the anisotropic Bochner—Riesz means and so on (see
11, [2)).

Let R™ be the n-dimensional Euclidean space of points = (z1, ..., z,) with
norms

, let Ry = R"\ {0}, ¥ = {x e R" : |z| = 1}, a = (a,...,ay), a; > 0,
i=1,...,n, |la] = Yi,a;, N be the set of natural numbers, Ny = N U {0},
tr = (t"xq,...,t%x,), t > 0.

Almost everywhere positive and locally integrable function w : R® — R will be
called a weight. We shall denote by L, ,(R™) the set of all measurable functions
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f on R™ such that the norm

1/p
1z, &) = 1fllpwrn = (/R If(iv)l”u)(w)dx) , 1<p<oo,

is finite.
For = € Ry, let p(z) be a positive solution to the equation Y 1", z7p~2% = 1.
Note that p(z) is equivalent to > 1 |2;|'/% i.e.,

(@) < 3 il < (o)

i=1

for certain positive ¢; and ¢y ( see [3]).

Definition 1.1 Function K defined on Ry, is said to be an anisotropic Calderon-
Zygmund(ACZ) kernel in the space R™ if

(i) K € C>(Rg)
(i) K(t*z) = K (t%xy,..., t%x,) =t 19K(z), t >0,z € R}

(i) [ K Zaxdo() 0.

2 Main Results

First, we establish the boundedness in weighted L, spaces for a large class of
anisotropic sublinear operators with rough kernel.

Theorem 2.1 Let p € (1,00) and let T be a sublinear operator bounded from
L,(R™) to L,(R™) such that, for any f € L1(R™) with compact support and = ¢

! 20z )
T —y
Tr@l <o [ S )y 1)

where ¢y is independent of f and x, ) is a-homogeneous of degree zero (= Q(t%x) =
Q(x), for allt >0 and x € RYy) and 2 € Ly(X).

Moreover, let s > p', p' = p/(p— 1) and w(x), wi(z) be weight functions on
R™ and the following three conditions be satisfied :

(a) there exists b > 0 such that

sup wi1(y) <bw(z) for a.e. x € R™,
p(2)/4<p(y)<4p(x)

(b)

p/s’'—1
A = sup / wi (2)p(z) 1o/ g / ~0/ (z)dw < 00,
r>0 p(x)>2r 4 z)<7“
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(c)

p/s’ —1
B = sup / w1 (z)dx / w' =@ () p(a) TP/ gy < 0.
r>0 p(z)<r p(z)>2r

Then there exists a constant c, independent of f, such that for all f € Ly, ,,(R™)

[ rr@paeis < [ (f@Poeds, @)

Moreover, condition (a) can be replaced by the condition

(a’) there exist b > 0 such that

1
wi(x) ( sup ) <b fora.e zeR".
p(@)/4<p(y) <p(z) W(Y)

Proof. For k € Z, we define

{:v eR": 28 < p(z) < 2’““},
Ey, = {x eER™: p(z) < 2k71},
{a: eR": 2671 < p(z) < 2k+2},
Eps= {x eR": p(z) > 27”2}.
Then Ey 2 = Ey—1 U E, U Ej4q and the multiplicity of the covering {Ekvg}kez is

equal to 3.
Given f € L, ,(R™), we write

ITf(@)] = ITf(x)xE,(z)

keZ

<Y T fra (@) xm (@) + D 1T fro(@)| X (2) + Y T i 3(2)| X, ()
keZ keZ keZ

=T1f(z) + Taf(2) + T3 f(2), (3)

where xg, is the characteristic function of the set Ey, fr; = fxg,,,1=1,2,3.
First we shall estimate HT1f||Lp . Note that for x € Ej, y € Ej,1 we have
,w1
p(y) < 28=1 < p(x)/2. Moreover, Ej, Nsupp fr.1 = 0 and p(x —y) > p(x)/2.
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Hence by (1),

150 <Y ([ Bl o,

= plz —y)lel

< co / oz — )19 — )| £(y)|dy
p(y)<p(z)/2

< 2lalegp(z) 1ol / 1z = y)[|f(y)|dy

p(y)<p(z)/2

1/s 1/s’
< 2lcgp(a) " ( [ - y>|8dy> ( / |f<y>s’dy)
p(y)<p(z)/2 p(y)<p(z)/2

for any x € Fj. Since

1/s
[ oe-pld) <o,
p(y)<p(z)/2

where [|Q[s = (5 |Q(y’)|5d0(y’))1/8, then we have

1/s’
/ T (@) Pen () < e / (/ f<y>|s’dy) o) 1P/ o () e
R™ " p(y)<p(z)/2

Since A < co and p > s’, the Hardy inequality

p/s’
/ wi(2)p(z)~lelP/s ( / o )/Qlf(y)ls'dy) de<C | |f@)Pw)de
" p(y)<p(z n

holds and C < ¢/ A, where ¢’ depends only on n, s and p. In fact, the condition
A < o0 is necessary and sufficient for the validity of this inequality (see [4], [5]).
Hence, we obtain

| mi@pa@is < [ 5@, (1)
Rn n
where c3 is independent of f.

Next we estimate ||T3f||Lp.w1' As it is easy to verify, for x € Ey, y € Ei 3 we
have p(y) > 2p(z) and p(xz —y) > p(y)/2. Since Ey Nsupp fi,3 = 0, for x € Ej by
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(1), we obtain

( 2z =yl f )
T3f(z) <o /p(y)>2p(z) p(x — y)‘a‘ 4y

Q _
< 2\a|CO/ (8¢ y)l!lllf(y>| dy
p)>20z)  PW)

= 2lel¢, Q(z — y)||f(y)|p(y) " dy

Jj=1

/210@) <p(y)<2i+ip(x)

o0

1/s
<2l Y- (/ | |Q(x—y)|sdy>
i—1 \/27p(z)<p(y)<2ittp(x)

Jj=

, 1/s’
x ( / (1@t dy>
29 p(x)<p(y)<2i+1p(zx)

00 , 1/s’
<o) (27 p(a) ( / (1£@)lo) ") dy)

, 1/s’
<gviey ([ o) (o)) dy
i 27 p(x)<p(y)<27+1p(z)

7 p(x)<p(y)<29+1p(z)

j=1

1/s’
< e (/ If(w)l® p(y)'“'dy> :
p(y)>2p(x)

Hence we have

p/s'
Tsf(2)|Pwi(x)dx < cg s’ —lalg w1 (x)dx.
| ms@pe@r<a | ( Lo @I y> (@)

Since B < oo and p > ¢, the Hardy inequality

p/s’
w1 (x s’ —lal r < z)[Pw(z)dz
[ >< Lo W) dy> dr<C [ |f@)Pula)d

holds and C' < ¢’B, where ¢’ depends only on n, s and p. In fact the condition
B < oo is necessary and sufficient for the validity of this inequality (see [4], [5]).
Hence, we obtain

/ T3 () Peor (2)de: < e / 1 (@) Pu(z)dz, (5)
RTL

n

where c7 is independent of f.
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Finally, we estimate [[T5>f|, ., - By the L,(R™) boundedness of T' and condi-
tion (a), we have

| mf@peeis = [ (Z 7 i) i >> n(@)da

keZ
/n (Z T fre2(2)l” xE, (2 )) w1 (x)dx
keZ
];/E k, 2 1
= ’%:ZJCSEHEPIC wi () /Rn T fr.2(x)|” do

<71 S sup wn(e) [ It da

kez TEEk

TIPS swp ) [ 7@
Ek,2

keZ yEL)
where ||T[| = ||T|| 1, rn)—1, @) Since for # € Ej 2, 2871 < p(z) < 28+2, we have
by condition (a)
sup wi(y) = sup wi(y) < sup wi(y) < bw(z)
YE Ly 2k—1<p(y)<2k+2 p(x)/4<p(y)<4p(x)

for almost all z € Ej, 5. Therefore,

/ [ Tof () [Pwi (= dx<||T||pr/ ) |Pw(z)dx

kez B2
<er / (@) Pw(z)dz, (6)

where c7 = 3||T||Pb, since the multiplicity of covering {Ej 2}, ., is equal to 3.
Inequalities (3), (4), (5) and (6) imply (2), thus completing the proof. O

Let K be anisotropic Calderon—Zygmund kernel and T be the corresponding
integral operator

Tf(x) =po. A K(z —y)f(y)dy.
Then T satisfies the condition (1). See [1], [2] for details. Thus, we have

Corollary 2.2 Letp € (1,00), K be anisotropic Calderon—Zygmund kernel and T
be the corresponding integral operator. Moreover, let s > p', w(x), wi () be weight
functions on R™ and conditions (a), (b) and (c) be satisfied. Then inequality (2)
is valid.
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Remark 2.3 Note that, Corollary 2.2 in the case s = co was proved in [6] and
for singular integral operators, defined on homogeneous groups in [7], [8] ( see also

[9], [10)).

Theorem 2.4 Let p € (1,00), T be anisotropic sublinear operator bounded from
L,(R™) to L,(R™) and satisfying (1). Let also Q is a-homogeneous of degree zero
and Q€ Ly(X). Moreover, let s > p', w(t) be a weight function on (0,00), wy(t) be
a positive increasing function on (0,00) and the weighted pair (w(p(x)), wi(p(x)))
satisfies the conditions (a) and (b).

Then there exists a constant ¢ > 0, such that for all f € Ly, ,(R™)

/R T @) P o)) < o / (@) Pulp(z))d. (7)

n

Proof. Suppose that f € L, (R") and w; are positive increasing functions on
(0,00) and (w(p(z)), w1(p(x))) satisfied the conditions (a) and (b).
Without loss of generality, we can suppose that w; can be represented by

wr(t) = wn (0+4) + / BV,

where wy(0+) = lim;owi(t) and wi(t) > 0 on (0,00). In fact, there exists a
sequence of increasing absolutely continuous functions w,, such that w,,(t) <
wi(t) and lim w,,(t) = wi(t) for any ¢ € (0,00) ( see [9], [10], [11] and [12] for

details).
We have

p(x)
/ T () Pn (p())dz = wr (04) / T (@)Pde + / ITf(w)”< wmdA) da
Rn 0
=J; + Jo.

If w1(04+) = 0, then J; = 0. If wy(0+) # 0, by the boundedness of T in L,(R™),
thanks to (a), we have

n

B2 T4 [ If@)Pds
<1717 [ 1@ Perlpla)da
<oI7)P [ |f@)Pulola)ds.
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After changing the order of integration in Jo, we have

- | T ( / . ITf(x)Ipdw> ax

321"1/0 w(N) (/p(w)>A IT(f X o) >n2)) (@) Pz

T / |T(fX{p(x)§A/2})(fv)|pdw> d\
p(z)>X

= Jo1 + Jao.

Using the boundedness of T in L,(R™) and condition (a), we have

o1 < ||TJP / b(t) ( / . If(y)pdy> dat
p(y

2p(y)
=171 [ 1rwr ( / wm) y

<ITI” [ 17 20ty
BT [ 1#@Pe(o)d.

Let us estimate Joo. For p(x) > X and p(y) < A/2, we have p(z)/2 < p(x —y) <
3p(x)/2, and so

s < ¢ /Ooow(x) (/p(m)>A </p(y)<2A W@)pdfﬁ) X
< 2lal¢ /OOO ey </p(m)>A </p(y)§2A 2z — y)lf(y)ldy> p(w)‘”dw> A
— o [ walertle ( JILCE y)llf(y)ldy>pdA
S ( / WLCS y>|8dy> " ( / o |f<y>|8’dy> "

s p/s’
< ¢y / P(A)A~lalp/= Flel ( / fy)l° dy) dA.
0 p(y)<A/2
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The Hardy inequality

/

) p/@
/ (AT lalp/s el ( / |f(y>s/dy> A
0 p(y)<A/2

<C . |f () [Pw(p(y))dy,

for p > s’ is characterized by the condition C' < ¢ A’ (see [4], [5], also [13], [14]),
where

p/s’ —1

A’ = sup ( 1/J(t)t_|“|p/5/+|a|d7') / WO (p(z))da < 0.
>0 27 plz)<r
Note that

W(r)rlele/s Hlal gr = |a|(p/s'—1)/ ¢(T)d7/ Alal=1=lalp/s" g
2t T

2t

(o) A
=|a|(p/s’ — 1)/ Nal=1=lalp/s"gx [ y(r)dr
2t 2t

IA

lal (/s — 1) / Al =1=lalp/s' 4y (X)dA
2t

p(z)>2r

Condition (b) of the theorem guarantees that A’ < ¢j9.4 < oo. Hence, applying
the Hardy inequality, we obtain

i <o / 1F@) P,

where ¢ > 0 is independent of f.
Combining the estimates of J; and Ja, we get (7) for

wl(t) = wl(O—l-) + /0 ¢<T)dT

By Fatou’s theorem on passing to the limit under the Lebesgue integral sign, this
implies (7). The theorem is proved. O

Corollary 2.5 Let p € (1,00), K be a Calderon-Zygmund kernel and T be the
corresponding operator. Moreover, let s > p', w(t) be a weight function on (0, 00),

w1 (t) be a positive increasing function on (0, 00) and the weighted pair (w(p(x)), wi(p(x)))
satisfies the conditions (a) and (b). Then inequality (7) is valid.
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Theorem 2.6 Let p € (1,00), T be a sublinear operator bounded from L,(R™)
to L,(R™) and satisfying (1). Let also Q be a-homogeneous of degree zero and
Q€ Ly(X). Moreover, let s > p', w(t) be a weight function on (0,00), wi(t) be

a positive decreasing function on (0,00) and the weighted pair (w(p(x)), wi(p(x)))
satisfies the conditions (a) and (c). Then inequality (7) is valid.

Proof. Without loss of generality, we can suppose that w; can be represented by

w1 (t) = wi (+00) + / " y(r)dr

where wy (+00) = tlim w1(t) and wy(t) > 0 on (0, 00).

In fact, there exists a sequence of decreasing absolutely continuous functions
W, such that w,, (1) < w;(t) and lim,, oo @ () = wi(t) for any ¢ € (0,00) ( see
[9], [10], [11], [12] for details).

We have

h w(T)dT> dx

p()

| rr@rap@yis =) [ 1@+ [ mre (
= Il + IQ.

If wy(400) = 0, then I; = 0. If wq(4+00) # 0, by the boundedness of T' in L,(R"™)
and condition (a), we have

Jy < | Tllws (+0) / F(@)Pda
< |7 / 2)Pwn (o)) da
<b||T||/ ) |Pw(p(z))dz.

After changing the order of integration in Jo we have

Jy = / B(V) ( / - ITf(x)”dw> A
< 2P 1/ 'l/J (/ Y ‘ (fX{p(z)<2>\})(‘T)‘pdx

™ / |T(fX{p<x>z2A})($)|pdx> dX
p(z)<A

= Jo1 + Joo.



Two-weighted Norm Inequalities for Some Anisotropic Sublinear Operators 181

Using the boundedness of T in L,(R™) and condition (a), we obtain

b1SMWAwWﬂ</UQJﬂwp@>ﬁ
— |7 / ( / )/ﬁ(A)dA) dy

<ITI [ 17 @Perlo)/2)dy
<HITI [ 1£@)Plot)ds

Let us estimate Joo. For p(x) < A and p(y) > 2\ we have p(y)/2 < p(x —y) <
3p(y)/2, and so

> 2 —llf@), "
s [ 00 (/MM </<> p(x—y)@ldy> dx) a
oy [ 2@ -ylfwl, Y
=2 O/o v </p(w)<x< o2 py)lel dy) I )dA
SQGCO/ODOMJ(A) (/( )O(
SzaCO/gmw(A) (/( M(
, l/s' p
(s a) o)

, 1/s’ p
~lal)”
" </2j/\<p(y)<2j+1>\ (If(y)\p(y) ) dy) ) dx) dA
S 1/s"\ P
s’ —lal
<Cu/ w (/p(r <A (Z </2M<p(y)§2j+1>\|f(y)| p(y) dy> ) dx) dA

Jj=1

p/s
<c12/ DA / (Z/ , |f(y)|5/p(y)"a'dy) dz | dX
p(x)<Xx \ 5 2iA<p(y)<2i+1N

/2u<p(y><2f+lx

1/s
> (/ Q- y)lsdy>
1 20 A< p(y)<29+1N

Jj=

Q(x —y)lf(y)p(y)‘“dy> dx) A

Jj=1
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o p/s'
- A s oly)lelg dz | d\
/ ey /p(ﬁ)Q(/p(ybnlf(y)I o) y> v
p/s’
= Aalel s o(y)~lelg d\.
/ e ( / T y>

The Hardy inequality

oo p/s
/ (M)A ( / |f<y>|8’p<y>—“dy> A< C [ fW)Pw(p(y))dy
0 p(y)>2X R™

for p > &' is characterized by the condition C' < ¢B’ (see [4], [5], also [13], [14]),
where

p/s’ —1
= sup (/ P(t t'“ldT) / W'/ () () "1/ e < 00.
>0 p(x)>2r
Note that

T T t
/ w(t)t‘“‘dt:m\/ 1/;(t)dt/ Alal=1g)

0

|a\/ Alal= 1d)\/ (T dT<|a\/ Mal=1y,

= c14/ w1 (p(x))dz.
p(z)<r

Condition (c¢) of the theorem guarantees that 5’ < |a|B < oo. Hence, applying the
Hardy inequality, we obtain

Jos < e / F@)Pwoe))d

Combining the estimates of J; and Ja, we get (7) for wy (t) = wi(+00)+ [ 9(7)dr.
By Fatou’s theorem on passing to the limit under the Lebesgue integral 81gn thls
implies (7). The theorem is proved. O

Corollary 2.7 Letp € (1,00), K be a anisotropic Calderon—Zygmund kernel and
T be the corresponding operator. Moreover, let s > p', w(t) be a weight function

n (0,00), wi(t) be a positive decreasing function on (0,00) and the weighted pair
(w(p(x)), wi(p(x))) satisfies the conditions (a) and (¢). Then inequality (7) is
valid.
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