

Two-weighted Norm Inequalities for Some Anisotropic Sublinear Operators with Rough Kernel

Sh. A. Nazirova

Abstract : In this paper, the author established several general theorems for the boundedness of some anisotropic sublinear operators with rough kernel on a weighted Lebesgue space. The conditions of these theorems are satisfied by many important operators in analysis.

Keywords: Weighted Lebesgue space, sublinear operator, anisotropic singular integral, two-weighted inequality.

2000 Mathematics Subject Classification: 42B25, 42B20.

1 Introduction

In the paper, we shall prove the boundedness of some anisotropic sublinear operators with rough kernel on a weighted L_p space. We point out that the condition (1) in the isotropic case was first introduced by Soria and Weiss in [1]. The condition (1) is satisfied by many interesting operators in harmonic analysis, such as the anisotropic Calderon-Zygmund operators, anisotropic Hardy-Littlewood maximal operators, anisotropic R. Fefferman's singular integrals, anisotropic Ricci-Stein's oscillatory singular integrals, the anisotropic Bochner-Riesz means and so on (see [1], [2]).

Let \mathbb{R}^n be the *n*-dimensional Euclidean space of points $x=(x_1,...,x_n)$ with norms

$$|x| = \left(\sum_{i=1}^{n} x_i^2\right)^{1/2},$$

, let $R_0^n = \mathbb{R}^n \setminus \{0\}$, $\Sigma = \{x \in \mathbb{R}^n : |x| = 1\}$, $a = (a_1, \dots, a_n)$, $a_i > 0$, $i = 1, \dots, n$, $|a| = \sum_{i=1}^n a_i$, \mathbb{N} be the set of natural numbers, $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$, $t^a x \equiv (t^{a_1} x_1, \dots, t^{a_n} x_n)$, t > 0.

Almost everywhere positive and locally integrable function $\omega : \mathbb{R}^n \to \mathbb{R}$ will be called a weight. We shall denote by $L_{p,\omega}(\mathbb{R}^n)$ the set of all measurable functions

f on \mathbb{R}^n such that the norm

$$\|f\|_{L_{p,\omega}(\mathbb{R}^n)} \equiv \|f\|_{p,\omega;\mathbb{R}^n} = \left(\int_{\mathbb{R}^n} |f(x)|^p \omega(x) dx\right)^{1/p}, \qquad 1 \le p < \infty,$$

is finite.

For $x \in R_0^n$, let $\rho(x)$ be a positive solution to the equation $\sum_{i=1}^n x_i^2 \rho^{-2a_i} = 1$. Note that $\rho(x)$ is equivalent to $\sum_{i=1}^n |x_i|^{1/a_i}$, i.e.,

$$c_1 \rho(x) \le \sum_{i=1}^n |x_i|^{1/a_i} \le c_2 \rho(x)$$

for certain positive c_1 and c_2 (see [3]).

Definition 1.1 Function K defined on R_0^n , is said to be an anisotropic Calderon-Zygmund(ACZ) kernel in the space \mathbb{R}^n if

- (i) $K \in C^{\infty}(\mathbb{R}^n)$
- (ii) $K(t^a x) \equiv K(t^{a_1} x_1, \dots, t^{a_n} x_n) = t^{-|a|} K(x), \ t > 0, \ x \in \mathbb{R}_0^n$
- (iii) $\int_{\Sigma} K(x) \sum_{i=1}^{n} a_i x_i^2 d\sigma(x) = 0.$

2 Main Results

First, we establish the boundedness in weighted L_p spaces for a large class of anisotropic sublinear operators with rough kernel.

Theorem 2.1 Let $p \in (1, \infty)$ and let T be a sublinear operator bounded from $L_p(\mathbb{R}^n)$ to $L_p(\mathbb{R}^n)$ such that, for any $f \in L_1(\mathbb{R}^n)$ with compact support and $x \notin \text{supp } f$

$$|Tf(x)| \le c_0 \int_{\mathbb{R}^n} \frac{|\Omega(x-y)|}{\rho(x-y)^{|a|}} |f(y)| dy, \tag{1}$$

where c_0 is independent of f and x, Ω is a-homogeneous of degree zero ($\equiv \Omega(t^a x) = \Omega(x)$, for all t > 0 and $x \in R_0^n$) and $\Omega \in L_s(\Sigma)$.

Moreover, let s > p', p' = p/(p-1) and $\omega(x)$, $\omega_1(x)$ be weight functions on \mathbb{R}^n and the following three conditions be satisfied:

(a) there exists b > 0 such that

$$\sup_{\rho(x)/4<\rho(y)\leq 4\rho(x)}\omega_1(y)\leq b\,\omega(x)\quad\text{for a.e. }x\in\mathbb{R}^n,$$

(b)

$$\mathcal{A} \equiv \sup_{r>0} \left(\int_{\rho(x)>2r} \omega_1(x) \rho(x)^{-|a|p/s'} dx \right) \left(\int_{\rho(x)$$

(c)

$$\mathcal{B} \equiv \sup_{r>0} \left(\int_{\rho(x) < r} \omega_1(x) dx \right) \left(\int_{\rho(x) > 2r} \omega^{1 - (p/s')'}(x) \rho(x)^{-|a|p/s'} dx \right)^{p/s' - 1} < \infty.$$

Then there exists a constant c, independent of f, such that for all $f \in L_{p,\omega}(\mathbb{R}^n)$

$$\int_{\mathbb{R}^n} |Tf(x)|^p \omega_1(x) dx \le c \int_{\mathbb{R}^n} |f(x)|^p \omega(x) dx.$$
 (2)

Moreover, condition (a) can be replaced by the condition

(a') there exist b > 0 such that

$$\omega_1(x) \left(\sup_{\rho(x)/4 \le \rho(y) \le 4\rho(x)} \frac{1}{\omega(y)} \right) \le b \text{ for a.e. } x \in \mathbb{R}^n.$$

Proof. For $k \in \mathbb{Z}$, we define

$$E_k = \left\{ x \in \mathbb{R}^n : 2^k < \rho(x) \le 2^{k+1} \right\},$$

$$E_{k,1} = \left\{ x \in \mathbb{R}^n : \rho(x) \le 2^{k-1} \right\},$$

$$E_{k,2} = \left\{ x \in \mathbb{R}^n : 2^{k-1} < \rho(x) \le 2^{k+2} \right\},$$

$$E_{k,3} = \left\{ x \in \mathbb{R}^n : \rho(x) > 2^{k+2} \right\}.$$

Then $E_{k,2} = E_{k-1} \cup E_k \cup E_{k+1}$ and the multiplicity of the covering $\{E_{k,2}\}_{k \in \mathbb{Z}}$ is equal to 3.

Given $f \in L_{p,\omega}(\mathbb{R}^n)$, we write

$$|Tf(x)| = \sum_{k \in \mathbb{Z}} |Tf(x)| \chi_{E_k}(x)$$

$$\leq \sum_{k \in \mathbb{Z}} |Tf_{k,1}(x)| \chi_{E_k}(x) + \sum_{k \in \mathbb{Z}} |Tf_{k,2}(x)| \chi_{E_k}(x) + \sum_{k \in \mathbb{Z}} |Tf_{k,3}(x)| \chi_{E_k}(x)$$

$$\equiv T_1 f(x) + T_2 f(x) + T_3 f(x), \tag{3}$$

where χ_{E_k} is the characteristic function of the set E_k , $f_{k,i} = f\chi_{E_{k,i}}$, i = 1, 2, 3. First we shall estimate $||T_1f||_{L_{p,\omega_1}}$. Note that for $x \in E_k$, $y \in E_{k,1}$ we have $\rho(y) \leq 2^{k-1} \leq \rho(x)/2$. Moreover, $E_k \cap \text{supp } f_{k,1} = \emptyset$ and $\rho(x-y) \geq \rho(x)/2$. Hence by (1),

$$T_{1}f(x) \leq c_{0} \sum_{k \in \mathbb{Z}} \left(\int_{\mathbb{R}^{n}} \frac{|\Omega(x-y)||f_{k,1}(y)|}{\rho(x-y)^{|a|}} dy \right) \chi_{E_{k}}$$

$$\leq c_{0} \int_{\rho(y) \leq \rho(x)/2} \rho(x-y)^{-|a|} |\Omega(x-y)|f(y)| dy$$

$$\leq 2^{|a|} c_{0}\rho(x)^{-|a|} \int_{\rho(y) \leq \rho(x)/2} |\Omega(x-y)||f(y)| dy$$

$$\leq 2^{|a|} c_{0}\rho(x)^{-n} \left(\int_{\rho(y) \leq \rho(x)/2} |\Omega(x-y)|^{s} dy \right)^{1/s} \left(\int_{\rho(y) \leq \rho(x)/2} |f(y)|^{s'} dy \right)^{1/s'}$$

for any $x \in E_k$. Since

$$\left(\int_{\rho(y) \le \rho(x)/2} |\Omega(x-y)|^s dy \right)^{1/s} \le c_1 \rho(x)^{|a|/s} ||\Omega||_s,$$

where $\|\Omega\|_s = \left(\int_{\Sigma} |\Omega(y')|^s d\sigma(y')\right)^{1/s}$, then we have

$$\int_{\mathbb{R}^n} |T_1 f(x)|^p \omega_1(x) dx \le c_2 \int_{\mathbb{R}^n} \left(\int_{\rho(y) < \rho(x)/2} |f(y)|^{s'} dy \right)^{1/s'} \rho(x)^{-|a|p/s'} \omega_1(x) dx.$$

Since $A < \infty$ and p > s', the Hardy inequality

$$\int_{\mathbb{R}^{n}} \omega_{1}(x) \rho(x)^{-|a|p/s'} \left(\int_{\rho(y) < \rho(x)/2} |f(y)|^{s'} dy \right)^{p/s'} dx \le C \int_{\mathbb{R}^{n}} |f(x)|^{p} \omega(x) dx$$

holds and $C \leq c' \mathcal{A}$, where c' depends only on n, s and p. In fact, the condition $\mathcal{A} < \infty$ is necessary and sufficient for the validity of this inequality (see [4], [5]). Hence, we obtain

$$\int_{\mathbb{R}^n} |T_1 f(x)|^p \omega_1(x) dx \le c_3 \int_{\mathbb{R}^n} |f(x)|^p \omega(x) dx, \tag{4}$$

where c_3 is independent of f.

Next we estimate $||T_3f||_{L_{p,\omega_1}}$. As it is easy to verify, for $x \in E_k$, $y \in E_{k,3}$ we have $\rho(y) > 2\rho(x)$ and $\rho(x-y) \ge \rho(y)/2$. Since $E_k \cap \operatorname{supp} f_{k,3} = \emptyset$, for $x \in E_k$ by

(1), we obtain

$$\begin{split} T_{3}f(x) &\leq c_{0} \int_{\rho(y)>2\rho(x)} \frac{|\Omega(x-y)||f(y)|}{\rho(x-y)^{|a|}} \, dy \\ &\leq 2^{|a|} c_{0} \int_{\rho(y)>2\rho(x)} \frac{|\Omega(x-y)||f(y)|}{\rho(y)^{|a|}} \, dy \\ &= 2^{|a|} c_{0} \sum_{j=1}^{\infty} \int_{2^{j}\rho(x)<\rho(y)\leq 2^{j+1}\rho(x)} |\Omega(x-y)||f(y)|\rho(y)^{-|a|} dy \\ &\leq 2^{|a|} c_{0} \sum_{j=1}^{\infty} \left(\int_{2^{j}\rho(x)<\rho(y)\leq 2^{j+1}\rho(x)} |\Omega(x-y)|^{s} dy \right)^{1/s} \\ &\times \left(\int_{2^{j}\rho(x)<\rho(y)\leq 2^{j+1}\rho(x)} \left(|f(y)|\rho(y)^{-|a|} \right)^{s'} dy \right)^{1/s'} \\ &\leq c_{4} \sum_{j=1}^{\infty} \left(2^{j+1}\rho(x) \right)^{|a|/s} \left(\int_{2^{j}\rho(x)<\rho(y)\leq 2^{j+1}\rho(x)} \left(|f(y)|\rho(y)^{-|a|} \right)^{s'} dy \right)^{1/s'} \\ &\leq 2^{|a|/s} c_{4} \sum_{j=1}^{\infty} \left(\int_{2^{j}\rho(x)<\rho(y)\leq 2^{j+1}\rho(x)} \rho(y)^{|a|s'/s} \left(|f(y)|\rho(y)^{-|a|} \right)^{s'} dy \right)^{1/s'} \\ &\leq c_{5} \left(\int_{\rho(y)>2\rho(x)} |f(y)|^{s'} \rho(y)^{-|a|} dy \right)^{1/s'} . \end{split}$$

Hence we have

$$\int_{\mathbb{R}^n} |T_3 f(x)|^p \omega_1(x) dx \le c_6 \int_{\mathbb{R}^n} \left(\int_{\rho(y) > 2\rho(x)} |f(y)|^{s'} \rho(y)^{-|a|} dy \right)^{p/s'} \omega_1(x) dx.$$

Since $\mathcal{B} < \infty$ and p > s', the Hardy inequality

$$\int_{\mathbb{R}^n} \omega_1(x) \left(\int_{\rho(y) > 2\rho(x)} |f(y)|^{s'} \rho(y)^{-|a|} dy \right)^{p/s'} dx \le C \int_{\mathbb{R}^n} |f(x)|^p \omega(x) dx$$

holds and $C \leq c'\mathcal{B}$, where c' depends only on n, s and p. In fact the condition $\mathcal{B} < \infty$ is necessary and sufficient for the validity of this inequality (see [4], [5]). Hence, we obtain

$$\int_{\mathbb{R}^n} |T_3 f(x)|^p \omega_1(x) dx \le c_7 \int_{\mathbb{R}^n} |f(x)|^p \omega(x) dx, \tag{5}$$

where c_7 is independent of f.

Finally, we estimate $||T_2f||_{L_{p,\omega_1}}$. By the $L_p(\mathbb{R}^n)$ boundedness of T and condition (a), we have

$$\int_{\mathbb{R}^{n}} |T_{2}f(x)|^{p} \omega_{1}(x) dx = \int_{\mathbb{R}^{n}} \left(\sum_{k \in \mathbb{Z}} |Tf_{k,2}(x)| \chi_{E_{k}}(x) \right)^{p} \omega_{1}(x) dx
= \int_{\mathbb{R}^{n}} \left(\sum_{k \in \mathbb{Z}} |Tf_{k,2}(x)|^{p} \chi_{E_{k}}(x) \right) \omega_{1}(x) dx
= \sum_{k \in \mathbb{Z}} \int_{E_{k}} |Tf_{k,2}(x)|^{p} \omega_{1}(x) dx
\leq \sum_{k \in \mathbb{Z}} \sup_{x \in E_{k}} \omega_{1}(x) \int_{\mathbb{R}^{n}} |Tf_{k,2}(x)|^{p} dx
\leq ||T||^{p} \sum_{k \in \mathbb{Z}} \sup_{x \in E_{k}} \omega_{1}(x) \int_{\mathbb{R}^{n}} |f_{k,2}(x)|^{p} dx
= ||T||^{p} \sum_{k \in \mathbb{Z}} \sup_{y \in E_{k}} \omega_{1}(y) \int_{E_{k,2}} |f(x)|^{p} dx,$$

where $||T|| \equiv ||T||_{L_p(\mathbb{R}^n) \to L_p(\mathbb{R}^n)}$. Since for $x \in E_{k,2}$, $2^{k-1} < \rho(x) \le 2^{k+2}$, we have by condition (a)

$$\sup_{y \in E_k} \omega_1(y) = \sup_{2^{k-1} < \rho(y) \le 2^{k+2}} \omega_1(y) \le \sup_{\rho(x)/4 < \rho(y) \le 4\rho(x)} \omega_1(y) \le b \, \omega(x)$$

for almost all $x \in E_{k,2}$. Therefore,

$$\int_{\mathbb{R}^n} |T_2 f(x)|^p \omega_1(x) dx \le ||T||^p b \sum_{k \in \mathbb{Z}} \int_{E_{k,2}} |f(x)|^p \omega(x) dx$$

$$\le c_7 \int_{\mathbb{R}^n} |f(x)|^p \omega(x) dx, \tag{6}$$

where $c_7 = 3||T||^p b$, since the multiplicity of covering $\{E_{k,2}\}_{k\in\mathbb{Z}}$ is equal to 3. Inequalities (3), (4), (5) and (6) imply (2), thus completing the proof.

Let K be anisotropic Calderon–Zygmund kernel and T be the corresponding integral operator

$$Tf(x) = p.v. \int_{\mathbb{R}^n} K(x - y)f(y)dy.$$

Then T satisfies the condition (1). See [1], [2] for details. Thus, we have

Corollary 2.2 Let $p \in (1, \infty)$, K be anisotropic Calderon–Zygmund kernel and T be the corresponding integral operator. Moreover, let s > p', $\omega(x)$, $\omega_1(x)$ be weight functions on \mathbb{R}^n and conditions (a), (b) and (c) be satisfied. Then inequality (2) is valid.

Remark 2.3 Note that, Corollary 2.2 in the case $s = \infty$ was proved in [6] and for singular integral operators, defined on homogeneous groups in [7], [8] (see also [9], [10]).

Theorem 2.4 Let $p \in (1, \infty)$, T be anisotropic sublinear operator bounded from $L_p(\mathbb{R}^n)$ to $L_p(\mathbb{R}^n)$ and satisfying (1). Let also Ω is a-homogeneous of degree zero and $\Omega \in L_s(\Sigma)$. Moreover, let s > p', $\omega(t)$ be a weight function on $(0, \infty)$, $\omega_1(t)$ be a positive increasing function on $(0, \infty)$ and the weighted pair $(\omega(\rho(x)), \omega_1(\rho(x)))$ satisfies the conditions (a) and (b).

Then there exists a constant c > 0, such that for all $f \in L_{p,\omega}(\mathbb{R}^n)$

$$\int_{\mathbb{R}^n} |Tf(x)|^p \omega_1(\rho(x)) dx \le c \int_{\mathbb{R}^n} |f(x)|^p \omega(\rho(x)) dx. \tag{7}$$

Proof. Suppose that $f \in L_{p,\omega}(\mathbb{R}^n)$ and ω_1 are positive increasing functions on $(0,\infty)$ and $(\omega(\rho(x)), \omega_1(\rho(x)))$ satisfied the conditions (a) and (b).

Without loss of generality, we can suppose that ω_1 can be represented by

$$\omega_1(t) = \omega_1(0+) + \int_0^t \psi(\lambda)d\lambda,$$

where $\omega_1(0+) = \lim_{t\to 0} \omega_1(t)$ and $\omega_1(t) \geq 0$ on $(0,\infty)$. In fact, there exists a sequence of increasing absolutely continuous functions ϖ_m such that $\varpi_m(t) \leq \omega_1(t)$ and $\lim_{m\to\infty} \varpi_m(t) = \omega_1(t)$ for any $t\in (0,\infty)$ (see [9], [10], [11] and [12] for details).

We have

$$\int_{\mathbb{R}^n} |Tf(x)|^p \omega_1(\rho(x)) dx = \omega_1(0+) \int_{\mathbb{R}^n} |Tf(x)|^p dx + \int_{\mathbb{R}^n} |Tf(x)|^p \left(\int_0^{\rho(x)} \psi(\lambda) d\lambda \right) dx$$
$$= J_1 + J_2.$$

If $\omega_1(0+) = 0$, then $J_1 = 0$. If $\omega_1(0+) \neq 0$, by the boundedness of T in $L_p(\mathbb{R}^n)$, thanks to (a), we have

$$J_1 \leq ||T||^p \omega_1(0+) \int_{\mathbb{R}^n} |f(x)|^p dx$$

$$\leq ||T||^p \int_{\mathbb{R}^n} |f(x)|^p \omega_1(\rho(x)) dx$$

$$\leq b ||T||^p \int_{\mathbb{R}^n} |f(x)|^p \omega(\rho(x)) dx.$$

After changing the order of integration in J_2 , we have

$$J_{2} = \int_{0}^{\infty} \psi(\lambda) \left(\int_{\rho(x) > \lambda} |Tf(x)|^{p} dx \right) d\lambda$$

$$\leq 2^{p-1} \int_{0}^{\infty} \psi(\lambda) \left(\int_{\rho(x) > \lambda} |T(f\chi_{\{\rho(x) > \lambda/2\}})(x)|^{p} dx \right)$$

$$+ \int_{\rho(x) > \lambda} |T(f\chi_{\{\rho(x) \le \lambda/2\}})(x)|^{p} dx d\lambda$$

$$= J_{21} + J_{22}.$$

Using the boundedness of T in $L_p(\mathbb{R}^n)$ and condition (a), we have

$$J_{21} \leq ||T||^p \int_0^\infty \psi(t) \left(\int_{\rho(y) > \lambda/2} |f(y)|^p dy \right) dt$$

$$= ||T||^p \int_{\mathbb{R}^n} |f(y)|^p \left(\int_0^{2\rho(y)} \psi(\lambda) d\lambda \right) dy$$

$$\leq ||T||^p \int_{\mathbb{R}^n} |f(y)|^p \omega_1(2\rho(y)) dy$$

$$\leq b ||T||^p \int_{\mathbb{R}^n} |f(y)|^p \omega(\rho(y)) dy.$$

Let us estimate J_{22} . For $\rho(x) > \lambda$ and $\rho(y) \le \lambda/2$, we have $\rho(x)/2 \le \rho(x-y) \le 3\rho(x)/2$, and so

$$J_{22} \leq c_0 \int_0^\infty \psi(\lambda) \left(\int_{\rho(x) > \lambda} \left(\int_{\rho(y) \leq 2\lambda} \frac{|\Omega(x - y)| |f(y)|}{\rho(x - y)^{|a|}} dy \right)^p dx \right) d\lambda$$

$$\leq 2^{|a|} c_0 \int_0^\infty \psi(\lambda) \left(\int_{\rho(x) > \lambda} \left(\int_{\rho(y) \leq 2\lambda} |\Omega(x - y)| |f(y)| dy \right)^p \rho(x)^{-|a|p} dx \right) d\lambda$$

$$= c_8 \int_0^\infty \psi(\lambda) \lambda^{-|a|p + |a|} \left(\int_{\rho(y) \leq \lambda/2} |\Omega(x - y)| |f(y)| dy \right)^p d\lambda$$

$$\leq c_8 \int_0^\infty \psi(\lambda) \lambda^{-|a|p + |a|} \left(\int_{\rho(y) \leq \lambda/2} |\Omega(x - y)|^s dy \right)^{p/s} \left(\int_{\rho(y) \leq \lambda/2} |f(y)|^{s'} dy \right)^{p/s'} d\lambda$$

$$\leq c_9 \int_0^\infty \psi(\lambda) \lambda^{-|a|p/s' + |a|} \left(\int_{\rho(y) \leq \lambda/2} |f(y)|^{s'} dy \right)^{p/s'} d\lambda.$$

The Hardy inequality

$$\int_0^\infty \psi(\lambda) \lambda^{-|a|p/s'+|a|} \left(\int_{\rho(y) \le \lambda/2} |f(y)|^{s'} dy \right)^{p/s'} d\lambda$$

$$\le C \int_{\mathbb{R}^n} |f(y)|^p \omega(\rho(y)) dy,$$

for p > s' is characterized by the condition $C \leq c' \mathcal{A}'$ (see [4], [5], also [13], [14]), where

$$\mathcal{A}' \equiv \sup_{\tau > 0} \left(\int_{2\tau}^{\infty} \psi(t) t^{-|a|p/s' + |a|} d\tau \right) \left(\int_{\rho(x) < r} \omega^{1 - (p/s')'}(\rho(x)) dx \right)^{p/s' - 1} < \infty.$$

Note that

$$\begin{split} \int_{2t}^{\infty} \psi(\tau) \tau^{-|a|p/s'+|a|} d\tau &= |a|(p/s'-1) \int_{2t}^{\infty} \psi(\tau) d\tau \int_{\tau}^{\infty} \lambda^{|a|-1-|a|p/s'} d\lambda \\ &= |a|(p/s'-1) \int_{2t}^{\infty} \lambda^{|a|-1-|a|p/s'} d\lambda \int_{2t}^{\lambda} \psi(\tau) d\tau \\ &\leq |a|(p/s'-1) \int_{2t}^{\infty} \lambda^{|a|-1-|a|p/s'} \omega_{1}(\lambda) d\lambda \\ &= c_{10} \int_{\rho(x)>2r} \omega_{1}(\rho(x)) \rho(x)^{-|a|p/s'} dx. \end{split}$$

Condition (b) of the theorem guarantees that $\mathcal{A}' \leq c_{10}\mathcal{A} < \infty$. Hence, applying the Hardy inequality, we obtain

$$J_{22} \le c \int_{\mathbb{R}^n} |f(x)|^p \omega(\rho(x)) dx,$$

where c > 0 is independent of f.

Combining the estimates of J_1 and J_2 , we get (7) for

$$\omega_1(t) = \omega_1(0+) + \int_0^t \psi(\tau)d\tau.$$

By Fatou's theorem on passing to the limit under the Lebesgue integral sign, this implies (7). The theorem is proved.

Corollary 2.5 Let $p \in (1, \infty)$, K be a Calderon-Zygmund kernel and T be the corresponding operator. Moreover, let s > p', $\omega(t)$ be a weight function on $(0, \infty)$, $\omega_1(t)$ be a positive increasing function on $(0,\infty)$ and the weighted pair $(\omega(\rho(x)),\,\omega_1(\rho(x)))$ satisfies the conditions (a) and (b). Then inequality (7) is valid.

Theorem 2.6 Let $p \in (1, \infty)$, T be a sublinear operator bounded from $L_p(\mathbb{R}^n)$ to $L_p(\mathbb{R}^n)$ and satisfying (1). Let also Ω be a-homogeneous of degree zero and $\Omega \in L_s(\Sigma)$. Moreover, let s > p', $\omega(t)$ be a weight function on $(0, \infty)$, $\omega_1(t)$ be a positive decreasing function on $(0, \infty)$ and the weighted pair $(\omega(\rho(x)), \omega_1(\rho(x)))$ satisfies the conditions (a) and (c). Then inequality (7) is valid.

Proof. Without loss of generality, we can suppose that ω_1 can be represented by

$$\omega_1(t) = \omega_1(+\infty) + \int_t^\infty \psi(\tau)d\tau,$$

where $\omega_1(+\infty) = \lim_{t \to \infty} \omega_1(t)$ and $\omega_1(t) \ge 0$ on $(0, \infty)$.

In fact, there exists a sequence of decreasing absolutely continuous functions ϖ_m , such that $\varpi_m(t) \leq \omega_1(t)$ and $\lim_{m\to\infty} \varpi_m(t) = \omega_1(t)$ for any $t \in (0,\infty)$ (see [9], [10], [11], [12] for details).

We have

$$\int_{\mathbb{R}^n} |Tf(x)|^p \omega_1(\rho(x)) dx = \omega_1(+\infty) \int_{\mathbb{R}^n} |Tf(x)|^p dx + \int_{\mathbb{R}^n} |Tf(x)|^p \left(\int_{\rho(x)}^{\infty} \psi(\tau) d\tau \right) dx$$
$$= I_1 + I_2.$$

If $\omega_1(+\infty) = 0$, then $I_1 = 0$. If $\omega_1(+\infty) \neq 0$, by the boundedness of T in $L_p(\mathbb{R}^n)$ and condition (a), we have

$$J_1 \le ||T||\omega_1(+\infty) \int_{\mathbb{R}^n} |f(x)|^p dx$$

$$\le ||T|| \int_{\mathbb{R}^n} |f(x)|^p \omega_1(\rho(x)) dx$$

$$\le b ||T|| \int_{\mathbb{R}^n} |f(x)|^p \omega(\rho(x)) dx.$$

After changing the order of integration in J_2 we have

$$J_{2} = \int_{0}^{\infty} \psi(\lambda) \left(\int_{\rho(x) < \lambda} |Tf(x)|^{p} dx \right) d\lambda$$

$$\leq 2^{p-1} \int_{0}^{\infty} \psi(\lambda) \left(\int_{\rho(x) < \lambda} |T(f\chi_{\{\rho(x) < 2\lambda\}})(x)|^{p} dx \right)$$

$$+ \int_{\rho(x) < \lambda} |T(f\chi_{\{\rho(x) \ge 2\lambda\}})(x)|^{p} dx d\lambda$$

$$= J_{21} + J_{22}.$$

Using the boundedness of T in $L_p(\mathbb{R}^n)$ and condition (a), we obtain

$$J_{21} \leq ||T|| \int_0^\infty \psi(t) \left(\int_{\rho(y) < 2\lambda} |f(y)|^p dy \right) dt$$

$$= ||T|| \int_{\mathbb{R}^n} |f(y)|^p \left(\int_{\rho(y)/2}^\infty \psi(\lambda) d\lambda \right) dy$$

$$\leq ||T|| \int_{\mathbb{R}^n} |f(y)|^p \omega_1(\rho(y)/2) dy$$

$$\leq b ||T|| \int_{\mathbb{R}^n} |f(y)|^p \omega(\rho(y)) dy.$$

Let us estimate J_{22} . For $\rho(x) < \lambda$ and $\rho(y) \ge 2\lambda$ we have $\rho(y)/2 \le \rho(x-y) \le 3\rho(y)/2$, and so

$$\begin{split} J_{22} &\leq c_0 \int_0^\infty \psi(\lambda) \left(\int_{\rho(x) < \lambda} \left(\int_{\rho(y) \geq 2\lambda} \frac{|\Omega(x-y)| |f(y)|}{\rho(x-y)^{|a|}} dy \right)^p dx \right) d\lambda \\ &\leq 2^{|a|} c_0 \int_0^\infty \psi(\lambda) \left(\int_{\rho(x) < \lambda} \left(\int_{\rho(y) \geq 2\lambda} \frac{|\Omega(x-y)| |f(y)|}{\rho(y)^{|a|}} dy \right)^p dx \right) d\lambda \\ &\leq 2^{|a|} c_0 \int_0^\infty \psi(\lambda) \left(\int_{\rho(x) < \lambda} \left(\sum_{j=1}^\infty \int_{2^j \lambda < \rho(y) \leq 2^{j+1} \lambda} |\Omega(x-y)| |f(y)| \rho(y)^{-|a|} dy \right)^p dx \right) d\lambda \\ &\leq 2^{|a|} c_0 \int_0^\infty \psi(\lambda) \left(\int_{\rho(x) < \lambda} \left(\sum_{j=1}^\infty \left(\int_{2^j \lambda < \rho(y) \leq 2^{j+1} \lambda} |\Omega(x-y)|^s dy \right)^{1/s} \right)^{1/s} \right) \\ &\times \left(\int_{2^j \lambda < \rho(y) \leq 2^{j+1} \lambda} \left(|f(y)| \rho(y)^{-|a|} \right)^{s'} dy \right)^{1/s'} \right)^p dx \right) d\lambda \\ &\leq c_{10} \int_0^\infty \psi(\lambda) \left(\int_{\rho(x) < \lambda} \left(\sum_{j=1}^\infty \left(2^{j+1} \lambda \right)^{|a|/s} \right)^{1/s'} \right)^p dx \right) d\lambda \\ &\leq c_{11} \int_0^\infty \psi(\lambda) \left(\int_{\rho(x) < \lambda} \left(\sum_{j=1}^\infty \left(\int_{2^j \lambda < \rho(y) \leq 2^{j+1} \lambda} |f(y)|^{s'} \rho(y)^{-|a|} dy \right)^{1/s'} \right)^p dx \right) d\lambda \\ &\leq c_{12} \int_0^\infty \psi(\lambda) \left(\int_{\rho(x) < \lambda} \left(\sum_{j=1}^\infty \int_{2^j \lambda < \rho(y) \leq 2^{j+1} \lambda} |f(y)|^{s'} \rho(y)^{-|a|} dy \right)^{p/s'} dx \right) d\lambda \end{split}$$

$$= c_{12} \int_0^\infty \psi(\lambda) \left(\int_{\rho(x) < \lambda} \left(\int_{\rho(y) > 2\lambda} |f(y)|^{s'} \rho(y)^{-|a|} dy \right)^{p/s'} dx \right) d\lambda$$
$$= c_{13} \int_0^\infty \psi(\lambda) \lambda^{|a|} \left(\int_{\rho(y) > 2\lambda} |f(y)|^{s'} \rho(y)^{-|a|} dy \right)^{p/s'} d\lambda.$$

The Hardy inequality

$$\int_0^\infty \psi(\lambda) \lambda^{|a|} \left(\int_{\rho(y) \ge 2\lambda} |f(y)|^{s'} \rho(y)^{-|a|} dy \right)^{p/s'} d\lambda \le C \int_{\mathbb{R}^n} |f(y)|^p \omega(\rho(y)) dy$$

for p > s' is characterized by the condition $C \leq c\mathcal{B}'$ (see [4], [5], also [13], [14]), where

$$\mathcal{B}' \equiv \sup_{\tau > 0} \left(\int_0^\tau \psi(t) t^{|a|} d\tau \right) \left(\int_{\rho(x) > 2r} \omega^{1 - (p/s')'}(x) \rho(x)^{-|a|p/s'} dx \right)^{p/s' - 1} < \infty.$$

Note that

$$\int_0^\tau \psi(t)t^{|a|}dt = |a| \int_0^\tau \psi(t)dt \int_0^t \lambda^{|a|-1}d\lambda$$

$$= |a| \int_0^\tau \lambda^{|a|-1}d\lambda \int_\lambda^t \psi(\tau)d\tau \le |a| \int_0^\tau \lambda^{|a|-1}\omega(\lambda)d\lambda$$

$$= c_{14} \int_{\rho(x) < \tau} \omega_1(\rho(x))dx.$$

Condition (c) of the theorem guarantees that $\mathcal{B}' \leq |a|\mathcal{B} < \infty$. Hence, applying the Hardy inequality, we obtain

$$J_{22} \le c_{14} \int_{\mathbb{R}^n} |f(x)|^p \omega(\rho(x)) dx.$$

Combining the estimates of J_1 and J_2 , we get (7) for $\omega_1(t) = \omega_1(+\infty) + \int_t^\infty \psi(\tau) d\tau$. By Fatou's theorem on passing to the limit under the Lebesgue integral sign, this implies (7). The theorem is proved.

Corollary 2.7 Let $p \in (1, \infty)$, K be a anisotropic Calderon–Zygmund kernel and T be the corresponding operator. Moreover, let s > p', $\omega(t)$ be a weight function on $(0, \infty)$, $\omega_1(t)$ be a positive decreasing function on $(0, \infty)$ and the weighted pair $(\omega(\rho(x)), \omega_1(\rho(x)))$ satisfies the conditions (a) and (c). Then inequality (7) is valid.

Acknowledgements

The author would like to express his thanks to Prof. Zhijian Wu and Prof. Vagif Guliyev for many helpful discussions about this subject.

References

- [1] F. Soria and G. Weiss, A remark on singular integrals and power weights, Indiana Univ. Math. J., 43(1994), 187-204.
- [2] G. Lu, S. Lu and D. Yang, Singular integrals and commutators on homogeneous groups, Analysis Mathematica, 28(2002), 103-134.
- [3] O. V. Besov, V. P. Pl'in and S. M. Nikol'skii, Integral representations of functions and embedding theorems, Moscow, Nauka, 1975.
- [4] E. Adams, On weighted norm inequalities for the Riesz transforms of functions with vanishing moments, Studia Math., 78(1984), 107-153.
- [5] D. Edmunds, P. Gurka and L. Pick, Compactness of Hardy-type integral operators in weighted Banach function spaces, Studia Math., 109(1994), 73-90.
- [6] Y. Rakotondratsimba, Two-weight norm inequality for Calderon-Zygmund operators, Acta Math. Hungar., 80(1988), 39-54.
- [7] V. M. Kokilashvili and A. Meskhi, Two-weight inequalities for singular integrals defined on homogeneous groups, Proc. Razmadze Math. Inst., **112**(1997), 57-90.
- [8] V. S. Guliev, Integral operators on function spaces on the homogeneous groups and on domains in Rn. Doctor's dissertation, Moscow, Mat. Inst. Steklov, 1994, 1-329. (Russian)
- [9] V.S. Guliev, Two-weighted inequalities for integral operators in L_p -spaces, and applications, Trudy Math. Inst. Steklov, 204(1993), 113-136. English trans. in *Proc. Steklov Inst. Math.*, **204**(1994), 97-116.
- [10] I. Genebashvili, A. Gogatishvili, V. Kokilashvili and M. Krbec, Weight theory for integral transforms on spaces of homogeneous type, Pitman monographs and surveys in pure and applied mathematics, 1998.
- [11] E. G. Guseinov, Singular integrals in the spaces of functions summable withmonotone weight, (Russian) *Mat. Sb.*, **132**(1977), 28-44.
- [12] I. A. Aliev and A. D. Gadjiev, Weighted estimates of multidimensional singulars generated by the generalized shift operator, Inglish, translated into Russian Acad. Sci. Sb. Math., 77(1)(1994), 37-55.
- [13] J. S. Bradley, The Hardy's inequalities with mixed norms, Canad. Math. Bull., **21**(1978), 405-408.
- [14] V. M. Kokilashvilii, On Hardy's inequalities in weighted spaces, (Russian) Bull. Acad. Sci. Georgian SSR, **96**(1979), 37-40.

(Received 11 July 2005)

Sh. A. Nazirova Khazar University, Azerbaijan Mehseti str., 9 Baku, AZ 1096, Azerbaijan. e-mail: vagif@guliyev.com