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Abstract : In recent years, mathematical structures were altered with fuzzy
numbers or interval numbers and these mathematical structures have been very
popular in mathematics world so we have taken courage and hope from it, and
we defined bounded and convergent sequences spaces of interval numbers. The
purpose of this paper is to introduce the null, convergent and bounded sequence
spaces of interval numbers ci

0, ci and ℓi
∞, respectively, consisting of all sequences

x = (xk) such that (xk) is a sequence of interval numbers. Also some new defin-
itions and theorems about sequence spaces of the interval numbers were given in
this paper.
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1 Introduction

We know that many mathematical structures have been constructed with real
or complex numbers. In recent years, these mathematical structures were replaced
by fuzzy numbers or interval numbers and these mathematical structures have been
very popular since 1965. Interval arithmetic was first suggested by P. S. Dwyer [2]
in 1951. Development of interval arithmetic as a formal system and evidence of its
value as a computational device was provided by R. E. Moore [7], [9] in 1959 and
1962. Furthemore, Moore and others [2], [3], [4], [8] have developed applications
to differential equations.

Recently in [1] Chiao introduced sequence of interval numbers and defined
usual convergence of sequences of interval numbers and we have taken courage
from him/her we defined bounded and convergent sequences spaces of interval
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numbers. We show that this spaces are complete metric spaces. Also we computed
basis of the spaces ci

0 and ci.

2 Preliminaries

A set consisting of a closed interval of real numbers x such that a ≤ x ≤ b is
called an interval number. A real interval can also be considered as a set. Thus
we can investigate some properties of interval numbers, for instance arithmetic
properties or analysis properties. Let’s denote the set of all real valued closed
intervals by IR. Any elements of IR is called a closed interval and it denoted by
x. That is x = {x ∈ R : a ≤ x ≤ b}. An interval number x is a closed subset
of real numbers [1]. Let xℓ and xr be first and last points of x interval number,
respectively. For all x1, x2 ∈ IR we have

x1 = x2 ⇔ x1ℓ
= x2ℓ

and xr1
= xr2

, x1 + x2 = {x ∈ R : x1ℓ
+ x2ℓ

≤ x ≤
xr1

+ xr2
}, if α ≥ 0 then αx = {x ∈ R : αx1ℓ

≤ x ≤ αx1r
} and if

α < 0 then αx = {x ∈ R : αxr1
≤ x ≤ αx1ℓ

},

x1x2 = {x ∈ R : min{x1ℓ
x2ℓ

, x1ℓ
xr2

, xr1
x2ℓ

, x1r
xr2

} ≤ x ≤ max{x1ℓ
x2ℓ

,

x1ℓ
xr2

, xr1
x2ℓ

, xr1
xr2

}}.

The set of all interval numbers IR is a metric space [7] defined by

d(x1, x2) = max{|x1ℓ
− x2ℓ

|, |x1r
− x2r

|}. (2.1)

Moreover it is known that IR is a complete metric space. In the special case
x1 = [a, a] and x2 = [b, b], we obtain usual metric of the R with

d(x1, x2) = |a − b|.

Let’s define transformation f from N to IR by k → f(k) = x, x = (xk). Then
(xk) is called sequence of interval numbers. The xk is called kth term of sequence
(xk).

Let us denote the set of all sequences of interval number with real terms by
wi.

Given two sequences of interval numbers in wi, say (xk) and (yk), then the
linear structure of wi includes the addition of (xk)+(yk) and scalar multiplication
(αxk) in terms by (xk) + (yk) = [xkℓ

+ ykℓ
, xkr

+ ykr
]; if α ≥ 0 then

(αxk) = [αxkℓ
, αxkr

] and if α < 0 then (αxk) = [αxkr
, αxkℓ

].
Since the set of all intervals on R is quasivector space [6] the set wi be regarded

as a quasivector space and the following rules are clearly satisfied: (xk) + (yk) =
(yk) + (xk); (xk) + ((yk) + (zk)) = ((xk) + (yk)) + (zk); (xk) + (yk) = (xk) +
(zk) implies (yk) = (zk); α((xk) + (yk)) = α(xk) + α(yk); (α + β)(xk) =
α(xk) + β(xk), (where αβ ≥ 0); α(β(xk)) = (αβ)(xk); (xk) = [1, 1](xk). The
zero element of wi is the sequence θ = (θk) = ([0, 0]) all terms of which are zero
interval.
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Definition 2.1. [1] A sequence x = (xk) of interval numbers is said to be conver-
gent to the interval number x0 if for each ε > 0 there exists a positive integer n0

such that d(xk, x0) < ε for all k ≥ n0, and we denote it by writing limk xk = x0.

Thus, lim
k→∞

xk = x0 ⇔ lim
k→∞

xkℓ
= x0ℓ

and lim
k→∞

xkr
= x0r

.

3 Some Sequence Spaces of the Interval Numbers

In this section we define sequence spaces null, convergent and bounded of the
interval numbers.

Let us denote the space of all null, convergent, bounded sequences of interval
number by ci

0, ci and ℓi
∞ respectively, that is

ci
0 ={x = (xk) ∈ wi : lim

k
xk = θ, where θ = [0, 0]},

ci ={x = (xk) ∈ wi : lim
k

xk = x0, x0 ∈ IR},

ℓi
∞ ={x = (xk) ∈ wi : sup

k

{|xkℓ
|, |xkr

|} < ∞}.

Clearly we see that the spaces ci
0, ci and ℓi

∞ are subspaces of the space wi.
Besides, for all (xk), (yk) ∈ ci

0 (or ci, ℓi
∞) the d̃ defined by

d̃(xk, yk) = sup
k

max{|xkℓ
− ykℓ

|, |xkr
− ykr

|} (3.1)

satisfies metric axioms. Thus, (ci
0, d̃) (or (ci, d̃) and (ℓi

∞, d̃)) is a metric space.

Definition 3.1. Let’s suppose that y ∈ wi, y = ([ykℓ
, ykr

]). If ykℓ
= ykr

, for all
k ∈ N, then the sequence y = (yk) is called degenerate interval sequence .

If x = (xk) and y = (yk) are degenerate interval sequences then the metric in
(3.1) reduces on the classical sequence spaces (i.e., null, convergent and bounded
of the real or complex numbers). In fact, we easily see that the space of all real
valued sequences w is degenerate sequences space since every real number is a
degenerate interval. Therefore, each subspace of w is called a degenerate sequence
space. We shall write ℓ∞, c and c0 for the spaces of all degenerate bounded,
degenerate convergent and degenerate null sequences, respectively.

Definition 3.2. An interval sequence x = (xk) ∈ wi is said to be interval Cauchy
sequence if for every ε > 0 there exists a k0 ∈ N such that d̃(xn, xm) < ε whenever
n, m > k0.

Based on the definitions above, we give a theorem on completeness.

Theorem 3.3. (ci
0, d̃), (ci, d̃) and (ℓi

∞, d̃) are complete metric spaces with the
metric defined by in (3.1).
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Proof. We only give the proof for (ci
0, d̃).

Let (xn) = (xn
k ) = (xn

0 , xn
1 , xn

2 , ...) ∈ ci
0 for each n and (xn) be a Cauchy

sequence. Then, for every ε > 0 there exist a k0 ∈ N such that d̃(xn
k , xm

k ) < ε
whenever n, m ≥ k0. Hence, we have

sup
n,m

max{|xn
kℓ

− xm
kℓ
|, |xn

kr
− xm

kr
|} < ε,

thus we have |xn
kℓ

− xm
kℓ
| < ε and |xn

kr
− xm

kr
| < ε. This means that (xn

k ) is a
Cauchy sequence in R. Since R is a Banach space, (xn

k ) is convergent.
Now, let limn→∞ xn

k = xk for each k ∈ N. Since d̃(xn
k , xm

k ) < ε for all n, m ≥
k0,

lim
m→∞

d̃(xn
k , xm

k ) = d̃(xn
k , lim

m→∞
xm

k ) = d̃(xn
k , xk) < ε.

This implies that xn → x, (n → ∞) for all n ≥ k0 in ci
0. On the other hand, since

d̃(xk, xn
k − xn

k ) = sup
k

max{|xk − (xn
k − xn

k )|, |xk − (xn
k − xn

k )|}

≤ sup
k

max{|xk − xn
k | + |xn

k |, |xk − xn
k | + |xn

k |}

≤ sup
k

max{|xk − xn
k |, |xk − xn

k |} + sup
k

max{|xk|, |xk|},

this shows that x ∈ ci
0.

The norm function on the classical sequence spaces can be extended to the
sequence spaces of the interval numbers. Suppose that λi is a subset of wi.

Definition 3.4. [1] A norm on λi is a non-negative function || · ||λi = λi → R
+ ∪

{0} that satisfies the following properties: ∀x, y ∈ λi and ∀α ∈ R ∀x ∈ λi − {θ},

N1. ||x||λi > 0;

N2. ||x||λi = 0 ⇔ x = θ;

N3. ||x + y||λi ≤ ||x||λi + ||x||λi

N4. ||αx||λi = |α|||x||λi .

As we know that the norm ||x|| of x is the distance from x to 0 in the sequences
space real numbers (see, [5]). Then this idea can be extended on the metric spaces
(ci

0, d̃), (ci, d̃) and (ℓi
∞, d̃).

Let d̃(xk, θ) = supk max{|xkℓ
, θkℓ

|, |xkr
, θkr

|} = supk max{|xkℓ
|, |xkr

|} where θ
is unit element of the spaces ci

0, ci and ℓi
∞. After these explanations, we have

Theorem 3.5. The spaces ci
0, ci and ℓi

∞ are normed interval spaces with the norm

||x|| = sup
k

max{|xkℓ
|, |xkr

|}. (3.2)
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Proof. Let λi = ci
0(or ci and ℓi

∞) and x, y ∈ λi.

N1. Since ||x||λi = supk max{|xkℓ
|, |xkr

|} we easily see that ||x||λi > 0 for ∀x ∈
λi − {θ}.

N2. ||x||λi = 0 ⇔ supk max{|xkℓ
|, |xkr

|} = 0 ⇔ x = θ,

N3.

||x + y||λi = sup
k

max{|xkℓ
+ ykℓ

|, |xkr
+ ykr

|}

≤ sup
k

max{||xkℓ
| + |ykℓ

|, |xkr
| + |ykr

|}

= sup
k

max{(|xkℓ
|, |xkr

|) + (|ykℓ
|, |ykr

|)}

≤ sup
k

max{(|xkℓ
|, |xkr

|)} + sup
k

max{(|ykℓ
|, |ykr

|)} = ||x||λi + ||y||λi ,

N4. ||αx||λi = supk max{|αxkℓ
|, |αxkr

|} = |α| supk max{|xkℓ
|, |xkr

|} = |α|||x||λi .
So ||x||λi is a norm on λi.

Now let’s give definition of interval base.

Definition 3.6. Let λi be normed sequence space of the interval numbers. If λi

contains an interval sequence (yk) with the property that for every x ∈ λi there is
a unique sequence of scalars (αk) such that

lim
k

||x − (α0y0 + α1y1 + ... + αkyk)|| = θ

then (yk) is called an interval basis for λi. The series
∑

k αkyk which has the sum
x is called the expansion of x with the respect to (yk) and written as x =

∑

k αkyk.

Let θ = ([θkℓ
, θkr

]) = ([0, 0]), x′ = ([x′
ℓ, x

′
r]) = ([0, 1]) and (Ek) be an intervals

sequence whose kth position is x′ and others all θ. Let’s suppose that

min{x1ℓ
x2ℓ

, x1ℓ
xr2

, xr1
x2ℓ

, x1r
xr2

} (3.3)

and

max{x1ℓ
x2ℓ

, x1ℓ
xr2

, xr1
x2ℓ

, x1r
xr2

} (3.4)

in multiplication of x1 and x2.
Now we may establish interval basis of the spaces ci

0 and ci.

Theorem 3.7. The set {Ek : k = 0, 1, 2, ...} is an interval basis for ci
0 under norm

defined by (3.2) and conditions (3.3) with (3.4).
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Proof. Let x = (xkr
) ∈ ci

0 and limk xkr
= θ. Then for every ε > 0 there exists a

n ∈ N such that

||x||ci

0

= d̃(xkr
, θ) = sup

k

max{|xkℓ
|, |xkr

|} < ε

whenever k ≥ n. Now, since

K = ||x −

n∑

k=0

xEk||ci

0

= ||x − (x0E0 + x1E1 + · · · + xnEn)||ci

0

= ||x − ([x0ℓ
, x0r

]([0, 1], [0, 0], · · · )
︸ ︷︷ ︸

1.position

+ [x1ℓ
, x1r

]([0, 0], [0, 1], · · · )
︸ ︷︷ ︸

2.position

+ . . .

+ [xnℓ
, xnr

]([0, 0], [0, 0], · · · , [0, 1], · · · )
︸ ︷︷ ︸

n.position

||ci

0
.

From (3.3) and (3.4), we see that 1th position=([x0ℓ
, x0r

], [0, 0], [0, 0], ...),
2th position=([0, 0], [x1ℓ

, x1r
], [0, 0], ...), · · · and nth position=([0, 0], ..., [0, 0], [xnℓ

, xnr
]).

Thus,

K = ||θ, θ, ..., [x(n+1)ℓ
, x(n+1)r

], [x(n+2)ℓ
, x(n+2)r

], ...||ci

0

= sup
k≥n+1

max{|xkℓ
|, |xkr

|} → θ, (n → ∞)

and we have

x =
∑

k

xEk. (3.5)

Let us show that uniqueness of the representation for x ∈ ci
0 given by (3.5). On

the contrary, suppose that there exists a representation x =
∑

k yEk. Then,

||

n∑

k=0

(yk − xk)Ek|| = d̃((y − x), θ)

= sup
k≥n+1

max{|(ykℓ
− xkℓ

) − 0|, |(ykr
− xkr

) − 0|} → θ

for n → ∞. This shows that |y(k≥n+1)ℓ
− x(k≥n+1)ℓ

| → 0 and |y(k≥n+1)r
−

x(k≥n+1)r
| → 0. In this case, we have, y(k≥n+1)ℓ

= x(k≥n+1)ℓ
and y(k≥n+1)r

=
x(k≥n+1)r

, i.e., x = y.

Theorem 3.8. The set {E, Ek : k = 0, 1, 2, ...} is a degenerate interval basis
for ci under norm defined by (3.2) and conditions (3.3) with (3.4), where E =
(x′, x′, ...).

Proof. Let x = (xk) ∈ ci and limk xk = x0. Then for every ε > 0 there exists a
n ∈ N such that whenever k ≥ n. Since,

||x − x0E −

n∑

k=0

(xk − x0)Ek|| = sup
k≥n+1

max{|xkℓ
− x0ℓ

|, |xkr
− x0r

|} → θ, (n → ∞).
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Then, we have x = x0E +
∑n

k=0(xk − x0)Ek. It is easy to check that this repre-
sentation for x is unique.

Definition 3.9. Let λi is a sequence space of the interval numbers. Then λi is
called normal or solid if y ∈ λi whenever ||yk|| ≤ ||xk||, (k ∈ N) for some x ∈ λi.

Theorem 3.10. The spaces ci
0 and ci are solid and monotone.

Proof. We consider only ci
0. Now, let ||yk|| ≤ ||xk||, for all (k ∈ N) and for

some x ∈ ci
0. Then we have, d̃(yk, θ) ≤ d̃(xk, θ), that is {|ykℓ

− 0|, |ykr
− 0|} ≤

{|xkℓ
− 0|, |xkr

− 0|}. Thus we obtain ykℓ
≤ xkℓ

and ykr
≤ xkr

i.e., y ≤ x. It is
clear that y ∈ ci

0. Therefore ci
0 is solid or normal.

Theorem 3.11. The inclusion w ⊂ wi holds.

Proof. The proof is clear since every element of w is a degenerate interval sequence,
(see, Definition 3.1). Also, the inclusions ℓ∞ ⊂ ℓi

∞, c ⊂ ci and c0 ⊂ ci
0 holds.

Theorem 3.12. The inclusion ci
0 ⊂ ci holds.

Proof. If we take any x ∈ ci
0 then we see that x ∈ ci since d̃(xk, θ) = supk max{|xkℓ

−
0|, |xkr

− 0|} < ε. Furthermore, the convergent sequence of the interval numbers
y = ([1, 1 + 1

n
]) ∈ ci but y /∈ ci

0 since limn y−
n = 1 and limn y+

n = 1.
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