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Abstract : A second-order functional differential equation

x′′(z) =
1

c1x(z) + c2x(az + bx′(z))

with the distinctive feature that the argument of the unknown function depends
on the state derivative was investigated. An existence theorem was proposed for
analytic solutions. The explicit analytic solutions were obtained for two different
cases of b, b = 0 and b 6= 0. In the case b 6= 0, the Shchr

..
oder transformation was

introduced to get the auxiliary equation for deriving the explicit solution.
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1 Introduction

Delay differential equations have been studied rather extensively in the past
forty years and are used as models to describe many physical and biological systems
(see [1, 7]). Some interesting properties of these special equations were investi-
gated and provided insights into the main theories. Since such equations are quite
different from the usual differential equations, the standard existence and unique-
ness theorems cannot be applied directly. It is therefore of interest to find some
or all of their solutions. In [2-3, 5-6], analytic solutions of the state derivative
dependent delay functional differential equations were found.

In [4], J. Si and X. Wang studied the existence of analytic solutions of the
equation with state derivative dependent delay

x′′(z) = x (az + bx′(z)) , (1.1)
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where a and b are complex numbers. This equation was written in the form

x′′(z) = f (x (z − τ(z))) , (1.2)

with f(z) = z and τ(z) = (1− a)z− bx′(z). Here, the delay function τ(z) depends
not only on the argument of unknown function, but also on the state derivative.

In [10], T. Liu and H. Li verified the existence of analytic solutions of the
equation with state derivative dependent delay

x′′(z) =
1

x (az + bx′(z))
, (1.3)

where a and b are complex numbers.

For more general case of (1.1), S. Pengpit, T. Kaewong and K. Kongkul inves-
tigated a second-order functional differential equation

x′′(z) = c1x(z) + c2x (az + bx′(z)) , (1.4)

where c1, c2, a and b are complex numbers (see [9]). In this study, we proposed
the existence theorem and obtained the explicit analytic solution of (1.4).

Consequently, we interested to find the analytic solutions of a second-order
functional differential equation

x′′(z) =
1

c1x(z) + c2x (az + bx′(z))
, (1.5)

where c1, c2, a and b are complex numbers. By the conditions of the parameter
b, b = 0 and b 6= 0, we considered the explicit analytic solutions of (1.5). We
derived the explicit analytic solutions of (1.5) when b = 0 while the Shchr

..
oder

transformation was introduced in order to get the auxiliary equation and finally,
we obtained the explicit solution x(z) when b 6= 0.

2 Explicit analytic solutions

In the case b = 0, the functional differential equation (1.5) becomes the func-
tional differential equation

x′′(z) =
1

c1x(z) + c2x(az)
, (2.1)

where c1, c2 and a are complex numbers. For this equation we proposed an
interesting proposition as follow.

Proposition 2.1. Suppose 0 < |a| 6 1. Then the functional differential equation
(2.1) has an analytic solution x(z), in a neighborhood of the origin, satisfying
x(0)x′′(0) = 1

c1+c2

and the initial value conditions x(0) = µ, x′(0) = η ∈ C\{0}.
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Proof. Let

x(z) =
∞
∑

n=0

anzn (2.2)

be the expansion of the formal solution x(z) of (2.1). Substituting (2.2) into (2.1),
we obtain

∞
∑

n=0

(

n
∑

k=0

(c1 + c2a
k)(n + 2 − k)(n + 1 − k)akan+2−k

)

zn = 1.

By means of the method of undetermined coefficients, we obtain

a0a2 =
1

2(c1 + c2)
,

n
∑

k=0

(c1 + c2a
k)(n + 2 − k)(n + 1 − k)akan+2−k = 0, n = 1, 2, . . . .

If we choose a0 = µ 6= 0, a1 = η 6= 0 and a2 = 1
2(c1+c2)µ

, then the sequence

{an}
∞
n=3 is successively determined by

an+2 = −
1

(c1 + c2)(n + 2)(n + 1)µ

n
∑

k=1

(c1+c2a
k)(n+2−k)(n+1−k)akan+2−k, n = 1, 2, . . . .

(2.3)
Now we show that the power series (2.2) converges in a neighborhood of the origin.
First of all, note that

|an+2| 6
|c1| + |c2|

|c1 + c2|

1

|µ|

n
∑

k=1

|ak| |an+2−k|,

thus if we define recursively a sequence {Bn}
∞
n=0 by B0 = |µ|, B1 = |η|, B2 =

1
2|c1+c2||µ|

,

Bn+2 =
|c1| + |c2|

|c1 + c2|

1

|µ|

n
∑

k=1

BkBn+2−k, n = 1, 2, . . . , (2.4)

then we can show that by induction

|an| 6 Bn, n = 1, 2, . . . .

Now if we define

M(z) =

∞
∑

n=1

Bnzn, (2.5)
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then

M2(z) = |η| zM(z) +
|c1 + c2|

|c1| + |c2|
|µ|

(

M(z) − |η| z −
1

2 |c1 + c2| |µ|
z2

)

,

that is

M2(z) −

(

|c1 + c2|

|c1| + |c2|
|µ| + |η| z

)

M(z) +
|c1 + c2|

|c1| + |c2|
|µ| |η| z +

1

2(|c1| + |c2|)
z2 = 0.

(2.6)
Let

R(z, w) = w2 −

(

|c1 + c2|

|c1| + |c2|
|µ| + |η| z

)

w +
|c1 + c2|

|c1| + |c2|
|µ| |η| z +

1

2(|c1| + |c2|)
z2,

for (z, w) from a neighborhood of (0, 0). Since R(0, 0) = 0, R′
w(0, 0) = − |c1+c2|

|c1|+|c2|
|µ| 6=

0, there exists a unique function w(z), analytic in a neighborhood of zero, such
that w(0) = 0, w′(0) = |η| and R (z, w(z)) = 0. According to (2.5) and (2.6), we
have M(z) = w(z). It follows that the power series (2.5) converges in a neighbor-
hood of the origin, which implies that the power series (2.2) is also converges in a
neighborhood of the origin. The proof is complete.

If we assume that a0 = µ, a1 = η and a2 = 1
2(c1+c2)µ

, we calculate the

coefficients an by means of (2.3). Indeed the first few terms are as follows:

a3 = −
(c1 + c2a)η

6(c1 + c2)2µ2
, a4 = −

(c1 + c2a
2) − 2(c1 + c2a)2η2

24(c1 + c2)3µ3
, . . . .

Thus, the explicit solution of (2.1) is

x(z) = µ+ηz+
1

2(c1 + c2)µ
z2−

(c1 + c2a)η

6(c1 + c2)2µ2
z3−

(c1 + c2a
2) − 2(c1 + c2a)2η2

24(c1 + c2)3µ3
z4+. . . .

3 Analytic solutions of the auxiliary equation

A distinctive feature of the functional differential equation (1.5) when b 6= 0
is that the argument of the unknown function is dependent on the state derivative
x′(z). We explain the existence of analytic solution of (1.5) by locally reducing
the equation to another functional differential equation with proportional delays.
Let

y(z) = az + bx′(z). (3.1)

Then for any number z0, we obtain
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x(z) = x(z0) +
1

b

∫ z

z0

(y(s) − as) ds, (3.2)

and so x (y(z)) = x(z0) + 1
b

∫ y(z)

z0

(y(s) − as) ds. From (1.5) , we can write

(c1 + c2)x(z0) +
1

b

[

c1

∫ z

z0

(y(s) − as) ds + c2

∫ y(z)

z0

(y(s) − as) ds

]

=
b

y′(z) − a
.

(3.3)
If z0 is a fixed point of y(z), we see that

x(z0) =
1

c1 + c2

b

y′(z0) − a
. (3.4)

Furthermore, differentiating both sides of (3.3) with respect to z, we obtain

− b2y′′(z) = c1 [y(z)− az] [y′(z) − a] 2 + c2 [y (y(z)) − ay(z)] [y′(z) − a] 2y′(z).
(3.5)

By the Shchr
..
oder transformation, we get the auxiliary equation

λb2 [g′(λz)g′′(z) − λg′′(λz)g′(z)]

= c1 [g(λz) − ag(z)] [λg′(λz) − ag′(z)] 2g′(z)

+ c2λ
[

g(λ2z) − ag(λz)
]

[λg′(λz) − ag′(z)] 2g′(λz). (3.6)

The equation (3.6) satisfies the initial value conditions

g(0) = µ, g′(0) = η 6= 0, (3.7)

where λ 6= a, µ and η are complex numbers, and λ satisfies either
(A1) 0 < |λ| < 1; or

(A2) |λ| = 1, λ is not a root of unity, and log|λn − 1|
−1

≤ T log n, n = 2, 3, . . .

for some positive constant T . Then we show that (3.5) has an analytic solution of
the form

y(z) = g
(

λg−1(z)
)

(3.8)

in a neighborhood of µ. Here g−1(z) denotes the inverse function of g(z). We
begin with the following preparatory lemma the proof of which can be followed in
[8].

Lemma 3.1. Assume that (A2) holds. Then there is a positive number δ such

that |λn − 1|
−1

< (2n)δ for n = 1, 2, . . .. Furthermore, the sequence {dn}
∞
n=1 is

defined by d1 = 1 and
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dn =
1

|λn−1 − 1|
max

n=n1+···+nt
0<n1≤···≤nt,t≥2

{dn1
· · · dnt

}, n = 2, 3, . . .

satisfy

dn ≤ (25δ+1)n−1n−2δ, n = 1, 2, . . . .

To find analytic solution of (3.5), we solve the auxiliary equation (3.6) satis-
fying the initial value conditions (3.7) to obtain an analytic solution g(z).

Lemma 3.2. Suppose (A1) holds. Then, for the initial value conditions (3.7), the
auxiliary equation (3.6) has an analytic solution of the form

g(z) = µ + ηz +

∞
∑

n=2

bnzn (3.9)

in a neighborhood of the origin.

Proof. Rewrite (3.6) in the form

λb2

λ − a

(

g′(z) − g′(λz)

λg′(λz) − ag′(z)

)

=

∫ z

0

c1 [g(λs) − ag(s)] g′(s)ds

+

∫ z

0

c2λ
[

g(λ2s) − ag(λs)
]

g′(λs)ds.

Therefore, in view of g′(0) = η 6= 0 and λ 6= a, we have

λb2

λ − a
(g′(z) − g′(λz)) = (λg′(λz) − ag′(z))

∫ z

0

c1 [g(λs) − ag(s)] g′(s)ds

+ (λg′(λz) − ag′(z))

∫ z

0

c2λ
[

g(λ2s) − ag(λs)
]

g′(λs)ds.

(3.10)

We now solve for a solution of (3.10) in the form of a power series (3.9). By
defining b0 = µ, b1 = η and then substituting (3.9) into (3.10), we see that the
sequence {bn}

∞
n=2 is successively determined by the condition

bn+2 =
n
∑

j=0

n−j
∑

k=0

c1(λ − a)(j + 1)(k + 1)(λj+1 − a)(λn−j−k − a)

λb2(n − j + 1)(n + 2)(1 − λn+1)
bj+1bk+1bn−j−k

+

n
∑

j=0

n−j
∑

k=0

c2(λ − a)(j + 1)(k + 1)(λj+1 − a)(λn−j−k − a)λn−j

b2(n − j + 1)(n + 2)(1 − λn+1)
bj+1bk+1bn−j−k,

(3.11)
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n = 0, 1, 2, . . . in a unique manner. We need to show that the resulting power
series (3.9) converges in a neighborhood of the origin. First of all, note that

∣

∣

∣

∣

c1(λ − a)(j + 1)(k + 1)(λj+1 − a)(λn−j−k − a)

λb2(n − j + 1)(n + 2)(1 − λn+1)

∣

∣

∣

∣

≤
|c1| (1 + |a|)3

|λb2| |1 − λn+1|
≤ M1,

∣

∣

∣

∣

c2(λ − a)(j + 1)(k + 1)(λj+1 − a)(λn−j−k − a)λn−j

b2(n − j + 1)(n + 2)(1 − λn+1)

∣

∣

∣

∣

≤
|c2| (1 + |a|)3

|b2| |1 − λn+1|
≤ M2

for some positive number M1, M2. Let M3 = max{M1, M2}, then in view of the
expression (3.11), we have

|bn+2| ≤ 2M3

n
∑

j=0

n−j
∑

k=0

|bj+1||bk+1||bn−j−k|, n = 0, 1, 2, . . . ,

thus if we define a sequence {Dn}
∞
n=0 by D0 = |µ|, D1 = |η| and

Dn+2 = 2M3

n
∑

j=0

n−j
∑

k=0

Dj+1Dk+1Dn−j−k, n = 0, 1, 2, . . . .

We can show that by induction

|bn| ≤ Dn, n = 0, 1, 2, . . . .

Now if we define

G(z) =

∞
∑

n=0

Dnzn, (3.12)

then

G2(z) = |µ|

∞
∑

n=0

Dnzn +

∞
∑

n=0

n
∑

k=0

Dk+1Dn−kzn+1,

G3(z) = 2|µ|G2(z) +

(

1

2M3
− |µ|2

)

G(z) −
1

2M3
(|η|z + |µ|) ,

that is

G3(z) − 2|µ|G2(z) −

(

1

2M3
− |µ|2

)

G(z) +
1

2M3
(|η|z + |µ|) = 0. (3.13)

Let

R(z, w) = w3 − 2|µ|w2 −

(

1

2M3
− |µ|2

)

w +
1

2M3
(|η|z + |µ|)
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for (z, w) from a neighborhood of (0, |µ|). Since R(0, |µ|) = 0 and R′
w(0, |µ|) =

− 1
2M3

6= 0, there exists a unique function w(z), analytic in a neighborhood of zero,
such that w(0) = |µ|, w′(0) = |η| and R(z, w(z)) = 0. By (3.12) and (3.13), we have
G(z) = w(z). It follows that the power series (3.12) converges in a neighborhood
of the origin, and hence also (3.9), converges in a neighborhood of the origin. The
proof is complete.

Lemma 3.3. Suppose (A2) holds. Then if η 6= 0, the auxiliary equation (3.6) has
an analytic solution of the form (3.9) in a neighborhood of the origin.

Proof. Note that

∣

∣

∣

∣

c1(λ − a)(j + 1)(k + 1)(λj+1 − a)(λn−j−k − a)

λb2(n − j + 1)(n + 2)(1 − λn+1)

∣

∣

∣

∣

≤
|c1| (1 + |a|)3

|b|2
1

|λn+1 − 1|
,

∣

∣

∣

∣

c2(λ − a)(j + 1)(k + 1)(λj+1 − a)(λn−j−k − a)λn−j

b2(n − j + 1)(n + 2)(1 − λn+1)

∣

∣

∣

∣

≤
|c2| (1 + |a|)3

|b|2
1

|λn+1 − 1|
.

Let M4 = max{ |c1|(1+|a|)3

|b|2
,
|c2|(1+|a|)3

|b|2
}, set b0 = µ and b1 = η, then (3.11) again

holds so that

bn+2 ≤
2M4

|λn+1 − 1|

n
∑

j=0

n−j
∑

k=0

|bj+1||bk+1||bn−j−k|, n = 0, 1, 2, . . . . (3.14)

Let us now consider the equation

Q(z, w) = w3 − 2|µ|w2 −

(

1

2M4
− |µ|2

)

w +
1

2M4
(|η|z + |µ|) = 0. (3.15)

If

w(z) = |µ| + |η|z +

∞
∑

n=2

Cnzn, (3.16)

where the coefficient sequence {Cn}
∞
n=0 satisfies C0 = |µ|, C1 = |η|,

Cn+2 = 2M4

n
∑

j=0

n−j
∑

k=0

Cj+1Ck+1Cn−j−k, n = 0, 1, 2, . . . ,

then

w2(z) = |µ|

∞
∑

n=0

Cnzn +

∞
∑

n=0

n
∑

k=0

Ck+1Cn−kzn+1,
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w3(z) = 2|µ|w2(z) +

(

1

2M4
− |µ|2

)

w(z) −
1

2M4
(|η|z + |µ|) ,

or

w3(z) − 2|µ|w2(z) −

(

1

2M4
− |µ|2

)

w(z) +
1

2M4
(|η|z + |µ|) = 0,

that is, w(z) satisfies the equation (3.15) for (z, w) from a neighborhood of (0, |µ|).
Since Q(0, |µ|) = 0 and Q′

w(0, |µ|) = − 1
2M4

6= 0, there exists a unique function
w(z), analytic in a neighborhood of zero, such that w(0) = |µ|, w′(0) = |η|, and
Q(z, w(z)) = 0. It follows that the power series (3.16) converges in a neighborhood
of zero, and there is a positive constant T such that

Cn ≤ T n, n = 1, 2, . . . . (3.17)

By induction, we have

|bn| ≤ Cndn, n = 1, 2, . . . ,

where the sequence {dn}
∞
n=1 is defined in Lemma 3.1. In view of (3.17) and Lemma

3.1, we finally see that

|bn| ≤ T n(25δ+1)n−1n−2δ, n = 1, 2, . . . ,

which shows that the power series (3.9) converges for

|z| <
1

T 25δ+1
.

The proof is complete.

Theorem 3.1. Suppose the conditions of Lemma 3.2 or Lemma 3.3 are satisfied.
Then the equation (3.5) has an analytic solution y(z) of the form (3.8) in a neigh-
borhood of the number µ, where g(z) of the form (3.9) is an analytic solution of
(3.6).

Proof. In view of Lemma 3.2 and Lemma 3.3, the function g(z) of the form (3.9) is
an analytic solution of (3.6) in a neighborhood of the origin. Since g′(0) = η 6= 0,
the function g−1(z) is analytic in a neighborhood of g(0) = µ. If we now define
y(z) by means of (3.8), then

y′(z) = λg′
(

λg−1(z)
) (

g−1(z)
)′

= λ
g′
(

λg−1(z)
)

g′ (g−1(z))
,
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−b2y′′(z)

= −b2 λ2g′′
(

λg−1(z)
)

g′
(

g−1(z)
)

− λg′
(

λg−1(z)
)

g′′
(

g−1(z)
)

[g′ (g−1(z))]3

=
c1

[

g
(

λg−1(z)
)

− az
] [

λg′
(

λg−1(z)
)

− ag′
(

g−1(z)
)]2

g′
(

g−1(z)
)

[g′ (g−1(z))]3

+
c2λ
[

g
(

λ2g−1(z)
)

− ag
(

λg−1(z)
)] [

λg′
(

λg−1(z)
)

− ag′
(

g−1(z)
)]2

g′
(

λg−1(z)
)

[g′ (g−1(z))]3
,

and

c1 [y(z) − az] [y′(z) − a] 2 + c2 [y (y(z)) − ay(z)] [y′(z) − a] 2y′(z)

=
c1

[

g
(

λg−1(z)
)

− az
] [

λg′
(

λg−1(z)
)

− ag′
(

g−1(z)
)]2

g′
(

g−1(z)
)

[g′ (g−1(z))]
3

+
c2λ
[

g
(

λ2g−1(z)
)

− ag
(

λg−1(z)
)] [

λg′
(

λg−1(z)
)

− ag′
(

g−1(z)
)]2

g′
(

λg−1(z)
)

[g′ (g−1(z))]
3

as requirs. The proof is complete.

We can derive the explicit form of x(z), an analytic solution of (1.5), in a
neighborhood of the fixed point µ of y(z) by means of (3.4). Assume that x(z) is
of the form

x(z) = x(µ) + x′(µ)(z − µ) +
x′′(µ)

2!
(z − µ)2 + · · · +

x(n)(µ)

n!
(z − µ)n + · · · ,

we need to determine the derivatives x(n)(µ), n = 0, 1, 2, . . .. First of all, in view
of (3.4) and (3.1), we have

x(µ) =
1

c1 + c2

b

λ − a
,

and

x′(µ) =
(1 − a)µ

b
respectively. Furthermore,

x′′(µ) =
λ − a

b
.

Recall the formula for the higher derivatives of composition. Namely, for n ≥ 1,

(f (ϕ(z)))
(n)

=
∑

1≤i≤n,
P

n
k=1

ik=iPn
k=1

kik=n

n!f (i)

i1!i2! · · · in!

(

u′

1!

)i1 (u′′

2!

)i2

· · ·

(

u(n)

n!

)in

,
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where u = ϕ(z), f (i) = dif
dui , u

(k) = dku
dzk , we have

Φ(n) := (c1x(z) + c2x(az + bx′(z)))
(n)

= c1 (x(z))(n) + c2 (x(az + bx′(z)))
(n)

,

such that

(x(az + bx′(z)))
(n)

=
∑

1≤i≤n,
P

n
k=1

ik=iPn
k=1

kik=n

n!x(i)

i1!i2! · · · in!

(

a + bx′′(z)

1!

)i1 (bx′′′(z)

2!

)i2

· · ·

(

bx(n+1)(z)

n!

)in

for n = 1, 2, . . ., and

x(n+2)(z) =

(

1

c1x(z) + c2x(az + bx′(z))

)(n)

=
∑

1≤j≤n,
P

n
l=1

jl=jPn
l=1

ljl=n

(−1)jn!j!

j1!j2! · · · jn!Φj+1

(

Φ′

1!

)j1 (Φ′′

2!

)j2

· · ·

(

Φ(n)

n!

)jn

.

By means of this formula, we can obtain x(n+2)(µ) for n = 1, 2, . . .. It is then write
out the explicit from of our solution x(z):

x(z) =
1

c1 + c2

b

λ − a
+

(1 − a)µ

b
(z − µ) +

λ − a

2!b
(z − µ)2 +

∞
∑

n=3

x(n)(µ)

n!
(z − µ)n.
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