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Toroidal Embeddings of Right Groups
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Abstract : In this note we study embeddings of Cayley graphs of right groups on
surfaces. We characterize those right groups which have a toroidal but no planar
Cayley graph, such that the generating system of the right group has a minimal
generating system of the group as a factor.
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1 Preliminaries

A graph is said to be (2-cell-)embedded in a surface M if it is “drawn” in M

such that edges intersect only at their common vertices and deleting the graph
from M yields a disjoint union of open disks. A graph is said to be planar if it
can be embedded in the plane. By the genus of a graph X we mean the minimum
genus among all surfaces in which X can be embedded. So if X is planar then
the genus of X is zero. If a non-planar graph can be embedded on the torus, that
is on the orientable surface of genus 1, it is called toroidal. A graph is said to be
outer planar if it has an embedding in the plane such that one face is incident to
every vertex.

It is known that each group can be defined in terms of generators and relations,
and that corresponding to each such (non-unique) presentation there is a unique
graph, called the Cayley graph of the presentation. A “drawing” of this graph
gives a “picture” of the group from which certain properties of the group can
be determined. The same principle can be used for other algebraic systems. So
algebraic systems with a given system of generators will be called planar or toroidal
if the respective Cayley graphs can be embedded on the plane or on the torus.

Finite planar groups have been cataloged by Maschke [6]. On the basis of
Maschke’s Theorem, in this work we investigate embeddings of certain completely
regular semigroups (unions of groups), namely of right groups. This is a continua-
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tion of the investigations from [11] where Clifford semigroups were in focus. Here
our attention is restricted to a special class of presentations of right groups for
which we classify the toroidal right groups. Note that this generally only gives
upper bounds on the genus of right groups. The full determination of the genus
will be studied in a subsequent paper [4].

We use Kn for the complete graph on n vertices, Cn for the cycle on n vertices,
and Kn,n for the respective complete bipartite graph. We denote the cyclic group
of order n by Zn = {0, . . . , n − 1}, and the dihedral, symmetric and alternating
groups by Dn, Sn and An, respectively.

We recall that a right group is a semigroup of the form G × Rr where G

is a group and Rr is a right zero semigroup, i. e., Rr = {r1, . . . , rr} with the
multiplication rirj = rj for ri, rj ∈ Rr.

Every semigroup presentation is associated with a Cayley color graph: the
vertices correspond to the elements of the semigroup; next, imagine the genera-
tors of the semigroup to be associated with distinct colors. If vertices v1 and v2

correspond to semigroup elements s1 and s2 respectively, then there is a directed
edge (of the color of the generator e) from v1 to v2 if and only if s1e = s2. It is also
possible to construct a Cayley color graph by action from the left. It is clear that
for semigroups the structure of this graph may change heavily, when changing the
side of the action.

In this note we consider the graph obtained from the Cayley color graph by
suppressing all edge directions and all edge colors, deleting loops and multiple
edges, that is, the uncolored Cayley graph. It is clear that in passing from the
Cayley color graph to the corresponding uncolored graph algebraical information
is lost but the genus is not changed. We call this graph Cayley graph and denote
it by Cay(S, C) for the semigroup S with the set of generators C ⊆ S.

The reader is referred to [1], [2], [3], [7], [10] and [11] for the terminology and
notations which are not given in this paper.

We need the following results.

Result 1.1. (Euler, Poincaré 1758) A finite graph with n vertices, m edges, which
is 2-cell embedded on an orientable surface M of genus g with f faces fulfills the
Euler-Poincaré formula: n − m + f = 2 − 2g.

Result 1.2. (Maschke 1896) The finite group G is planar if and only if G =
G1 × G2, where G1 = Z1 or Z2 and G2 = Zn, Dn, S4, A4 or A5.

Remark 1.3. It is clear that planarity depends on the set of generators C chosen
for the Cayley graph. For example Cay(Z6, {1}) = C6 and also Cay(Z6, {2, 3})
which is the box product C32K2 is planar, but Cay(Z6, {1, 2, 3}) = K6 is not. For
the planar groups Dn, S4, A4 or A5 we get various Archemedian solids as Cayley
graph representations, with two or three generators [9].

Result 1.4. (Kuratowski 1930) A finite graph is planar if and only if it does not
contain a subgraph that is a subdivision of K5 or K3,3.

Result 1.5. (Chartrand, Harary 1967) A finite graph is outer planar if and only
if it does not contain a subgraph that is a subdivision of K4 or K2,3.
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2 The Cay-functor and right groups

For most of the considerations we can use the following two results which we
take from [5]. However, as far as we know, there do not exist general formulas
which relate the genus of a cross product or a lexicographic product of two graphs
to the genera of the factors, compare for example [1], [2] or [10]. Some of the
difficulties with respect to the lexicographic product can be seen in Example 3.8.
We denote by × the cross product for graphs and also the direct product for
semigroups and sets. By X [Y ] we denote the lexicographic product of the graph
X with the graph Y .

Proposition 2.1. For semigroups S and T with subsets C and D, respectively,
we have Cay(S × T, C × D) = Cay(S, C) × Cay(T, D).

Note that if in the above formula the semigroup T is Rr its graph Cay(Rr , Rr)

has to be considered as K
(r)
r , i. e. the complete graph with r loops.

Proposition 2.2. Let S be a monoid with identity 1S, T a semigroup, C and D

subsets of S and T respectively. Then

Cay(S × T, (C × T ) ∪ ({1S} × D)) = Cay(S, C)[Cay(T, D)]

if and only if tT = T for any t ∈ T , that is if and only if T is a right group.

Remark 2.3. A formal description of the relation between graphs and subgraphs
which are subdivisions with the help of the Cay-functor on semigroups with gen-
erators seems to be difficult. In Cay(Z6, {1}) we find a subdivision of K3 corre-
sponding to Cay({0, 2, 4}, {2}), as a subgraph. But subdivision is not a categorical
concept. And there is no inclusion between {0, 2, 4} × {2} and Z6 × {1}.

3 The embeddings

Now we determine the minimal genus among the Cayley graphs Cay(G ×
Rr, C × Rr) taken over all minimum generating set C of the group G. We do
not claim that an embedding of this graph gives the (minimal) genus of the right
group considered. Generally G × Rr may have a generating system C′ 6= C × Rr

which yields a Cayley graph with fewer edges and consequently tends to have a
smaller genus. A straight-forward calculation yields the following lemma. Note
that the first equality can also be obtained by applying Proposition 2.2 in the form
Cay(G × Rr, (C × Rr) ∪ ({1G} × ∅)) = Cay(G, C)[Cay(Rr, ∅)].

Lemma 3.1. Denote by Cay(G, C)[Kr] the lexicographic product of Cay(G, C)
with r isolated vertices. We have Cay(G × Rr, C × Rr) = Cay(G, C)[Kr].

Note that this product can be seen as replacing every vertex of Cay(G, C) by
r independent vertices and every edge by a Kr,r. In particular Kk,k[Kr] = Kkr,kr.
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Proposition 3.2. If Cay(G, C) is not planar then Cay(G × Rr, C × Rr) with
r ≥ 2 cannot be embedded on the torus.

Proof. Already K3,3[K2] ∼= K6,6 has genus 4. Moreover, the graph K5[K2] has
10 vertices and 40 edges. An embedding on the torus would have 30 faces by the
formula of Euler-Poincaré. Even if all faces were triangles in this graph, this would
require 45 edges. So the graphs are not toroidal.

Proposition 3.3. If r ≥ 5 then Cay(G×Rr, C ×Rr) cannot be embedded on the
torus.

Proof. The resulting graph contains K5,5 which has genus 3, compare [10].

Proposition 3.4. If Cay(G, C) contains a K2,2 subdivision and r ≥ 3 then
Cay(G × Rr, C × Rr) cannot be embedded on the torus.

Proof. The resulting graph contains K6,6 which has genus 4, compare [10].

Hence, for the rest of the paper we will check all planar groups G and 1 ≤ r ≤ 4
for Cay(G × Rr, C × Rr) having genus 1.

Lemma 3.5. If the vertex degree of a planar Cay(G, C) is at least 3 then Cay(G×
R2, C × R2) cannot be embedded on the torus.

Proof. Since Cay(G, C) is at least 3-regular Cay(G × R2, C × R2) is at least 6-
regular.

Assume that Cay(G×R2, C×R2) is embedded on the torus, then the formula
of Euler-Poincaré yields that all faces are triangular. This implies that every edge
of Cay(G×R2, C×R2) lies in at least two triangles, hence every edge of Cay(G, C)
lies in at least one triangle.

Let c1, c2, c3 ∈ C the generators corresponding to a triangle a1, a2, a3. Then
c±1
1 c±1

2 c±1
3 = 1G for some signing, where 1G is the identity in G. If any two of

the ci are distinct then one of the two is redundant, hence C was not inclusion
minimal. Thus every c ∈ C must be of order 3. Since G is not cyclic we obtain
that Cay(G, C) is at least 4-regular. The formula of Euler-Poincaré yields that
the at least 8-regular Cay(G×R2, C ×R2) cannot be embedded on the torus.

Theorem 3.6. Let G×Rr be a finite right group with r ≥ 2. The minimal genus
of Cay(G × Rr, C × Rr) among all generating sets C ⊆ G of G is 1 iff G × Rr is
isomorphic to one of the following rightgroups:

• Zn × Rr with (n, r) ∈ {(2, 3), (2, 4), (3, 3), (i, 2)} for i ≥ 4

• Dn × R2 for all n ≥ 2

Note that this list includes Z2 × Dn × R2 and Z2 × Zn × R2 for odd n ≥ 3.
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Figure 1: The planar Cay(Z3×R2, {1}×R2), the toroidal Cay(Z3×R3, {1}×
R3) and Cay(Z4 × R2, {1} × R2) ∼= K4,4

Proof. By Lemma 3.5 the group G has to be either generated by one element
or by two elements of order 2 in order to be embeddable on the torus. This
necessary condition is equivalent to (G, C) being (Zn, {1}) or (Dn, {g1, g2}), where
g2
1 = g2

2 = (g1g2)
n = e.

First we consider the cyclic case. For n = 2 we have Cay(Z2 × Rr, C × Rr) =
Kr,r which exactly for r ∈ {3, 4} has genus 1.

Take n = 3. If r = 2 we obtain the planar graph Cay(Z3 × R2, {1} × R2)
shown in Figure 1. If r = 3 the resulting graph contains K3,3, so it cannot be
planar. Figure 1 shows an embedding as a triangular grid on the torus. If r = 4
we have the complete tripartite graph K4,4,4. Delete the entire set of 16 edges
between two of the partitioning sets. The remaining (non-planar) graph has 12
vertices, 32 edges and, assuming a toroidal embedding, 20 faces. A simple count
shows that this cannot be realized without traingular faces. So for r ≥ 4 the graph
Cay(Z3 × Rr, C × Rr) is not toroidal.

Take n ≥ 4. Now the graph Cay(Zn, {1}) contains a C4 = K2,2 subdivision.
If r ≥ 3 then Cay(Zn × Rr, {1} × Rr) is not toroidal by Proposition 3.4. If r = 2
an embedding of Cay(Z4 ×R2, {1}×R2) as a square grid in the torus is shown in
Figure 1. This is instructive for the cases n ≥ 5. Moreover we see that the vertices
{0, 0′, 2} and {1, 1′, 3} induce a K3,3 subgraph of Cay(Z4×R2, {1}×R2). Generally
for n ≥ 4 we have that Cay(Zn × R2, {1} × R2) contains a K3,3 subdivision, it
hence is not planar.

Second, if G is a dihedral group and C consists of two generators g1, g2 of
order 2 the graph Cay(Dn, C) is isomorphic to Cay(Z2n, {1}). Thus Cay(Dn ×
R2, {g1, g2}×Rr) has genus 1 if and only if r = 2 by the cyclic case. Any different
generating system C for Dn would have a generator of degree greater than 2 and
hence would yield Cay(Dn×R2, C×R2) with genus greater than 1 by Lemma 3.5.

Remark 3.7. For the case r = 1 we have G × Rr
∼= G. Hence the above above

theorem for r = 1 is the characterization of toroidal groups due to Proulx [8].
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In the above proofs we make strong use of Lemma 3.5, which tells us that
3-regular planar Cayley graphs will not be embeddable on the torus after taking
the cartesian product with R2. In fact, this operation can increase the genus from
0 to 3 already in the following small example.
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Figure 2: Cay(Z6 ×R2, {2, 3} ×R2) in the triple torus with handles X, Y ,
Z.

Example 3.8. The genus of Cay(Z6 ×R2, {2, 3}×R2) is 3. Note that Cay(Z6 ×
R2, {2, 3} × R2) ∼= (C32K2)[K2].

Proof. To see this we observe that Cay(Z6×R2, {2, 3}×R2) consist of two disjoint
copies C32K2 and (C32K2)

′ of Cay(Z6, {2, 3}) with vertex sets {0, 1, 2, 3, 4, 5} and
{0′, 1′, 2′, 3′, 4′, 5′}, respectively. Every vertex v of C32K2 is adjacent to every
neighbor of its copy v′ in (C32K2)

′. Figure 2 shows an embedding of Cay(Z6 ×
R2, {2, 3}×R2) into the orientable surface of genus 3 – the triple torus. This graph
is 6-regular with 12 vertices, so it has 36 edges.

By Lemma 3.5 Cay(Z6 × R2, {2, 3} × R2) cannot be embedded on the torus.
So assume that Cay(Z6 × R2, {2, 3} × R2) is 2-cell-embedded on the double

torus. Delete the 4 edges between 1, 1′ and 5, 5′ and the 4 edges between 0, 0′ and
4, 4′. The resulting graph H has 28 edges. It consists of two graphs A and B,
which are copies of K4,4, where A has the bipartition ({0, 0′, 5, 5′}, {2, 2′, 3, 3′})
and B has ({0, 0′, 1, 1′}, {3, 3′, 4, 4′}). They are glued at the four vertices with
the same numbers and the corresponding 4 edges are identified. Although H is
no longer bipartite it still is triangle-free. Hence by our assumption it is 2-cell-
embedded on the double torus. By the formula of Euler-Poincaré this gives 14
faces and consequently all of them are quadrangular. So the edges between 1, 1′
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and 5, 5′ and between 0, 0′ and 4, 4′, which we have to put back in, have to be
diagonals of these quadrangular faces. But then {2′, 4, 2, 0} and {2′, 4, 2, 0′} are
the only 4-cycles in H which contain the vertices 4, 0 and 4, 0′, respectively, they
form faces of H . Since they have the common edges {2′, 4} and {2, 4} we obtain a
K2,3 with bipartition ({2, 2′}, {0, 0′, 4}). It is folklore that K2,3 is not outer planar.
Thus the region consisting of the glued 4-cycles {2′, 4, 2, 0} and {2′, 4, 2, 0′} must
contain one of the vertices 0, 0′ or 4 in its interior. Hence this vertex has only
degree 2 – a contradiction.
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