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1 Introduction

Let S and T be self-mappings of a metric space (X, d). S and T are com-
muting if STx = TSx for all x ∈ X . Sessa [13] defined S and T to be weakly
commuting if for all x ∈ X

d(STx, TSx) ≤ d(Tx, Sx). (1.1)

Jungck [9] defined S and T to be compatible as a generalization of weakly
commuting if

lim
n→∞

d(STxn, TSxn) = 0 (1.2)

whenever {xn} is a sequence in X such that limn→∞ Sxn = limn→∞ Txn = t for
some t ∈ X .

It is easy to show that commuting implies weakly commuting implies com-
patible and there are examples in the literature verifying that the inclusions are
proper, see [9] and [13].
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Jungck [10] defined S and T to be weakly compatible if they commute at their
coincidence points.

It was proved that if S and T are compatible, then they are weakly compatible
and the converse is not true in general.

Let B(X) be the set of all nonempty bounded subsets of X .
As in [7] and [8], let δ(A,B) and D(A,B) be the functions defined by

δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B},

d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}, for all A,B ∈ B(X).

If A consists of a single point a, we write δ(A,B) = δ(a,B). If B consists also
of a single point b, we write δ(A,B) = d(a, b).

It follows immediately from the definition of δ that for all A,B,C ∈ B(X).

δ(A,B) = δ(B,A) ≥ 0,

δ(A,B) ≤ δ(A,C) + δ(C,B),

δ(A,B) = 0 iff A = B = {a},

δ(A,A) = diamA.

Sessa [14] extended (1.1) to single-valued and set-valued mappings as follows:
The mappings F : X → B(X) and I : X → X are said to be weakly commuting

on X if IFx ∈ B(X) and

δ(FIx, IFx) ≤ max{δ(Ix, Fx), diam(IFx)} for all x ∈ X. (1.3)

Note that if F is a single-valued mapping, then the set IFx consists of a single
point. Therefore,

diam(IFx) = 0 for all x ∈ X and condition (1.3) reduces to the condition
(1.1)

Two commuting mappings F and I clearly weakly commute but two weakly
commuting F and I do not necessarily commute as it was shown in [14].

Jungck and Rhoades [11] defined the concepts of δ−compatible and weakly
compatible mappings which extend the concept of compatible mappings and weakly
compatible in the single-valued setting to set-valued mappings as follows:

The mappings I : X → X and F : X → B(X) are said to be δ−compatible if

lim
n→∞

δ(FIxn, IFxn) = 0

whenever {xn} is a sequence in X such that IFxn ∈ B(X), Fxn → {t} and
Ixn → t as n→ ∞ for some t in X .

The mappings I : X → X and F : X → B(X) are weakly compatible if
they commute at their coincidence points, i.e., for each point x in X such that
Fu = {Iu}, we have FIu = IFu.

Note that the equation Fx = {Ix} implies that Fx is a singleton.
It can be seen that any δ−compatible pair (F, I) is weakly compatible. Exam-

ples of weakly compatible pairs which are not δ−compatible were given in [11].
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Definition 1.1. [7] A sequence {An} of subsets of X is said to be convergent to
a subset A of X if

(i) given a ∈ A, there is a sequence {an} in X such that an ∈ An for n =
1, 2, ..., and {an} converges to a.

(ii) given ǫ > 0, there exists a positive integer N such that An ⊂ Aǫ for n > N

where Aǫ is the union of all open spheres with centers in A and radius ǫ.

Lemma 1.2. [7] If {An}and {Bn} are sequences in B(X) converging to A and B
in B(X), respectively, then the sequence {δ (An, Bn)}converges to δ (A,B).

Lemma 1.3. [8] Let {An}be a sequence in B(X) and y a point in X such that
δ(An, y) → 0. Then, the sequence {An}converges to the set {y} in B(X).

Lemma 1.4. [8] A set-valued mapping F of X into B(X) is said to be continuous
at x ∈ X if the sequence {Fxn} in B(X) converges to Fx whenever {xn} is a
sequence in X converging to x in X.

F is said to be continuous on X if it is continuous at every point in X .

Lemma 1.5. [8] Let {An} be a sequence of nonempty subsets of X and z in X

such that limn→∞ an = z, z independent of the particular choice of each an ∈ An.
If a self-map I of X is continuous, then {Iz} is the limit of the sequence {IAn}.

Definition 1.6. [1] Two self-mappings S and T of a metric space (X, d) satisfy
the property (E.A) if there exists a sequence {xn} in X such that

lim
n→∞

Sxn = lim
n→∞

Txn = z for some z ∈ X.

It is clear from the definition of compatibility that S and T are noncompat-
ible if there exists at least one sequence {xn} in X such that limn→∞ Sxn =
limn→∞ Txn = z for some z ∈ X , but, limn→∞ d(STxn, TSxn) is either non-zero
or does not exist. Therefore, two noncompatible self-mappings of a metric space
(X, d) satisfy the property (E.A).

2 Preliminaries

Definition 2.1. Two mappings f : X → X and T : X → B(X) satisfy the
property (E.A) if if there exists a sequence {xn} in X such that

lim
n→∞

fxn = z and lim
n→∞

Txn = {z} for some z ∈ X.

Example 2.2. Let X = [1,∞) with the usual metric. Define f : X → X and T :
X → B(X) by f(x) = x+1 and Tx = [2, x+ 1]. Consider the sequence {xn} such

that xn = 1 +
1

n
, n = 1, 2, .... Clearly, limn→∞ fxn = 2 and limn→∞ Txn = {2}.

Therefore, f and T satisfy the property (E.A).
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Example 2.3. Let X = [1,∞) with the usual metric. Define f : X → X and
T : X → B(X) by f(x) = x + 1 and Tx = {x + 2}. Suppose that f and
T satisfy property (E.A). Then, there exists a sequence {xn} in X, such that
limn→∞ fxn = z and limn→∞ Txn = {z}. Therefore, limn→∞ xn = z − 1 = z + 2
for some z ∈ X which is a contradiction. Hence, f and T do not satisfy the
property (E.A).

It is clear from the definition of δ−compatibility that f and T are noncompat-
ible if there exists at least one sequence {xn} in X such that limn→∞ fxn = z and
limn→∞ Txn = {z} for some z ∈ X but, limn→∞ δ(fTxn, T fxn) is either non-zero
or does not exist. Therefore, two mappings f : X → X and T : X → B(X) of a
metric space (X, d) which are not δ−compatible satisfy the property (E.A).

Several authors proved fixed point theorems and common fixed point theorems
for mappings satisfying contractive conditions of integral type, see [2, 3, 4, 5, 6, 12,
15]. Recently, Zhang [16] and Aliouche [3] proved common fixed point theorems
using generalized contractive conditions in metric spaces. These theorems extend
well-known results in [4], [5], [12] and [15].

Let A ∈ (0,∞], R+
A = [0, A) and F : R+

A → R satisfying
(i) F (0) = 0 and F (t) > 0 for each t ∈ (0, A),
(ii) F is increasing on R+

A,
(iii) F is continuous.

Define ̥[0, A) = {F : F satisfies (i)–(iii)}.
The following examples were given by [16].
1) Let F (t) = t, then F ∈ ̥[0, A) for each A ∈ (0,+∞].
2) Suppose that ϕ is nonnegative, Lebesgue integrable on [0, A) and satisfies

ǫ
∫

0

ϕ(t)dt > 0 for each ǫ ∈ (0, A).

Let F (t) =
t
∫

0

ϕ(s)ds, then F ∈ [0, A).

3) Suppose that ψ is nonnegative, Lebesgue integrable on [0, A) and satisfies

ǫ
∫

0

ψ(t)dt > 0 for each ǫ ∈ (0, A)

and ϕ is nonnegative, Lebesgue integrable on [0,
A
∫

0

ψ(s)ds) and satisfies

ǫ
∫

0

ϕ(t)dt > 0 for each ǫ ∈ (0,

A
∫

0

ψ(s)ds).

Let F (t) =

tR
0

ψ(s)ds
∫

0

ϕ(u)du, then F ∈ ̥[0, A).
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4) If G ∈ [0, A) and F ∈ ̥[0, G(A − 0)), then a composition mapping F ◦

G ∈ ̥[0, A). For instance, let H(t) =
F (t)
∫

0

ϕ(s)ds, then H ∈ ̥[0, A) whenever

F ∈ ̥[0, A) and ϕ is nonnegative, Lebesgue integrable on ̥[0, F (A − 0)) and
satisfies

ǫ
∫

0

ϕ(t)dt > 0 for each ǫ ∈ (0, F (A− 0)).

Lemma 2.4. [16] Let A ∈ (0,+∞] and F ∈ ̥[0, A). If limn→∞ F (ǫn) = 0 for
ǫn ∈ R+

A, then limn→∞ ǫn = 0.

Let A ∈ (0,+∞], ψ : R+
A → R+ satisfying

(i) ψ(t) < t for each t ∈ (0, A),
(ii) ψ is nondecreasing and upper semi-continuous.

Define Ψ[0, A) = {ψ : ψ satisfies (i) and (ii) above}.

Lemma 2.5. [16] If ψ ∈ Ψ[0, A), then ψ(0) = 0.

The following Theorem was proved by [1].

Theorem 2.6. Let A,B, S and T be self-mappings of a metric space (X, d) such
that

d(Ax,By) ≤ φ(max{d(Sx, T y), d(Sx,By), d(By, Ty)})

for all x, y ∈ X. Suppose that A(X) ⊂ T (X), B(X) ⊂ S(X) and the (A,S) or
(B, T ) satisfies the property (E.A). If the range of one of the mappings A,B, S
and T is a complete subspace of X, then A,B, S and T have a unique common
fixed point in X.

It is our purpose in this paper to extend Theorem 2.6 for two pairs of single-
valued and set-valued mappings and prove a common fixed point theorem using a
generalized contractive condition and a property (E.A).

3 Main Results

Let D = sup{d(x, y) : x, y ∈ X}. Set A = D if D = ∞ and A > D if D <∞.

Theorem 3.1. Let f and g be self-mappings of a metric space (X, d) and S and
T be mappings from X into B(X) satisfying

∪ S(X) ⊂ g(X) and ∪ T (X) ⊂ f(X) (3.1)

F (δ(Sx, T y) ≤ ψ(F (max{d(fx, gy), δ(fx, Sx), δ(gy, T y), d(fx, T y), d(Sx, gy)}))
(3.2)

for all x, y ∈ X, where F ∈ [0, A) and ψ ∈ Ψ[0,̥(A− 0)). Suppose that the pair
(f, S) or (g, T ) satisfies the property (E.A), (f, S) and (g, T ) are weakly compatible
and f (X) or g (X) or S (X) or T (X) is a closed subset of X. Then, f, g, S and
T have a unique common fixed point in X.
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Proof. Suppose that the pair (g, T ) satisfies the property (E.A). Then, there ex-
ists a sequence {xn} in X such that limn→∞ gxn = z and limn→∞ Txn = {z}
for some z ∈ X . Therefore, we have limn→∞ δ(gxn, Txn) = 0. Since T (X) ⊂
f(X), there exists in X a sequence {yn} such that fyn ∈ Txn. Assume that
lim supn→∞

δ(Syn, Txn) = l > 0. Using (3.2) we have

F (δ(Syn, Txn)) ≤ ψ(F (max{d(fyn, gxn), δ(fyn, Syn),

δ(gxn, Txn), d(fyn, Txn), d(Syn, gxn)}))

≤ ψ(F (max{δ(gxn, Txn), δ(Syn, Txn), d(gxn, Txn)

δ(SynTxn) + δ(gxn, Txn})).

Letting n→ ∞ we get F (l) ≤ ψ(F (l)) < F (l).
Which is a contradiction. Hence, limn→∞ F (δ(Syn, Txn) = 0 and Lemma 2.4

implies that limn→∞ δ(Syn, Txn) = 0; i.e., limn→∞ Syn = {z}.
Suppose that f(X) is a complete subspace of X . Then, z = fu for some

u ∈ X .
If Su 6= {z}, applying (3.2) we get

F (δ(Su, Txn)) ≤ ψ(F (max{d(fu, gxn), δ(fu, Su), δ(gxn, Txn),

d(fu, Txn), d(Su, gxn)})).

Letting n→ ∞ we obtain

F (δ(Su, z)) ≤ ψ(F (δ(Su, z))

< F (δ(Su, z))

and so Su = {fu} = {z}. Since S(X) ⊂ g(X), there exists v ∈ X such that
Su = {gv} = {z}.

If Tv 6= {z}, using (3.2) we have

F (δ(z, T v)) = F (δ(Su, T v))

≤ ψ(F (δ(z, T v)))

< F (δ(z, T v))

which implies that Tv = {gv} = {z}. As the pairs (f, S) and (B, T ) are weakly
compatible, we get Sz = {fz} and Tz = {gz}. If Sz 6= {z}, using (3.2) we obtain

F (δ(Sz, z)) = F (δ(Sz, T v))

≤ ψ(F (δ(Sz, z)))

< F (δ(Sz, z))

and so Sz = {fz} = {z}. Similarly, we can prove that Tz = {gz} = {z}.
The proof is similar when g(X) is assumed to be a closed subset of X . By

(3.1), the cases in which S(X) or T (X) is a closed subset of X are similar to the
cases in which f(X) or g(X) is a closed subset of X . The uniqueness of z follows
from (3.2).
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If S and T are single-valued mappings in Theorem 3.1 and F (t) =
t
∫

0

ϕ(s)ds,

where ϕ is nonnegative, Lebesgue integrable on [0, A) and satisfies
ǫ
∫

0

ϕ(t)dt > 0

for each ǫ ∈ (0, A), we get a generalization of Corollary 3 of [2].
If S and T are single-valued mappings and F (t) = t in Theorem 3.1, we get a

generalization of Theorem 2.5.
If S = T and g = f in Theorem 3.1, we get the following Corollary.

Corollary 3.2. Let f be a self-mapping of a metric space (X, d) and T be a
mapping from X into B(X) such that

∪T (X) ⊂ f(X)

F (δ(Tx, T y)) ≤ ψ(F (max{d(fx, fy), δ(fx, Tx), δ(fy, T y), d(fx, T y), d(Tx, fy)}))

for all x, y ∈ X, where F ∈ [0, A) and ψ ∈ Ψ[0,̥(A− 0)). Suppose that the pair
(f, T ) satisfies the property (E.A), (f, T ) is weakly compatible and f (X) or T (X)
is a closed subset of X. Then, f and T have a unique common fixed point in X.

If F (t) = t in Theorem 3.1, we get the following Corollary.

Corollary 3.3. Let f and g be self-mappings of a metric space (X, d) and S, T
be mappings from X into B(X) satisfying (3.1) and

δ(Sx, T y) ≤ ψ(max{d(fx, fy), δ(fx, Tx), δ(fy, T y), d(fx, T y), d(Tx, fy)})

for all x, y ∈ X. Suppose that the pair (f, S) or (g, T ) satisfies the property
(E.A), (f, S) and (g, T ) are weakly compatible and one of f (X) or g (X) or S (X)
or T (X) is a closed subset of X. Then, f, g, S and T have a unique common fixed
point in X.

Example 3.4. Let X = [0, 1] endowed with the Euclidean metric d. Define S, T :
X → B(X) and f, g : X → X by

fx =

{

1
2 if x ∈ [0, 1

2 ]
x+1
4 if x ∈ (1

2 , 1]
, gx =

{

1 − x if x ∈ [0, 1
2 ]

0 if x ∈ (1
2 , 1]

.

Sx =

{

1

2

}

for all x ∈ [0, 1] and Tx =

{ {

1
2

}

if x ∈ [0, 1
2 ]

(3
8 ,

1
2 ] if x ∈ (1

2 , 1]
.

let F (s) = s
1

s and ψ(t) =
1

8
16

3 · 3
8

3

t. Then, F ∈ ̥[0, A) and ψ ∈ Ψ[0, e
1

e ], where

A = e > D.
We have

∪S(X) =

{

1

2

}

⊂ g(X) = [12 , 1] ∪ {0} and

∪T (X) = (3
8 ,

1
2 ] = f(X).
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On the other hand, if x ∈ X and y ∈ [0, 1
2 ], then

F (δ(Sx, T y)) = 0

≤ ψ(F (max{d(fx, gy), δ(fx, Sx), δ(gy, T y), d(fx, T y), d(Sx, gy)})).

If x ∈ X and y ∈ (1
2 , 1], then

δ(Sx, T y) ≤ 1
8 and d(fx, gy) ≥ 3

8 .

Hence

F (δ(Sx, T y)) ≤ (1
8 )8 and F (d(fx, gy)) ≥ (3

8 )
8

3

and so

F (δ(Sx, T y)) ≤
1

8
16

3 · 3
8

3

F (d(fx, gy))

= ψ(F (d(fx, gy)))

≤ ψ(F (max{d(fx, gy), δ(fx, Sx), δ(gy, T y), d(fx, T y), d(Sx, gy)})).

g(X) is a closed subset of X and the pairs (f, S) and (g, T ) are weakly compatible.
Taking xn = 1

2 − 1
2n , the pair (f, S) satisfies the property (E.A) with z = 1

2
Consequently, by Theorem 3.1, 1

2 is the unique common fixed point of f, g, S and
T .
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