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Abstract : For f ∈ Lp[0,∞), 1 6 p < ∞ Gupta et al [10] introduced a sequence
of linear positive operators by coupling the well-known Szász operators and beta
operators called as Szász–beta operators . In this paper we obtain an inverse
theorem for a linear combination of these operators.
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1 Introduction

The Szász-beta operators are defined by

Bn(f ; t) =

∞
∑

ν=0

pn,ν(t)

∞
∫

0

bn,ν(u)f(u) du, t ∈ [0,∞),

where

pn,ν(t) =
e−nt(nt)ν

ν!
, bn,ν(t) =

1

B(ν + 1, n)

tν

(1 + t)n+ν+1

and B(ν + 1, n) is the well known beta integral.
The operators Bn can be expressed as

Bn(f ; t) =

∞
∫

0

Wn(t, u)f(u) du,

where Wn(t, u) =
∑∞

ν=0 pn,ν(t) bn,ν(u) is the kernel of the operators.
For some other modifications of the Szász operators we refer the reader to

[7],[8] and [12].
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It turns out the order of approximation by these operators is at best O(n−1),
however smooth the function may be. In order to speed up the rate of convergence
by the operatorsBn, Prerna [6] considered the linear combinationBn(f, k, x) of op-
erators Bn, and obtained a direct theorem for these combinations in the Lp−norm.

The linear combination Bn(f, k, x) of the operators Bn, is defined as

Bn(f, k, x) =

k
∑

j=0

C(j, k)Bdjn(f, x),

where

C(j, k) =

k
∏

i=0,i6=j

dj

dj − di
, k 6= 0 and C(0, 0) = 1,

d0, d1, ...dk are (k + 1) arbitrary but fixed distinct positive integers. Throughout
this paper let 0 < a < a1 < a2 < a3 < b3 < b2 < b1 < b < ∞, I = [a, b]
Ii = [ai, bi], i = 1, 2, 3 and f ∈ Lp(I), 1 6 p <∞.

The mth order integral modulus of smoothness of f is defined as

ωm

(

f, τ, p, I
)

= sup
0<δ6τ

‖∆m
δ f(t)‖Lp[a,b−mδ] ,

where ∆m
δ is the forward difference operator with step length δ and 0 < τ 6

(b − a)/m. Further χ denotes the characteristic function of the interval I1 and C
a positive constant not necessarily the same in different cases.

In [6] it was established that for f ∈ Lp[0,∞), 1 6 p <∞ there holds

‖Bn(f, k, .) − f‖Lp(I2) 6 C
(

ω2k+2

(

f, n−1/2, p, I1
)

+ n−(k+1)‖f‖Lp[0,∞)

)

,

where C depends on k and p, but is independent of f and n.
In the present paper, we obtain a corresponding inverse result, i.e.,the char-

acterization of the class of functions for which ‖Bn(f, k, .)− f‖Lp(I1) = O
(

n−α/2
)

as n → ∞, where 0 < α < 2k + 2. Thus we prove the following theorem (inverse
theorem):

Theorem 1.1. Let f ∈ Lp[0,∞), p > 1, 0 < α < 2k + 2 and ‖Bn(f, k, .) −
f‖Lp(I1) = O(n−α/2) as n→ ∞.Then, ω2k+2(f, τ, p, I2) = O(τα) as τ → 0.

2 Preliminaries

In this section we give some results which are useful in establishing our main
theorem.

Lemma 2.1. [6] For the function λn,m(x) defined by

λn,m(x) =

∞
∑

ν=0

pn,ν(x)
( ν

n
− x
)m

,
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we have λn,0(x) = 1, λn,1(x) = 0, and there holds the recurrence relation:

nλn,m+1(x) = x
(

mλn,m−1(x) + λ′n,m(x)
)

, m > 1.

Consequently, we have
(i) λn,m(x) is a polynomial in x of degree [m/2];
(ii) λn,m(x) = O

(

n−[(m+1)/2]
)

, x ∈ [0,∞),
where [β] is the integer part of β.

Lemma 2.2. [6] For m ∈ N0 (the set of non-negative integers), the mth order
moment for the operators Bn be defined as

Vn,m(t) = Bn ((u− t)m; t) .

Then Vn,0(t) = 1, Vn,1(t) = t+1
n−1 , Vn,2(t) = (n+2)t2+2(n+2)t+2

(n−1)(n−2) , and there holds the

recurrence relation,

(n − m − 1)Vn,m+1(t) = t V
(1)
n,m(t) + {(m+ 1)(2t+ 1) − t}Vn,m(t) + mt(2 +

t)Vn,m−1(t), m > 1.

Consequently, for each t > 0,

Vn,m(t) = O
(

n−[(m+1)/2]
)

.

For sufficiently small η > 0 the Steklov mean fη,m of m th order corresponding
to f is defined as follows:

fη,m(t) = η−m

η/2
∫

−η/2

...

η/2
∫

−η/2

(

f(t) + (−1)m−1∆mP
m
i=1 ti

f(t)
)

m
∏

i=1

dti, t ∈ I1.

Lemma 2.3. For the function fη,m, we have

(a) fη,m has derivatives up to order m over I1;

(b) ‖f
(r)
η,m‖Lp(I1) 6 Cr η

−rωr(f, η, I), r = 1, 2, ...,m;

(c) ‖f − fη,m‖Lp(I1) 6 Cm+1 ωm(f, η, I);

(d) ‖fη,m‖Lp(I1) 6 Cm+2 η
−m‖f‖Lp(I);

(e) ‖f
(r)
η,m‖Lp(I1) 6 Cm+3 ‖f‖Lp(I)

where C′
is are certain constants that depend on i but are independent of f and η.

Following [Theorem 18.17, [2]], or [pp.163-165,[1]], the proof of the above
lemma easily follows hence the details are omitted.

We establish the following Lorentz [3] type lemma:
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Lemma 2.4. [6] There exist the polynomials Qi,j,r(t) independent of n and ν such
that

tr
drpn,ν(t)

dtr
=

∑

2i+j6r

i,j>0

ni(ν − nt)jQi,j,r(t)pn,ν(t).

Lemma 2.5. Let h ∈ Lp[0,∞), p > 1 has a compact support, i, j ∈ N0 and m > 0
be fixed. Then, for a constant C independent of n and h there holds

∥

∥

∥

∥

∥

∥

∞
∫

0

∞
∑

ν=0

pn,ν(t)
( ν

n
− t
)i

u
∫

t

bn,ν(u)(u− w)jh(w) dw du

∥

∥

∥

∥

∥

∥

Lp(I2)

6 C
{

n−(i+j+1)/2‖h‖Lp(I1) + n−m‖h‖Lp[0,∞)

}

.

Proof. Defining s = jp + p − 1 and using Jensen’s inequality repeatedly, we
get

∣

∣

∣

∣

∣

∣

∞
∫

0

∞
∑

ν=0

pn,ν(t)
( ν

n
− t
)i

u
∫

t

bn,ν(u)(u− w)jh(w) dw du

∣

∣

∣

∣

∣

∣

p

6

∞
∑

ν=0

pn,ν(t)
∣

∣

∣

ν

n
− t
∣

∣

∣

ip
∞
∫

0

bn,ν(u)(u− t)s

∣

∣

∣

∣

∣

u
∫

t

|h(w)|p dw

∣

∣

∣

∣

∣

du

6

∞
∑

ν=0

pn,ν(t)
∣

∣

∣

ν

n
− t
∣

∣

∣

ip
∞
∫

0

ψ(u)bn,ν(u)|u− t|s

∣

∣

∣

∣

∣

u
∫

t

|h(w)|p dw

∣

∣

∣

∣

∣

du

+

∞
∑

ν=0

pn,ν(t)
∣

∣

∣

ν

n
− t
∣

∣

∣

ip
∞
∫

0

(1 − ψ(u))bn,ν(u)|u− t|s

∣

∣

∣

∣

∣

u
∫

t

|h(w)|p dw

∣

∣

∣

∣

∣

du(2.1)

In the first integral we divide integration in ′u′ over [t+ l√
n
, t+ (l+1)√

n
], l = 0,±1, ...,±r;

where r = r(n) ∈ N satisfies rn−1/2 6 max(b1−a2, b2−a1) 6 (r+1) 1√
n
. A typical

element of the 1st term of (2.1) is now Lp− bounded by

n2

l4

b2
∫

a2

[ ∞
∑

ν=0

pn,ν(t)
∣

∣

∣

ν

n
− t
∣

∣

∣

ip

t+ (l+1)
√

n
∫

t+ l√
n

bn,ν(u)|u−t|s+4 du

(

t+ (l+1)
√

n
∫

t

ψ(w)|h(w)|p dw

)]

dt.

We now use Hölder’s inequality for infinite sum coupled with moment estimates
and finally Fubini’s theorem to obtain estimate. The presence of factor (1−ψ(u))
in second term in (2.1) implies |u − t|/δ > 1. This gives arbitrary order O

(

n−m
)

.
This completes the proof.
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Lemma 2.6. Let h ∈ Lp[0,∞), p > 1 and supph ⊂ I2. Then
∥

∥

∥B(2k+2)
n (h, .)

∥

∥

∥

Lp(I2)
6 C nk+1‖h‖Lp(I2). (2.2)

Moreover, if h(2k+1) ∈ A.C.(I2) and h(2k+2) ∈ Lp(I2), then
∥

∥

∥B(2k+2)
n (h, .)

∥

∥

∥

Lp(I2)
6 C′

∥

∥

∥h(2k+2)
∥

∥

∥

Lp(I2)
, (2.3)

the constants C and C′ are independent of n and h.

Proof. Since Qi,j,2k+2 and t−(2k+2) are bounded on I2, it follows from Lemmas
2.1 and 2.4 that for h ∈ L1[0,∞)

∥

∥

∥B(2k+2)
n (h, .)

∥

∥

∥

L1(I2)
6 C nk+1 ‖h‖L1(I2) .

If h ∈ L∞[0,∞), then by Lemma 2.4 and moment estimates we get
∥

∥

∥
B(2k+2)

n (h, .)
∥

∥

∥

L∞(I2)
6 C nk+1 ‖h‖L∞(I2) .

Now, using Riesz-Thorin interpolation theorem [4], we obtain(2.2) To obtain (2.3),
the differentiability properties of h imply that

h(u) =
2k+1
∑

r=0

(u− t)r

r!
h(r)(t) +

1

(2k + 1)!

u
∫

t

(u− w)2k+1h(2k+2)(w) dw.

Using Lemma 2.4 we have

B(2k+2)
n (h, t) =

1

(2k + 1)!tr

∞
∑

ν=0

pn,ν(t)
∑

i,j

ni(ν − nt)jQi,j,2k+2(t) ×

×

∞
∫

0

u
∫

t

bn,ν(u)(u − w)2k+1h(2k+2)(w) dw du.

Now, applying Lemma 2.5 in above we obtain

B(2k+2)
n (h, t) 6 C

∑

i,j

ni+j

∥

∥

∥

∥

∥

∞
∫

0

∞
∑

ν=0

pn,ν(t)
(ν

n
− t
)j

Qi,j,2k+2(t) ×

×

u
∫

t

bn,ν(u)(u− w)2k+1h(2k+2)(w) dw du

∥

∥

∥

∥

∥

Lp(I2)

6 C
∥

∥

∥h(2k+2)
∥

∥

∥

Lp(I2)
.

Thus, we get (2.3).
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3 Proof of Main Theorem

Proof. We choose points a1 < x1 < x2 < x3 < a2 < b2 < y3 < y2 < y1 < b1
and a function g ∈ C2k+2

0 such that supp g ⊂ (x2, y2), g(t) = 1 on [x3, y3] and
[xi, yi] ⊂ [xi−1, yi−1], i = 2, 3. with [xi, yi] ⊂ I1. Writing fg = F , for all values of
r 6 γ we have

‖∆2k+2
r F‖Lp[x2,y2] 6 ‖∆2k+2

r (F −Bn(F , k, .))‖Lp[x2,y2]

+ ‖∆2k+2
r Bn(F , k, .)‖Lp[x2,y2].

On a repeated application of Jensen’s inequality and then Fubini’s theorem we
obtain

‖∆2k+2
r F‖Lp[x2,y2] 6 ‖∆2k+2

r (F −Bn(F , k, .))‖Lp[x2,y2]

+r2k+2‖B(2k+2)
n (F , k, .)‖Lp[x2,y2+(2k+2)r]. (3.1)

In second term of (3.1) we write F =
(

F − Fη,2k+2

)

+ Fη,2k+2, where Fη,2k+2 is
the (2k + 2)th order Steklov mean of F and then use Lemma 2.6. It follows from
the properties of the Steklov mean that for sufficiently small η > 0,

‖∆2k+2
r F‖Lp[x2,y2] 6 ‖∆2k+2

r (F −Bn(F , k, .))‖Lp[x2,y2]

+C r2k+2
(

nk+1 + η−(2k+2)
)

ω2k+2

(

F , η, p, [x2, y2]
)

.

Now, following the lemma of Berens and Lorentz [5] we can complete the proof
once it is established that

‖∆2k+2
r (F −Bn(F , k, .))‖Lp[x2,y2] = O

(

n−α/2
)

, n→ ∞. (3.2)

Thus,
ω2k+2

(

F , τ, p, [x2, y2]
)

= O
(

τα
)

, τ → 0.

Therefore, as F = f for t ∈ [x3, y3], ω2k+2

(

f, τ, p, [x2, y2]
)

= O
(

τα
)

, τ → 0 as
required.

We prove this by induction on α. Consider the case α 6 1.

‖Bn(fg, k, t)− (fg)(t)‖Lp[x2,y2] 6 ‖g(t)Bn(f(u) − f(t)), k, t))‖Lp[x2,y2]

+‖Bn(f(u)(g(u) − g(t)), k, t)‖Lp[x2,y2].

Now, g(u) − g(t) = (u − t)g′(θ) for some θ lying between u and t. Using Jensen’s
inequality, Fubini’s theorem, moment estimates and the compactness of f to esti-
mate the second term and statement of the theorem we get

‖Bn(fg, k, t) − (fg)(t)‖Lp[x2,y2] = O
(

n−α/2
)

+O
(

n−1/2
)

= O
(

n−α/2
)

.

This proves (3.2) when α 6 1.
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Now, we assume (3.2) to hold true for all values of α satisfying r − 1 < α < r
and prove that the same holds true for r < α < r + 1. Thus we have

ω2k+2

(

F , τ, p, [c, d]
)

= O
(

τr−1+β
)

, τ → 0, 0 < β < 1,

for any [c, d] ⊂ (a1, b1).
Hence, following [1] it follows that f coincides a.e. on [x2, y2] ⊂ (c, d) with a

function F possessing an absolutely continuous derivative F (r−2) and the (r−1)th
derivative F (r−1) ∈ Lp[x2, y2]. Let χ denote the characteristic function of the
interval [x1, y1].

Therefore, we have

‖Bn(fg, k, t)− (fg)(t)‖Lp[x2,y2]

6

r−2
∑

i=0

1

i!
‖f (i)(t)Bn(u − t)i(g(u) − g(t)), k, t)‖Lp[x2,y2]

+
1

(r − 2)!

∥

∥

∥

∥

∥

Bn

(

χ(u)(g(u) − g(t))

( u
∫

t

(u − w)r−2 ×

×
(

f (r−1)(w) − f (r−1)(t)
)

dw

)

, k, t

)∥

∥

∥

∥

∥

Lp[x2,y2]

+‖Bn(F (u, t)(1 − χ(u)))(g(u) − g(t), k, t)‖Lp[x2,y2]

= J1 + J2 + J3, say,

where F (u, t) = f(u) −
∑r−2

i=0
(u−t)i

i! f (i)(t); u ∈ [0,∞), t ∈ [x2, y2]. Using mean
value theorem on g the direct theorem 3.1 [6] and the moment estimates we get
J1, J3 = O

(

n−(k+1)
)

, n→ ∞. By repeated application of Jensen’s inequality, mean
value theorem on g and breaking [t, u] as in Lemma 2.5, we have

‖J2‖
p =

y2
∫

x2

∣

∣

∣

∣

∣

Bn

(

χ(u)(g(u) − g(t))

u
∫

t

(u− w)r−2 ×

×
(

f (r−1)(w) − f (r−1)(t)
)

dw, k, t

)∣

∣

∣

∣

∣

p

dt

6 C

y2
∫

x2

y1
∫

x1

Wn(t, u)|u− t|rp−1

u
∫

t

χ(w)
∣

∣

∣f (r−1)(w) − f (r−1)(t)
∣

∣

∣

p

dw du dt

6 C

r
∑

l=1

y2
∫

x2

[









t+ (l+1)
√

n
∫

t+ l√
n

t+ (l+1)
√

n
∫

t

+

t− l√
n

∫

t− (l+1)
√

n

t
∫

t− (l+1)
√

n









(

n2

l4

)p

Wn(t, u) ×

×|u− t|rp+4p−1χ(w)
∣

∣

∣f (r−1)(w) − f (r−1)(t)
∣

∣

∣

p

dw du
]

dt
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+

y2
∫

x2

[

y2+
1√
n

∫

x2− 1√
n

t+ 1√
n

∫

t− 1√
n

Wn(t, u)|u− t|rp−1χ(w) ×

×
∣

∣

∣f (r−1)(w) − f (r−1)(t)
∣

∣

∣

p

dw du
]

dt

6 C

r
∑

l=1

(

n2

l4

)p
t+ l√

n
∫

0

ω
(

f (r−1), w, p, [x1, y1]
)p
dw

+n−(rp−1)/2

1√
n
∫

0

ω
(

f (r−1), w, p, [x1, y1]
)p
dw,

on using moment estimates and then interchanging order of integration in t and
w. Lastly, utilizing ω

(

f (r−1), w, p, [x1, y1]
)

= O(wp) we find

J2 = O
(

n−(r+β)/2
)

, n→ ∞.

Combining the estimates of J1, J2 and J3, we obtain (3.2). The proof of (3.2)
shows that

ω2k+2(f, τ, p, [x2, y2]) = O(τα), α < 2k + 2, α 6= 2, 3, .., 2k+ 1. (3.3)

This very statement implies that it is also true for integer values 2,3,...2k + 1. To
prove this, let α = r where r takes value from 2,3,...,2k + 1.

Then, since (3.3) is true for (r, r + 1), it follows that

ω2k+2(f, τ, p, [x2, y2]) = O(τr+β), 0 < β < 1

= O(τr).

This completes the proof of the theorem.

Remark 3.1. Similar results can be obtained for the operators Ln(f, x) and the
operators Mn,α,β(f, x) for α = β = 1 and In = {0} defined as follows:

Ln(f ;x) =

∞
∑

k=0

pn,k(x)

∞
∫

0

bn,k(t)f(t) dt,

where pn,k(x) =
(

n+k−1
k

)

xk(1 + x)−(n+k), bn,k(t) = tk

B(k+1,n)(1+t)n+k+1 and

Mn,α,β(f, x) = (n−α+1)

n−α+β
∑

k=β

pn,k(x)

1
∫

0

pn−α,k−β(t)f(t) dt+
∑

k∈In

pn,k(x)f

(

k

n

)

,

where

pn,k(x) =

(

n

k

)

xk(1 − x)n−k,

in [9] and [11] respectively.
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