On L_{p}-Inverse Theorem for a Linear Combination of Szász-Beta Operators

P.N. Agrawal and A.R. Gairola

Abstract : For $f \in L_{p}[0, \infty), 1 \leqslant p<\infty$ Gupta et al [10] introduced a sequence of linear positive operators by coupling the well-known Szász operators and beta operators called as Szász-beta operators. In this paper we obtain an inverse theorem for a linear combination of these operators.

Keywords : Linear combinations, L_{p}-approximation, Steklov means, modulus of continuity.
2000 Mathematics Subject Classification : 41A40, 41A36.

1 Introduction

The Szász-beta operators are defined by

$$
B_{n}(f ; t)=\sum_{\nu=0}^{\infty} p_{n, \nu}(t) \int_{0}^{\infty} b_{n, \nu}(u) f(u) d u, t \in[0, \infty)
$$

where

$$
p_{n, \nu}(t)=\frac{e^{-n t}(n t)^{\nu}}{\nu!}, \quad b_{n, \nu}(t)=\frac{1}{B(\nu+1, n)} \frac{t^{\nu}}{(1+t)^{n+\nu+1}}
$$

and $B(\nu+1, n)$ is the well known beta integral.
The operators B_{n} can be expressed as

$$
B_{n}(f ; t)=\int_{0}^{\infty} W_{n}(t, u) f(u) d u
$$

where $W_{n}(t, u)=\sum_{\nu=0}^{\infty} p_{n, \nu}(t) b_{n, \nu}(u)$ is the kernel of the operators.
For some other modifications of the Szász operators we refer the reader to [7], [8] and [12].

[^0]It turns out the order of approximation by these operators is at best $O\left(n^{-1}\right)$, however smooth the function may be. In order to speed up the rate of convergence by the operators B_{n}, Prerna [6] considered the linear combination $B_{n}(f, k, x)$ of operators B_{n}, and obtained a direct theorem for these combinations in the $L_{p}-$ norm.

The linear combination $B_{n}(f, k, x)$ of the operators B_{n}, is defined as

$$
B_{n}(f, k, x)=\sum_{j=0}^{k} C(j, k) B_{d_{j} n}(f, x)
$$

where

$$
C(j, k)=\prod_{i=0, i \neq j}^{k} \frac{d_{j}}{d_{j}-d_{i}}, k \neq 0 \text { and } C(0,0)=1
$$

$d_{0}, d_{1}, \ldots d_{k}$ are $(k+1)$ arbitrary but fixed distinct positive integers. Throughout this paper let $0<a<a_{1}<a_{2}<a_{3}<b_{3}<b_{2}<b_{1}<b<\infty, I=[a, b]$ $I_{i}=\left[a_{i}, b_{i}\right], i=1,2,3$ and $f \in L_{p}(I), 1 \leqslant p<\infty$.

The $m^{\text {th }}$ order integral modulus of smoothness of f is defined as

$$
\omega_{m}(f, \tau, p, I)=\sup _{0<\delta \leqslant \tau}\left\|\Delta_{\delta}^{m} f(t)\right\|_{L_{p}[a, b-m \delta]}
$$

where Δ_{δ}^{m} is the forward difference operator with step length δ and $0<\tau \leqslant$ $(b-a) / m$. Further χ denotes the characteristic function of the interval I_{1} and C a positive constant not necessarily the same in different cases.

In [6] it was established that for $f \in L_{p}[0, \infty), 1 \leqslant p<\infty$ there holds

$$
\left\|B_{n}(f, k, .)-f\right\|_{L_{p}\left(I_{2}\right)} \leqslant C\left(\omega_{2 k+2}\left(f, n^{-1 / 2}, p, I_{1}\right)+n^{-(k+1)}\|f\|_{L_{p}[0, \infty)}\right)
$$

where C depends on k and p, but is independent of f and n.
In the present paper, we obtain a corresponding inverse result, i.e., the characterization of the class of functions for which $\left\|B_{n}(f, k, .)-f\right\|_{L_{p}\left(I_{1}\right)}=O\left(n^{-\alpha / 2}\right)$ as $n \rightarrow \infty$, where $0<\alpha<2 k+2$. Thus we prove the following theorem (inverse theorem):

Theorem 1.1. Let $f \in L_{p}[0, \infty), p \geqslant 1,0<\alpha<2 k+2$ and $\| B_{n}(f, k,)-$. $f \|_{L_{p}\left(I_{1}\right)}=O\left(n^{-\alpha / 2}\right)$ as $n \rightarrow \infty$. Then, $\omega_{2 k+2}\left(f, \tau, p, I_{2}\right)=O\left(\tau^{\alpha}\right)$ as $\tau \rightarrow 0$.

2 Preliminaries

In this section we give some results which are useful in establishing our main theorem.

Lemma 2.1. [6] For the function $\lambda_{n, m}(x)$ defined by

$$
\lambda_{n, m}(x)=\sum_{\nu=0}^{\infty} p_{n, \nu}(x)\left(\frac{\nu}{n}-x\right)^{m}
$$

we have $\lambda_{n, 0}(x)=1, \lambda_{n, 1}(x)=0$, and there holds the recurrence relation:

$$
n \lambda_{n, m+1}(x)=x\left(m \lambda_{n, m-1}(x)+\lambda_{n, m}^{\prime}(x)\right), m \geqslant 1
$$

Consequently, we have
(i) $\lambda_{n, m}(x)$ is a polynomial in x of degree $[m / 2]$;
(ii) $\lambda_{n, m}(x)=O\left(n^{-[(m+1) / 2]}\right), x \in[0, \infty)$,
where $[\beta]$ is the integer part of β.
Lemma 2.2. [6] For $m \in N^{0}$ (the set of non-negative integers), the m th order moment for the operators B_{n} be defined as

$$
V_{n, m}(t)=B_{n}\left((u-t)^{m} ; t\right)
$$

Then $V_{n, 0}(t)=1, V_{n, 1}(t)=\frac{t+1}{n-1}, V_{n, 2}(t)=\frac{(n+2) t^{2}+2(n+2) t+2}{(n-1)(n-2)}$, and there holds the recurrence relation,
$(n-m-1) V_{n, m+1}(t)=t V_{n, m}^{(1)}(t)+\{(m+1)(2 t+1)-t\} V_{n, m}(t)+m t(2+$ $t) V_{n, m-1}(t), m \geqslant 1$.

Consequently, for each $t \geqslant 0$,

$$
V_{n, m}(t)=O\left(n^{-[(m+1) / 2]}\right)
$$

For sufficiently small $\eta>0$ the Steklov mean $f_{\eta, m}$ of m th order corresponding to f is defined as follows:

$$
f_{\eta, m}(t)=\eta^{-m} \int_{-\eta / 2}^{\eta / 2} \ldots \int_{-\eta / 2}^{\eta / 2}\left(f(t)+(-1)^{m-1} \Delta_{\sum_{i=1}^{m} t_{i}}^{m} f(t)\right) \prod_{i=1}^{m} d t_{i}, t \in I_{1}
$$

Lemma 2.3. For the function $f_{\eta, m}$, we have
(a) $f_{\eta, m}$ has derivatives up to order m over I_{1};
(b) $\left\|f_{\eta, m}^{(r)}\right\|_{L_{p}\left(I_{1}\right)} \leqslant C_{r} \eta^{-r} \omega_{r}(f, \eta, I), r=1,2, \ldots, m$;
(c) $\left\|f-f_{\eta, m}\right\|_{L_{p}\left(I_{1}\right)} \leqslant C_{m+1} \omega_{m}(f, \eta, I)$;
(d) $\left\|f_{\eta, m}\right\|_{L_{p}\left(I_{1}\right)} \leqslant C_{m+2} \eta^{-m}\|f\|_{L_{p}(I)}$;
(e) $\left\|f_{\eta, m}^{(r)}\right\|_{L_{p}\left(I_{1}\right)} \leqslant C_{m+3}\|f\|_{L_{p}(I)}$
where $C_{i}^{\prime} s$ are certain constants that depend on i but are independent of f and η.
Following [Theorem 18.17, [2]], or [pp.163-165,[1]], the proof of the above lemma easily follows hence the details are omitted.

We establish the following Lorentz [3] type lemma:

Lemma 2.4. [6] There exist the polynomials $Q_{i, j, r}(t)$ independent of n and ν such that

$$
t^{r} \frac{d^{r} p_{n, \nu}(t)}{d t^{r}}=\sum_{\substack{2 i+j \leqslant r \\ i, j \geqslant 0}} n^{i}(\nu-n t)^{j} Q_{i, j, r}(t) p_{n, \nu}(t) .
$$

Lemma 2.5. Let $h \in L_{p}[0, \infty), p \geqslant 1$ has a compact support, $i, j \in N^{0}$ and $m>0$ be fixed. Then, for a constant C independent of n and h there holds

$$
\begin{aligned}
& \| \int_{0}^{\infty} \sum_{\nu=0}^{\infty} p_{n, \nu}(t)\left(\frac{\nu}{n}-t\right)^{i} \int_{t}^{u} b_{n, \nu}(u)(u-w)^{j} h(w) d w d u \|_{L_{p}\left(I_{2}\right)} \\
& \leqslant C\left\{n^{-(i+j+1) / 2}\|h\|_{L_{p}\left(I_{1}\right)}+n^{-m}\|h\|_{L_{p}[0, \infty)}\right\} .
\end{aligned}
$$

Proof. Defining $s=j p+p-1$ and using Jensen's inequality repeatedly, we get

$$
\begin{aligned}
& \left|\int_{0}^{\infty} \sum_{\nu=0}^{\infty} p_{n, \nu}(t)\left(\frac{\nu}{n}-t\right)^{i} \int_{t}^{u} b_{n, \nu}(u)(u-w)^{j} h(w) d w d u\right|^{p} \\
& \left.\leqslant\left.\sum_{\nu=0}^{\infty} p_{n, \nu}(t)\left|\frac{\nu}{n}-t\right|^{i p} \int_{0}^{\infty} b_{n, \nu}(u)(u-t)^{s}\left|\int_{t}^{u}\right| h(w)\right|^{p} d w \right\rvert\, d u \\
& \left.\leqslant\left.\sum_{\nu=0}^{\infty} p_{n, \nu}(t)\left|\frac{\nu}{n}-t\right|^{i p} \int_{0}^{\infty} \psi(u) b_{n, \nu}(u)|u-t|^{s}\left|\int_{t}^{u}\right| h(w)\right|^{p} d w \right\rvert\, d u \\
& \left.+\left.\sum_{\nu=0}^{\infty} p_{n, \nu}(t)\left|\frac{\nu}{n}-t\right|^{i p} \int_{0}^{\infty}(1-\psi(u)) b_{n, \nu}(u)|u-t|^{s}\left|\int_{t}^{u}\right| h(w)\right|^{p} d w \right\rvert\, d u(2.1)
\end{aligned}
$$

In the first integral we divide integration in ' u ' over $\left[t+\frac{l}{\sqrt{n}}, t+\frac{(l+1)}{\sqrt{n}}\right], l=0, \pm 1, \ldots, \pm r$; where $r=r(n) \in N$ satisfies $r n^{-1 / 2} \leqslant \max \left(b_{1}-a_{2}, b_{2}-a_{1}\right) \leqslant(r+1) \frac{1}{\sqrt{n}}$. A typical element of the 1 st term of (2.1) is now L_{p} - bounded by

$$
\frac{n_{2}}{l^{4}} \int_{a_{2}}^{b_{2}}\left[\sum_{\nu=0}^{\infty} p_{n, \nu}(t)\left|\frac{\nu}{n}-t\right|_{t+\frac{l}{\sqrt{n}}}^{i p} \int_{t+\frac{(l+1)}{\sqrt{n}}} b_{n, \nu}(u)|u-t|^{s+4} d u\left(\int_{t}^{t+\frac{(l+1)}{\sqrt{n}}} \psi(w)|h(w)|^{p} d w\right)\right] d t
$$

We now use Hölder's inequality for infinite sum coupled with moment estimates and finally Fubini's theorem to obtain estimate. The presence of factor $(1-\psi(u))$ in second term in (2.1) implies $|u-t| / \delta>1$. This gives arbitrary order $O\left(n^{-m}\right)$. This completes the proof.

Lemma 2.6. Let $h \in L_{p}[0, \infty), p \geqslant 1$ and $\operatorname{supp} h \subset I_{2}$. Then

$$
\begin{equation*}
\left\|B_{n}^{(2 k+2)}(h, .)\right\|_{L_{p}\left(I_{2}\right)} \leqslant C n^{k+1}\|h\|_{L_{p}\left(I_{2}\right)} \tag{2.2}
\end{equation*}
$$

Moreover, if $h^{(2 k+1)} \in$ A.C. $\left(I_{2}\right)$ and $h^{(2 k+2)} \in L_{p}\left(I_{2}\right)$, then

$$
\begin{equation*}
\left\|B_{n}^{(2 k+2)}(h, .)\right\|_{L_{p}\left(I_{2}\right)} \leqslant C^{\prime}\left\|h^{(2 k+2)}\right\|_{L_{p}\left(I_{2}\right)} \tag{2.3}
\end{equation*}
$$

the constants C and C^{\prime} are independent of n and h.
Proof. Since $Q_{i, j, 2 k+2}$ and $t^{-(2 k+2)}$ are bounded on I_{2}, it follows from Lemmas 2.1 and 2.4 that for $h \in L_{1}[0, \infty)$

$$
\left\|B_{n}^{(2 k+2)}(h, .)\right\|_{L_{1}\left(I_{2}\right)} \leqslant C n^{k+1}\|h\|_{L_{1}\left(I_{2}\right)}
$$

If $h \in L_{\infty}[0, \infty)$, then by Lemma 2.4 and moment estimates we get

$$
\left\|B_{n}^{(2 k+2)}(h, .)\right\|_{L_{\infty}\left(I_{2}\right)} \leqslant C n^{k+1}\|h\|_{L_{\infty}\left(I_{2}\right)}
$$

Now, using Riesz-Thorin interpolation theorem [4], we obtain(2.2) To obtain (2.3), the differentiability properties of h imply that

$$
h(u)=\sum_{r=0}^{2 k+1} \frac{(u-t)^{r}}{r!} h^{(r)}(t)+\frac{1}{(2 k+1)!} \int_{t}^{u}(u-w)^{2 k+1} h^{(2 k+2)}(w) d w
$$

Using Lemma 2.4 we have

$$
\begin{aligned}
B_{n}^{(2 k+2)}(h, t)= & \frac{1}{(2 k+1)!t^{r}}
\end{aligned} \sum_{\nu=0}^{\infty} p_{n, \nu}(t) \sum_{i, j} n^{i}(\nu-n t)^{j} Q_{i, j, 2 k+2}(t) \times .
$$

Now, applying Lemma 2.5 in above we obtain

$$
\begin{aligned}
B_{n}^{(2 k+2)}(h, t) \leqslant & C \sum_{i, j} n^{i+j} \|_{0}^{\infty} \sum_{\nu=0}^{\infty} p_{n, \nu}(t)\left(\frac{\nu}{n}-t\right)^{j} Q_{i, j, 2 k+2}(t) \times \\
& \times \int_{t}^{u} b_{n, \nu}(u)(u-w)^{2 k+1} h^{(2 k+2)}(w) d w d u \|_{L_{p}\left(I_{2}\right)} \\
\leqslant & C\left\|h^{(2 k+2)}\right\|_{L_{p}\left(I_{2}\right)}
\end{aligned}
$$

Thus, we get (2.3).

3 Proof of Main Theorem

Proof. We choose points $a_{1}<x_{1}<x_{2}<x_{3}<a_{2}<b_{2}<y_{3}<y_{2}<y_{1}<b_{1}$ and a function $g \in C_{0}^{2 k+2}$ such that $\operatorname{supp} g \subset\left(x_{2}, y_{2}\right), g(t)=1$ on $\left[x_{3}, y_{3}\right]$ and $\left[x_{i}, y_{i}\right] \subset\left[x_{i-1}, y_{i-1}\right], i=2,3$. with $\left[x_{i}, y_{i}\right] \subset I_{1}$. Writing $f g=\mathcal{F}$, for all values of $r \leqslant \gamma$ we have

$$
\begin{aligned}
\left\|\Delta_{r}^{2 k+2} \mathcal{F}\right\|_{L_{p}\left[x_{2}, y_{2}\right]} & \leqslant\left\|\Delta_{r}^{2 k+2}\left(\mathcal{F}-B_{n}(\mathcal{F}, k, .)\right)\right\|_{L_{p}\left[x_{2}, y_{2}\right]} \\
& +\left\|\Delta_{r}^{2 k+2} B_{n}(\mathcal{F}, k, .)\right\|_{L_{p}\left[x_{2}, y_{2}\right]}
\end{aligned}
$$

On a repeated application of Jensen's inequality and then Fubini's theorem we obtain

$$
\begin{align*}
&\left\|\Delta_{r}^{2 k+2} \mathcal{F}\right\|_{L_{p}\left[x_{2}, y_{2}\right]} \leqslant\left\|\Delta_{r}^{2 k+2}\left(\mathcal{F}-B_{n}(\mathcal{F}, k, .)\right)\right\|_{L_{p}\left[x_{2}, y_{2}\right]} \\
&+r^{2 k+2}\left\|B_{n}^{(2 k+2)}(\mathcal{F}, k, .)\right\|_{L_{p}\left[x_{2}, y_{2}+(2 k+2) r\right]} \tag{3.1}
\end{align*}
$$

In second term of (3.1) we write $\mathcal{F}=\left(\mathcal{F}-\mathcal{F}_{\eta, 2 k+2}\right)+\mathcal{F}_{\eta, 2 k+2}$, where $\mathcal{F}_{\eta, 2 k+2}$ is the $(2 k+2)$ th order Steklov mean of \mathcal{F} and then use Lemma 2.6. It follows from the properties of the Steklov mean that for sufficiently small $\eta>0$,

$$
\begin{aligned}
\left\|\Delta_{r}^{2 k+2} \mathcal{F}\right\|_{L_{p}\left[x_{2}, y_{2}\right]} \leqslant & \left\|\Delta_{r}^{2 k+2}\left(\mathcal{F}-B_{n}(\mathcal{F}, k, .)\right)\right\|_{L_{p}\left[x_{2}, y_{2}\right]} \\
& +C r^{2 k+2}\left(n^{k+1}+\eta^{-(2 k+2)}\right) \omega_{2 k+2}\left(\mathcal{F}, \eta, p,\left[x_{2}, y_{2}\right]\right)
\end{aligned}
$$

Now, following the lemma of Berens and Lorentz [5] we can complete the proof once it is established that

$$
\begin{equation*}
\left\|\Delta_{r}^{2 k+2}\left(\mathcal{F}-B_{n}(\mathcal{F}, k, .)\right)\right\|_{L_{p}\left[x_{2}, y_{2}\right]}=O\left(n^{-\alpha / 2}\right), \quad n \rightarrow \infty \tag{3.2}
\end{equation*}
$$

Thus,

$$
\omega_{2 k+2}\left(\mathcal{F}, \tau, p,\left[x_{2}, y_{2}\right]\right)=O\left(\tau^{\alpha}\right), \quad \tau \rightarrow 0
$$

Therefore, as $\mathcal{F}=f$ for $t \in\left[x_{3}, y_{3}\right], \omega_{2 k+2}\left(f, \tau, p,\left[x_{2}, y_{2}\right]\right)=O\left(\tau^{\alpha}\right), \quad \tau \rightarrow 0$ as required.

We prove this by induction on α. Consider the case $\alpha \leqslant 1$.

$$
\begin{aligned}
\left\|B_{n}(f g, k, t)-(f g)(t)\right\|_{L_{p}\left[x_{2}, y_{2}\right]} \leqslant & \left.\left.\| g(t) B_{n}(f(u)-f(t)), k, t\right)\right) \|_{L_{p}\left[x_{2}, y_{2}\right]} \\
& +\left\|B_{n}(f(u)(g(u)-g(t)), k, t)\right\|_{L_{p}\left[x_{2}, y_{2}\right]} .
\end{aligned}
$$

Now, $g(u)-g(t)=(u-t) g^{\prime}(\theta)$ for some θ lying between u and t. Using Jensen's inequality, Fubini's theorem, moment estimates and the compactness of f to estimate the second term and statement of the theorem we get

$$
\left\|B_{n}(f g, k, t)-(f g)(t)\right\|_{L_{p}\left[x_{2}, y_{2}\right]}=O\left(n^{-\alpha / 2}\right)+O\left(n^{-1 / 2}\right)=O\left(n^{-\alpha / 2}\right)
$$

This proves (3.2) when $\alpha \leqslant 1$.

Now, we assume (3.2) to hold true for all values of α satisfying $r-1<\alpha<r$ and prove that the same holds true for $r<\alpha<r+1$. Thus we have

$$
\omega_{2 k+2}(\mathcal{F}, \tau, p,[c, d])=O\left(\tau^{r-1+\beta}\right), \quad \tau \rightarrow 0,0<\beta<1
$$

for any $[c, d] \subset\left(a_{1}, b_{1}\right)$.
Hence, following [1] it follows that f coincides a.e. on $\left[x_{2}, y_{2}\right] \subset(c, d)$ with a function F possessing an absolutely continuous derivative $F^{(r-2)}$ and the $(r-1)$ th derivative $F^{(r-1)} \in L_{p}\left[x_{2}, y_{2}\right]$. Let χ denote the characteristic function of the interval $\left[x_{1}, y_{1}\right]$.

Therefore, we have

$$
\begin{aligned}
& \left\|B_{n}(f g, k, t)-(f g)(t)\right\|_{L_{p}\left[x_{2}, y_{2}\right]} \\
& \left.\leqslant \sum_{i=0}^{r-2} \frac{1}{i!} \| f^{(i)}(t) B_{n}(u-t)^{i}(g(u)-g(t)), k, t\right) \|_{L_{p}\left[x_{2}, y_{2}\right]} \\
& +\frac{1}{(r-2)!} \| B_{n}\left(\chi (u) (g (u) - g (t)) \left(\int_{t}^{u}(u-w)^{r-2} \times\right.\right. \\
& \left.\left.\quad \times\left(f^{(r-1)}(w)-f^{(r-1)}(t)\right) d w\right), k, t\right) \|_{L_{p}\left[x_{2}, y_{2}\right]} \\
& +\left\|B_{n}(F(u, t)(1-\chi(u)))(g(u)-g(t), k, t)\right\|_{L_{p}\left[x_{2}, y_{2}\right]} \\
& =J_{1}+J_{2}+J_{3}, \quad \text { say, }
\end{aligned}
$$

where $F(u, t)=f(u)-\sum_{i=0}^{r-2} \frac{(u-t)^{i}}{i!} f^{(i)}(t) ; u \in[0, \infty), t \in\left[x_{2}, y_{2}\right]$. Using mean value theorem on g the direct theorem 3.1 [6] and the moment estimates we get $J_{1}, J_{3}=O\left(n^{-(k+1)}\right), n \rightarrow \infty$. By repeated application of Jensen's inequality, mean value theorem on g and breaking $[t, u]$ as in Lemma 2.5, we have

$$
\begin{aligned}
&\left\|J_{2}\right\|^{p}= \int_{x_{2}}^{y_{2}} \mid B_{n}\left(\chi(u)(g(u)-g(t)) \int_{t}^{u}(u-w)^{r-2} \times\right. \\
&\left.\times\left(f^{(r-1)}(w)-f^{(r-1)}(t)\right) d w, k, t\right)\left.\right|^{p} d t \\
& \leqslant C \int_{x_{2}}^{y_{2}} \int_{x_{1}}^{y_{1}} W_{n}(t, u)|u-t|^{r p-1} \int_{t}^{u} \chi(w)\left|f^{(r-1)}(w)-f^{(r-1)}(t)\right|^{p} d w d u d t \\
& \leqslant C \sum_{l=1}^{r} \int_{x_{2}}^{y_{2}}\left[\left(\int_{t+\frac{l}{\sqrt{n}}}^{t+\frac{(l+1)}{\sqrt{n}}} t+\frac{(l+1)}{\sqrt{n}}\right.\right. \\
&\left.\quad \int_{t}^{t-\frac{l}{\sqrt{n}}}+\int_{t-\frac{(l+1)}{\sqrt{n}}}^{t} \int_{t-\frac{(l+1)}{\sqrt{n}}}^{t}\right)\left(\frac{n^{2}}{l^{4}}\right)^{p} W_{n}(t, u) \times \\
&\left.\times|u-t|^{r p+4 p-1} \chi(w)\left|f^{(r-1)}(w)-f^{(r-1)}(t)\right|^{p} d w d u\right] d t
\end{aligned}
$$

$$
\begin{aligned}
& +\int_{x_{2}}^{y_{2}}\left[\int_{x_{2}-\frac{1}{\sqrt{n}}}^{y_{2}+\frac{1}{\sqrt{n}}} \int_{t-\frac{1}{\sqrt{n}}}^{t+\frac{1}{\sqrt{n}}} W_{n}(t, u)|u-t|^{r p-1} \chi(w) \times\right. \\
& \left.\times\left|f^{(r-1)}(w)-f^{(r-1)}(t)\right|^{p} d w d u\right] d t \\
& \leqslant C \sum_{l=1}^{r}\left(\frac{n^{2}}{l^{4}}\right)^{p} \int_{0}^{t+\frac{1}{\sqrt{n}}} \omega\left(f^{(r-1)}, w, p,\left[x_{1}, y_{1}\right]\right)^{p} d w \\
& +n^{-(r p-1) / 2} \int_{0}^{\frac{1}{\sqrt{n}}} \omega\left(f^{(r-1)}, w, p,\left[x_{1}, y_{1}\right]\right)^{p} d w
\end{aligned}
$$

on using moment estimates and then interchanging order of integration in t and w. Lastly, utilizing $\omega\left(f^{(r-1)}, w, p,\left[x_{1}, y_{1}\right]\right)=O\left(w^{p}\right)$ we find

$$
J_{2}=O\left(n^{-(r+\beta) / 2}\right), \quad n \rightarrow \infty .
$$

Combining the estimates of J_{1}, J_{2} and J_{3}, we obtain (3.2). The proof of (3.2) shows that

$$
\begin{equation*}
\omega_{2 k+2}\left(f, \tau, p,\left[x_{2}, y_{2}\right]\right)=O\left(\tau^{\alpha}\right), \quad \alpha<2 k+2, \alpha \neq 2,3, . ., 2 k+1 . \tag{3.3}
\end{equation*}
$$

This very statement implies that it is also true for integer values $2,3, \ldots 2 k+1$. To prove this, let $\alpha=r$ where r takes value from $2,3, \ldots, 2 k+1$.

Then, since (3.3) is true for $(r, r+1)$, it follows that

$$
\begin{aligned}
\omega_{2 k+2}\left(f, \tau, p,\left[x_{2}, y_{2}\right]\right) & =O\left(\tau^{r+\beta}\right), \quad 0<\beta<1 \\
& =O\left(\tau^{r}\right) .
\end{aligned}
$$

This completes the proof of the theorem.
Remark 3.1. Similar results can be obtained for the operators $L_{n}(f, x)$ and the operators $M_{n, \alpha, \beta}(f, x)$ for $\alpha=\beta=1$ and $I_{n}=\{0\}$ defined as follows:

$$
L_{n}(f ; x)=\sum_{k=0}^{\infty} p_{n, k}(x) \int_{0}^{\infty} b_{n, k}(t) f(t) d t,
$$

where $p_{n, k}(x)=\binom{n+k-1}{k} x^{k}(1+x)^{-(n+k)}, \quad b_{n, k}(t)=\frac{t^{k}}{B(k+1, n)(1+t)^{n+k+1}}$ and
$M_{n, \alpha, \beta}(f, x)=(n-\alpha+1) \sum_{k=\beta}^{n-\alpha+\beta} p_{n, k}(x) \int_{0}^{1} p_{n-\alpha, k-\beta}(t) f(t) d t+\sum_{k \in I_{n}} p_{n, k}(x) f\left(\frac{k}{n}\right)$,
where

$$
p_{n, k}(x)=\binom{n}{k} x^{k}(1-x)^{n-k},
$$

in [9] and [11] respectively.

Acknowledgement : The authors are thankful to the reviewer for making valuable suggestions leading to a better presentation of the paper. The second author is thankful to the "Council of Scientific and Industrial Research", New Delhi, India for financial support to carry out the above work.

References

[1] A. F. Timan, Theory of Approximation of Functions of a Real Variable (English Translation), Dover Publications, Inc., N.Y., 1994.
[2] E. Hewiit and K. Stromberg, Real and Abstract Analysis, McGraw-Hill, NewYork, 1969.
[3] G. G. Lorentz, Bernstein Polynomials, Toronto Press, Toronto (1953).
[4] G. O. Okikiolu, Aspects of the theory of bounded integral operators in L_{p} spaces, Acadaemic Press, London (1971).
[5] H. Berens and G. G. Lorentz, Inverse theorems for Benstein polynomials, Indiana Univ. Math. J. 21(1972), 693-708.
[6] P. Maheshwari, Some direct estimates for Szász-beta operators in $L_{p}-$ norm, Int. J. Pure Appl. Math. Sci., Vol. 3 No. 1 (2006), 61-72.
[7] P. N. Agrawal and Kareem J. Thamer, On Micchelli combination of SzászMirakyan Durrmeyer operators, Nonlinear Funct. Anal. Appl., 1 (2008), 135145.
[8] Vijay Gupta, Simultaneous approximation for Bézier variant of SzászMirakyan Durrmeyer operators, J. Math. Anal. Appl. 328 (2007) 101-105.
[9] V. Gupta, A note on modified Baskakov type operators, Approx. Theory Appl. (N. S.) 10 (3) (1994) 74-78.
[10] V. Gupta, G. S. Srivastava and A. Sahai, On simultaneous approximation by Szász-beta operators, Soochow J. Math., 21, No. 1(1995) 1-11.
[11] V. Gupta and N. Ispir, On simultaneous approximation for some Bernstein type operators, Int. J. Math. Math. Sci.71(2004), 3951-3958.
[12] V. Gupta, R. N. Mohapatra and Z. Finta, On certain family of mixed summation-integral type operators, Math. Comput. Modelling, 42 (2005) 181191.
(Received 8 October 2008)

[^1]Indian Institute of Technology,
Roorkee-247667, INDIA,
e-mail: pna_iitr@yahoo.co.in (P.N. Agrawal) and ashagairola@gmail.com (A.R. Gairola)

[^0]: Copyright (c) 2010 by the Mathematical Association of Thailand. All rights reserved.

[^1]: P.N. Agrawal and Asha Ram Gairola

 Department of Mathematics,

