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Abstract : Annihilator conditions relative to a class of modules are studied and
used to characterize the relative extending modules. In particular, dual rings
relative to the class of all small right ideals, called right small-dual rings, are
investigated and some known results on the dual rings are generalized to the case
of small-dual rings.
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1 Introduction

A ring R is called a right dual ring, if every right ideal I of R is a right
annihilator, that is, rRlR(I) = I. Analogously a left dual ring is defined, a left
and right dual ring is called a dual ring in [8]. For a given one-sided ideal of a ring
R, it may or may not be easy to check if it is an annihilator. Moreover, for any
ring R, in general there will be some one-sided ideals which do have the property
that they are annihilators. Thus the annihilator conditions are limited to a special
class of one-sided ideals of a ring. For instance, if every maximal right ideal of R
is a right annihilator, then R is called a right Kasch ring[2]; if every essential right
ideal of R is a right annihilator, then R is called a right quasi-dual ring[11].

Using similar thought, Doǧruöz and Smith in [5] introduce extending modules
with respect to modules classes. Let L be a class of right R-modules, according
to [5], an L -submodule N of M means that N is a submodule of M with N ∈ L ;
a right R-module M is type 2 L -extending[5] if for every L -submodule N of
M , every closure of N in M is a direct summand of M ; a right R-module M is
called weak type 2 L -extending if every L -submodule of M is essential in a direct
summand of M . For a special class of right R-modules, we recently investigate
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the weak type 2 L -extending modules in [14], which is extending relative to the
class L of finitely generated submodules of M .

Motivated by these, in this paper we investigate annihilator conditions of a
module M with respect to a general class of right R-modules, and obtain that these
annihilator conditions are closely connected with the relative extending modules
in [5]. In Section 2, to built the consistency of each relative dual module and
ring, we define the relative annihilator conditions of a module, that is, an L -dual
module, and obtain some characterizations of weak type 2 L -extending modules
[5] by L -dual modules. As applications, in Section 3, a dual ring relative to the
class of all small right ideals, that is, a small-dual ring, is studied, and some known
results on the dual rings are generalized to the case of small-dual rings.

In the sequel sections, the notion A ⊆e B (resp. A ⊆⊕ B) means that A is
an essential submodule (resp. a direct summand) of B. Assume that M is a right
R-module and S = End(MR), let lS(N) = {f ∈ S | f(n) = 0, ∀n ∈ N} be the
left annihilator of N in S. Similarly, rM (I) = {m ∈ M | f(m) = 0, ∀f ∈ I}
be the right annihilator of I in M . By a class L of right R-modules we mean a
collection of right R-modules which contains the zero module and which is closed
under isomorphisms. For other terminology we refer to [1] and [6].

2 Relative dual modules

Definition 2.1. Let L be a class of right R-modules, a right R-module M is
called an L -dual module if rM lS(N) = N for each L -submodule N of M . In
particular, if RR is an L -dual module, then R is called a right L -dual ring.
Similarly, L -dual left R-modules and left L -dual rings are defined.

Example 2.2. Let R be a ring.

(1) If L is the class of all right ideals of R, then the right L -dual ring R is
called a right dual ring[8]. If R is a left and right dual ring, then R is called
a dual ring;

(2) If L is the class of all maximal right ideals of R, then the right L -dual ring
R is called a right Kasch ring[2];

(3) If L is the class of all essential right ideals of R, then the right L -dual ring
R is called a right quasi-dual ring[11].

Let L be a class of right R-modules, according to [5] L e denotes the class
of right R-modules which contain an essential L -submodule, and so L ⊆ L e.
It is proved that M is type 2 L -extending if and only if M is weak type 2 L e-
extending[5, Theorem 2.7]. In the following, let L c denote the class of right
R-modules, which contain an essential L -submodule and have no essential exten-
sions. Note that L

c ⊆ L
e and every L

c-submodule of a right R-module M is
closed in M , thus
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Proposition 2.3. Let L be a class of right R-modules. If M is a type 2 L -
extending module, then M is an L c-dual module.

Proof. Note that for each L
c-submodule N of M , there is a submodule N0 ∈ L

such that N0 is essential in N . Since N is a closed submodule of M , thus it is a
direct summand of M by hypothesis, it follows that N = rM lS(N), so M is an
L c-dual module.

We firstly give some general characterizations of L -dual modules. For each
L ∈ L , M/L is called an L -dense factor module of M .

Proposition 2.4. The following are equivalent:

(1) M is an L -dual module;

(2) For each L -submodule N of M and m ∈ M , if lS (N) ⊆ lS (m), then m ∈ N ;

(3) every L -dense factor module of M is cogenerated by M (i.e., can be embed-
ded in M I , where I is an index set).

Proof. (1) ⇒ (2). For each L -submodule N of M and m ∈ M , if lS (N) ⊆ lS (m),
then m ∈ rM lS(m) ⊆ rM lS(N). From (1) we have N = rM lS(N), hence m ∈ N .

(2) ⇒ (1). Let N be an L -submodule of M . For each m ∈ rM lS(N), we have

lS (N) = lS rM lS(N) ⊆ lS (m).

From (2) m ∈ N , so that rM lS(N) ⊆ N . Clearly, N ⊆ rM lS(N). So N = rM lS(N),
that is, M is an L -dual module.

(1) ⇔ (3). By [1, Lemma 24.4 and P109] for each submodule N of M we have

rM lS(N)/N = RejM/N (M) = ∩{kerh | h ∈ Hom(M/N, M) }.

Thus M is an L -dual module if and only if RejM/N (M) = 0 for each L -submodule
N of M , if and only if M/N is cogenerated by M for each L -submodule N of M ,
that is, every L -dense factor module of M is cogenerated by M .

A class L of right R-modules is said to be closed under endomorphisms of M ,
if for each f ∈ End(MR) and L -submodule N of M we have f(N) ∈ L .

Proposition 2.5. Let L be closed under endomorphisms of MR. Then M is an
L -dual module if and only if rM (Sb ∩ lS(N)) = rM (b)+N for each L -submodule
N of M and b ∈ S.

Proof. The sufficiency is clear. Conversely, it is obvious that rM (b)+N ⊆ rM (Sb∩
lS (N)) for each L -submodule N of M . Suppose that x ∈ rM (Sb ∩ lS (N)) and
y ∈ lS (bN), then ybN = 0, hence yb ∈ Sb∩ lS (N), so ybx = 0, that is, y ∈ lS (bx).
Therefore lS (bx) ⊇ lS (bN). Since L is closed under endomorphisms of M , we have
bN ∈ L , hence bx ∈ rM lS(bx) ⊆ rM lS(bN) = bN for M is an L -dual module.
Thus there is an n ∈ N such that bx = bn, i.e., x− n ∈ rM (b). So x ∈ N + rM (b),
as required.
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We now provide some characterizations of non-singular L c-dual module, which
will be necessary in the last theorem.

Lemma 2.6. Let M be non-singular. Then rM lS(N) is a closed submodule of M
for each submodule N .

Proof. Suppose that rM lS(N) ⊆e B and rM lS(N) 6= B, then there is a 0 6= b ∈
B\rM lS(N) and L ⊆e RR such that 0 6= b · L ⊆ rM lS(N). Hence lS(N)b · L = 0.
Since MR is non-singular, we have lS(N) · b = 0, i.e., b ∈ rM lS(N). This is a
contradiction. So rM lS(N) is a closed submodule of M .

Theorem 2.7. Suppose that MR is non-singular. The following are equivalent:

(1) MR is an L c-dual module;

(2) N ⊆e rM lS(N) for each L -submodule N of M ;

(3) lS(N) 6= 0 for each non-essential L -submodule N of M ;

(4) for each L -submodule N of M , N is an essential submodule of M if and
only if lS(N) = 0.

Proof. (1) ⇒ (2). For each L -submodule N of M , let N0 be a closure of N in M ,
that is, N ⊆e N0 and N0 ∈ L c. From (1) we have N ⊆ rM lS(N) ⊆ rM lS(N0) =
N0, hence N ⊆e rM lS(N).

(2) ⇒ (1). Let N be an L c-submodule of M , by Lemma 2.6 rM lS(N) is a
closed submodule. Thus rM lS(N) is a closure of N in M , whence N = rM lS(N),
that is, M is an L c-dual module.

(1) ⇒ (3). Suppose that N is a non-essential L -submodule of M , there is an
N0 6= M such that N0 is a closure of N . From (1) N0 = rM lS(N0), hence lS(N0) 6=
0. Since lS(N0) ⊆ lS(N) we have lS(N) 6= 0.

(3) ⇒ (4). The sufficiency is clear. Conversely, if N ∈ L and N ⊆e M , then
N ⊆e rM lS(N) ⊆e M . By Lemma 2.6 we have rM lS(N) = M , hence lS(N) = 0.

(4) ⇒ (3). Clearly.

(3) ⇒ (1). Let N be an L -submodule of M and N0 a closure of N in M .
It is to show that N0 = rM lS(N0). Obviously N0 ⊆ rM lS(N0). Suppose that
N0 6= rM lS(N0), then N is non-essential in rM lS(N0), thus there is a 0 6= AR ⊆
rM lS(N0) such that N0∩A = 0. By [7, 1.10] there exists B such that N0 ⊆ B and
A⊕B ⊆e MR. Clearly, B is non-essential in MR. From (3) we have lS(B) 6=0. Let
0 6= x ∈ lS(B). Then xB = 0 implies xN0 = 0. Hence x ∈ lS(N0) = lSrM lS(N0),
so xA = 0, that is, x(A ⊕ B) = 0. On the other hand, since A ⊕ B ⊆e MR, for
each 0 6= m ∈ MR, there is an L ⊆e RR such that mL ⊆ A ⊕ B, hence xmL = 0.
But since M is non-singular, we have xm = 0. That is, xM = 0, also x = 0. A
contradiction. Therefore N0 = rM lS(N0).

Lemma 2.8. Let MR be a non-singular module. Then M is a weak type 2 L -
extending module if and only if each L c-submodule N0 of M is a direct summand
of M .
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Proof. The sufficiency is obvious. Conversely, let N0 be an L c-submodule of M ,
then there is an N ∈ L such that N0 is a closure of N . Since M is weak type 2
L -extending, there exists a direct summand M0 such that N ⊆e M0. For M is
non-singular, we have N0 = M0.

Now we characterize the relative extending modules by the annihilator condi-
tions as follows.

Theorem 2.9. Suppose that M is a non-singular right R-module and S = EndMR

is the endomorphism ring of M . Then M is a weak type 2 L -extending module
if and only if M is an L c-dual module and lS(N) is a direct summand of SS for
each L -submodule N of M .

Proof. (⇒). Let N0 be an L c-submodule of M , by Lemma 2.8, there is an idem-
potent e ∈ S such that N0 = eM . Thus lS(N0) = S(1 − e), so rM lS(N0) =
rM (S(1 − e)) = eM = N0, that is, M is an L c-dual module. Moreover, since
M is non-singular, for each L -submodule N if N0 is a closure of N in M , then
lS(N) = lS(N0). Thus lS(N0) ⊆

⊕
SS by Lemma 2.8, so lS(N) is a direct summand

of SS.
(⇐). Let N be an L -submodule of M , by Theorem 2.7 N ⊆e rM lS(N). Since

lS(N) ⊆⊕
SS, we have rM lS(N) ⊆⊕ MR, that is, M is a weak type 2 L -extending

module.

3 Small-dual rings

Let I be a right ideal of R, if for each right ideal K such that K + I = RR

we have K = RR, then I is called a small (or superfluous) right ideal of R. As we
know, the small one-side ideals are very important in the study of rings, especially
the largest small ideal, i.e., the Jacobson radical J = J(R). In this section, we
mainly investigate the right L -dual ring for the class L of all small right ideals
of R.

Definition 3.1. A ring R is called a right small-dual ring, if rRlR(I) = I for each
small right ideal I.

Obviously, every semiprimitive ring (i.e., J(R) = 0) is a small-dual ring (e.g.,
Z).

Proposition 3.2. Let R be a right small-dual ring.

(1) If I is a small right ideal of R, then lR(I) ⊆e
RR;

(2) Soc(RR) ⊆ lR(J(R)) ⊆e
RR;

(3) J(R) ⊆ Z(RR).

Proof. (1) For b ∈ R, if lR(I) ∩ Rb = 0, then since bI is a small right ideal, by
Proposition 2.5, we have I + rR(b) = R. Thus rR(b) = R, so b = 0, that is,
lR(I) ⊆e

RR.
(2),(3) Note that J(R) is the largest small ideal of R.
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Corollary 3.3. Suppose that R is a right small-dual ring, and satisfies ACC on
left annihilators, then J(R) = Z(RR) is nilpotent.

Proof. By the well-known result, if R satisfies ACC on left annihilators, then
Z(RR) is nilpotent. Thus Z(RR) ⊆ J(R), so J(R) = Z(RR) is nilpotent by
Proposition 3.2(3).

As we note that, the Jacobson radical J(R) need not be nilpotent in a small-
dual ring R. In fact, a self-injevtive dual ring R is given in [8, 6.2Example] such
that 0 6= J(R) = J(R)2.

Theorem 3.4. If R is a right small-dual ring, and satisfies ACC on essential left
ideals, then J(R) is nilpotent.

Proof. If R satisfies ACC on essential left ideals, then R/SocRR is left noetherian
by [3, Proposition 4]. Let J = J(R) and consider the descending chain of ideals

J ⊇ J2 ⊇ J3 ⊇ · · · ,

then from Proposition 3.2 we have an ascending chain of essential left ideals

SocRR ⊆ lR(J) ⊆ lR(J2) ⊆ · · · .

Thus there is an m ∈ N such that lR(Jm) = lR(Jm+1). Since R is right small-dual,
we have Jm = Jm+1. Also since R/SocRR is a Noetherian left R-module, then
(Jm + SocRR)/SocRR is finitely generated, and note that

(Jm + SocRR)/SocRR = J · ((Jm + SocRR)/SocRR).

Thus by Nakayama Lemma we have (Jm + SocRR)/SocRR = 0, that is, Jm ⊆
SocRR. So Jm+1 ⊆ JSocRR = 0.

Corollary 3.5. If R is a right small-dual semilocal left noetherian ring, then R
is left aritian.

Proof. Since R is right small-dual left noetherian ring, by Theorem 3.4 J(R) is
nilpotent. So R is semiprimary, thus R is left aritian by Hopkins’ Theorem.

According to [12], a ring R is called a left C2-ring, if every left ideal, which
is isomorphic to a direct summand of R, is a direct summand of R. If R is a left
extending and left C2-ring, then R is called a left continuous ring. A semiperfect
left continuous ring R satisfying SocRR = SocRR ⊆e

R R is studied in detail in [12],
and it was proved that a right Kasch ring R is a left C2 ring. A ring R is said to
be semiregular, if R/J(R) is regular and idempotents modulo J(R) can be lifted.
Obviously every semiperfect ring is semiregular.

Proposition 3.6. Suppose that R is a semiregular right small-dual ring. Then

(1) R is a left C2-ring;
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(2) J(R) = Z(RR).

Proof. (1) Let I be a left ideal of R, and I ∼= Re, where e is an idempotent of
R. Since R is semiregular, there is a direct sum decomposition RR = C ⊕ D such
that C⊆ I and I ∩ D is a small submodule of RR. Thus I = C ⊕ (I ∩ D) and
I ∩ D ⊆ J(R). Also since R is right small-dual, we have I ∩ D ⊆ Z(RR) by
Proposition 3.2, that is, I ∩ D is a finitely generated projective singular module,
this is impossible. So I ∩ D = 0. Therefore I = C is a direct summand of RR,
that is, R is a left C2-ring.

(2) Since R is a right small-dual ring, J(R) ⊆ Z(RR) by Proposition 3.2. For
each a ∈ Z(RR) since lR(a)∩ lR(1−a) = 0, we have lR(1−a) = 0. Thus R(1−a) ∼=
R, whence R(1 − a) is a direct summand of R by (1), which implies (1 − a)R is
also a direct summand of R. Let (1 − a)R = eR, e = e2, then 1 − e ∈ lR(1 − a) =
0, hence (1 − a)R = R. So Z(RR) ⊆ J(R).

Theorem 3.7. Suppose that R is a semilocal right small-dual ring. Then J(R) =
rR(Soc(RR)) and Soc(RR) ⊆ Soc(RR) = lRrR(Soc(RR)) ⊆e

RR.

Proof. Since R is semilocal, we have that Soc(RR) = lR(J(R)), thus

J(R) = rRlR(J(R)) = rR(Soc(RR))

and lRrR(Soc(RR)) = lR(J(R)) = Soc(RR) ⊆e
RR.

Corollary 3.8. Suppose that R is a semilocal small-dual ring. Then

Soc(RR) = rR(J(R)) = lR(J(R)) = Soc(RR)

is an essential ideal of R, and

rR(Soc(RR)) = J(R) = lR(Soc(RR)).

A ring R is called a left PP ring, if every cyclic left ideal is projective, equiv-
alently, the left annihilator of each element of is a direct summand of RR.

Proposition 3.9. Suppose that R is a left PP ring. Then R is a right small-dual
ring if and only if R is a semiprimitive ring.

Proof. The sufficiency is clear. Conversely, for each x ∈ J(R), xR is a small right
ideal of R. Thus lR(x) ⊆e

RR by Proposition 3.2. Since R is left PP, we have
lR(x) ⊆⊕

RR. Whence lR(x) = RR, so xR = rRlR(x) = 0, that is, J(R) = 0.

It is showed in [14] that every right semihereditary dual ring is semisimple.
We generalize it as follows.

Corollary 3.10. Every left (or right) PP dual ring is semisimple.

Proof. From [8, Theorem 3.9] every dual ring R is semiperfect. It follows from
Proposition 3.9 that R is semisimple.
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It is proved in [1] that an artinian ring R is QF if and only if R is a dual
ring, and in [8] that every left perfect dual ring is QF. Note that every dual ring
is small-dual ring, we have

Theorem 3.11. If R is left (or right) perfect, then R is small-dual if and only if
R is dual, hence every left (or right) perfect small-dual ring is QF.

Proof. Suppose that R is small-dual ring. Let I be a right ideal of R. Since R
is right perfect, hence semiperfect, there is a projective cover P of R/I. By [1,
17.17] there is a direct sum decomposition RR = P1 ⊕P2 such that P1

∼= P . Thus
R is a projective cover of R/I ⊕ P2. By Proposition 2.4, R/I ⊕ P2 is cogenerated
by RR, hence R/I is cogenerated by RR. So by Proposition 2.4, R is a right dual
ring. Similarly, R is a left dual ring, so R is a dual ring.

By [8, Theorem 5.3] every cyclic right R-module is finite Goldie dimensional.
Since R is right perfect, every cyclic right R-module has an essential socle. Thus
every cyclic right R-module has a finitely generated essential socle, hence R is
right artinian. So by [1, Ex24.11,13], R is QF.

Hopkins’ theorem asserts that R is a right artinian ring if and only if R is a
right noetherian semilocal ring and J(R) is nilpotent. In presence of a small-dual
ring we have

Corollary 3.12. If R is a semilocal small-dual ring satisfying ACC on essential
left (or right) ideals, then R is QF.

Proof. By Theorem 3.4 J(R) is nilpotent, so that R is right (or left) perfect. It
follows from Theorem 3.11 that R is QF.
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[5] S. Doǧruöz and P.F. Smith, Modules which are weak extending relative to
modules classes, Acta Math. Hungar., 87(2000), 1-10.

[6] N.V. Dung, D.V. Huynh, P.F. Smith and R. Wisbauer, Extending Modules,
Pitman Research Notes in Mathematics Series, Longman, Harlow, 1994.

[7] J. Hausen, Modules with the summand intersection property, Comm. Algebra,
17(1989), 135-148.

[8] C.R. Harjarnavis and N.C. Norton, On dual rings and their modules, J. Al-
gebra, 93(1985), 253–266.

[9] Y. Kurata and K. Hashimoto, On dual bimodules, Tsukuba J. Math.,
16(1992), 85-105.

[10] S.M. Khuri, Correspondence theorems for modules and their endomorphism
rings, J. Algebra, 122(1989), 380-396.

[11] S.S. Page and Y. Zhou, Qusi-dual rings, Comm. Algebra, 28(2000), 489-504.

[12] M.F. Yousif, CS rings and Nakayama permutations, Comm. Algebra,
25(1997), 3787-3795.

[13] D. Zhou, Ring characterized by a class of modules, Comm. Algebra, 33(2005),
2941-2955.

[14] D. Zhou, Finitely extending rings, Acta Math. Sci. A, 26(2006), 707-715(in
Chinese).

(Received 11 December 2008)

Dexu Zhou
Department of Mathematics,
Fujian Normal University,
Fuzhou 350007, P.R. China.
e-mail : dxzhou@fjnu.edu.cn

Demei Li
Department of Mathematics,
Fujian Normal University,
Fuzhou 350007, P.R. China.
e-mail : mdl079@126.com

Lili Guo
Department of Mathematics,
Fujian Normal University,



428 Thai J. Math. 8(3) (2010)/ D. Zhou et al.

Fuzhou 350007, P.R. China.
e-mail : yguolili@163.com


