

The Least Group Congruence on E-inversive Semigroups and E-inversive E-semigroups

M. Siripitukdet and S. Sattayaporn

Abstract: In this paper, we investigated a group congruence on an *E*-inversive semigroup by using weakly self-conjugate subsemigroups and the least group congruence on *E*-inversive *E*-semigroups with commuting idempotents.

Keywords : *E*-inversive, *E*-semigroup, least group congruence. **2000 Mathematics Subject Classification** : 20M10.

1 Introduction

Let S be a semigroup and E(S) denote the set of all idempotents of S. For every $a \in S$, $V(a):= \{ x \in S \mid a = axa, x = xax \}$ is the set of all inverses of element a, and $W(a):= \{ x \in S \mid x = xax \}$ is the set of all weak inverses of element a. An element a in a semigroup S is called *E*-inversive [7] if there exists $x \in S$ such that ax is an idempotent of S. A semigroup S is called *E*-inversive if for all $a \in S, a$ is *E*-inversive. A semigroup S is called an *E*-semigroup if E(S)forms a subsemigroup of S. A congruence ρ on a semigroup S is called a group congruence if S/ρ is a group.

Basic properties and results of E-inversive E-semigroups were given by Mitsch [5], Weipoltshammer [7]. Gomes [2] described the least group congruence on a dense and unitary E-semigroup. Zheng [8] gave the least group congruence on an E-inversive semigroup which used self-conjugate subsets of a semigroup. Weipolt-shammer [7] considered the least group congruence on an E-inversive E-semigroup.

In this paper, we investigated characterizations of a group congruence on an E-inversive semigroup and the least group congruence on an E-inversive semigroup which we used weakly self-conjugate subsemigroups of a semigroup and the least group congruence on an E-inversive E-semigroup with commuting idempotents.

A subset H of a semigroup S is full if $E(S) \subseteq H$. A subsemigroup Hof a semigroup S is called *weakly self-conjugate* if for all $a \in S, x \in H, a' \in$ $W(a), axa', a'xa \in H$. For any subset H of a semigroup S, let $H_{\omega}:=\{a \in S \mid ha \in$ H for some $h \in H\}$ which is called the *closure* of H. If H is a subsemigroup of S, then $H \subseteq H_{\omega}$. A subsemigroup H of a semigroup S is *closed* if $H = H_{\omega}$. For a semigroup S, the following notations will be used; \mathcal{C} is the class of all full and weakly self-conjugate subsemigroups of S, $\overline{\mathcal{C}}$ is the class of all closed subsemigroups of S in \mathcal{C} . Let $U := \bigcap_{H \in \mathcal{C}} H$. Then clearly, U is full and weakly self-conjugate. Note

that U is the smallest element in \mathcal{C} .

For any subset H of a semigroup S, we define a binary relation β_H on S as follows:

$$\beta_H := \Big\{ (a,b) \in S \times S \mid xa = by \text{ for some } x, y \in H \Big\}.$$

For any congruence ρ on a semigroup S, the kernel of ρ is the set

$$Ker\rho := \left\{ a \in S \mid a\rho \in E(S/\rho) = \{ a \in S \mid (a, a^2) \in \rho \right\}.$$

If ρ is a group congruence on a semigroup S, then $a \in Ker\rho$ if and only if $(a, e) \in \rho$ for some(all) $e \in E(S)$. For basic concepts in semigroup theory, see [1], [3] and [6].

The following results are used in this research.

Lemma 1.1 ([7]) A semigroup S is E-inversive if and only if $W(a) \neq \emptyset$ for all $a \in S$.

Proposition 1.2 ([7]) For any semigroup S, the following statements are equivalent:

- (i) S is an E-semigroup.
- (ii) W(ab) = W(b)W(a) for all $a, b \in S$.

Proposition 1.3 [7] Let S be an E-semigroup. Then

- (i) for all $a \in S, a' \in W(a), e, f \in E(S), ea', a'f, fa'e \in W(a),$
- (ii) for all $a \in S, a' \in W(a), e \in E(S), a'ea, aea' \in E(S),$
- (iii) for all $e \in E(S), W(e) \subseteq E(S)$,
- (iv) for all $e, f \in E(S), W(ef) = W(fe)$.

2 The least group Congruence on E-inversive semigroups.

The next result, we show that β_H is a group congruence on an *E*-inversive semigroup.

Theorem 2.1 If S is an E-inversive semigroup and $H \in C$, then

$$\beta_H := \left\{ (a, b) \in S \times S \mid xa = by \text{ for some } x, y \in H \right\}$$

is a group congruence on S.

164

The Least Group Congruence on E-inversive Semigroups

Proof. To show that β_H is a congruence on S, let $a, b, c \in S$. Let $a' \in W(a)$. Since H is full, $aa', a'a \in E(S) \subseteq H$. Note that (aa')a = a(a'a), we have $a\beta_H a$.

Suppose that $a\beta_H b$. Then xa = by for some $x, y \in H$. Let $b' \in W(b)$. Then (aa'(byb'))b = a((a'xa)b'b). Since $aa'byb', a'xab'b \in H, b\beta_H a$.

Suppose that $a\beta_H b$ and $b\beta_H c$. Then xa = by and zb = cw for some $x, y, z, w \in H$. Thus (zx)a = zby = c(wy) and $zx, wy \in H$, it follows that $a\beta_H c$.

Suppose that $a\beta_H b$ and $c \in S$. Then xa = by for some $x, y \in H$. Let $b' \in W(b)$ and $c' \in W(c)$. Then (bcc'b'x)ac = bcc'b'(xa)c = bc(c'b'byc). Since H is weakly self-conjugate, $bcc'b'x, c'b'byc \in H$. Hence β_H is a right compatible. Similarly, we can show that β_H is a left compatible. Hence β_H is a congruence on S.

Finally, we shall show that S/β_H is a group. Fix $x \in H$. Claim that $x\beta_H$ is the identity of S/β_H . Let $a \in S$ and $a' \in W(a)$. Then $axa', a'a \in H$ and (axa')a = (ax)(a'a), so $(a, ax) \in \beta_H$. Note that $xaa', a'a \in H$ and (xaa')a = (xa)a'a, so $(a, xa) \in \beta_H$. Hence $x\beta_H$ is the identity of S/β_H .

Clearly, $x\beta_H = y\beta_H = e\beta_H$ for all $x, y \in H, e \in E(S)$. Then $a\beta_H a'\beta_H = (aa')\beta_H = x\beta_H = (a'a)\beta_H = a'\beta_H a\beta_H$. Therefore $a'\beta_H$ is an inverse of $a\beta_H$. Hence S/β_H is a group.

Remark. From Theorem 2.1, we see that $H \subseteq Ker\beta_H$ for every $H \in \mathcal{C}$.

Lemma 2.2 Let S be an E-inversive semigroup.

- (i) If $H \in \mathcal{C}$, then $Ker\beta_H = H_{\omega}$.
- (ii) If $H \in \overline{\mathcal{C}}$, then $Ker\beta_H = H = H_{\omega}$.

(iii) If ρ is a group congruence on S, then $Ker \rho \in \overline{\mathcal{C}} \subseteq \mathcal{C}$ and $\rho = \beta_{Ker\rho}$.

Proof. (i) Suppose that $H \in \mathcal{C}$. By Theorem 2.1, β_H is a group congruence on S. Let $a \in Ker\beta_H$. Then $(a, e) \in \beta_H$ for all $e \in E(S)$. Let $e \in E(S)$. Then xa = ey for some $x, y \in H$. Since $ey \in H$, we get $xa \in H$. Thus $a \in H_{\omega}$.

Conversely, let $a \in H_{\omega}$. Then there exists $h \in H$ such that $ha \in H$. For any $a' \in W(a)$, (a(ha)a')a'a = a(haa'a'a) where $a(ha)a', haa'a'a \in H$, so $(a'a, a) \in \beta_H$ and $a \in Ker\beta_H$.

(ii) Clearly, by (i), $H = H_{\omega} = Ker\beta_H$.

(iii) Let $e \in E(S)$. Then $(e, e) \in \rho$, so $e \in Ker\rho$. Thus $Ker\rho$ is full. Let $x \in Ker\rho$. Then $(x, e) \in \rho$ for all $e \in E(S)$. Let $a \in S, a' \in W(a)$. Then $(axa', aea') \in \rho$, and $(axa')\rho = (aea')\rho = a\rho e\rho a'\rho = a\rho a'\rho = (aa')\rho$ where $e\rho$ is the identity element in S/ρ . Then $(axa', aa') \in \rho$, so $axa' \in Ker\rho$. Similarly, we can show that $a'xa \in Ker\rho$ for all $a \in S, a' \in W(a), x \in Ker\rho$.

Now we shall show that $Ker\rho$ is a subsemigroup of S. Let $a, b \in Ker\rho$. Then $a\rho = e\rho, b\rho = e\rho$ for all $e \in E(S)$. Thus $(ab)\rho = a\rho b\rho = e\rho e\rho = e\rho$ for all $e \in E(S)$. Hence $ab \in Ker\rho$. That is, $Ker\rho \in C$. Next, we shall show that $(Ker\rho)_{\omega} = Ker\rho$. Note that $Ker\rho \subseteq (Ker\rho)_{\omega}$.

Let $x \in (Ker\rho)_{\omega}$. Then there exists $y \in Ker\rho$ such that $yx \in Ker\rho$. Thus $yx\rho = e\rho$ for all $e \in E(S)$ and $y\rho x\rho = (yx)\rho = e\rho$. Since $y \in Ker\rho$, $y\rho = e\rho$. Hence $x\rho = e\rho$, so $x \in Ker\rho$. Therefore $(Ker\rho)_{\omega} = Ker\rho$, so $Ker\rho \in \overline{\mathcal{C}}$. Finally, we shall show that $\rho = \beta_{Ker\rho}$. Let $(a, b) \in \rho$ and $a' \in W(a)$. Then $(aa', ba') \in \rho$. We get that $ba' \in Ker\rho$, and (ba')a = b(a'a). Then $(a, b) \in \beta_{Ker\rho}$ and so $\rho \subseteq \beta_{Ker\rho}$. Suppose that $(a, b) \in \beta_{Ker\rho}$. Then xa = by for some $x, y \in Ker\rho$. Thus $x\rho = e\rho = y\rho$ for all $e \in E(S)$. Since ρ is a group congruence and $e\rho$ is the identity element in S/ρ , we have $a\rho = e\rho a\rho = x\rho a\rho = (xa)\rho = (by)\rho = b\rho y\rho = b\rho e\rho = b\rho$ and so $(a, b) \in \rho$. Hence $\rho = \beta_{Ker\rho}$.

Corollary 2.3 Let S be an E-inversive semigroup. Then ρ is a group congruence on S if and only if there exists $K \in \overline{C}$ such that $\rho = \beta_K$ where $K = Ker\rho$.

Proof. It follows from Theorem 2.1 and Lemma 2.2(iii).

Lemma 2.4 Let S be an E - inversive semigroup.

- (i) If $H \subseteq K \subseteq S$, then $\beta_H \subseteq \beta_K$.
- (ii) If $H, K \in \overline{\mathcal{C}}$ such that $\beta_H \subseteq \beta_K$ then $H \subseteq K$, (hence for $H, K \in \overline{\mathcal{C}}, H \subseteq K$ if and only if $\beta_H \subseteq \beta_K$).

Proof. (i) Let $H \subseteq K$ and $(a, b) \in \beta_H$. Then there exist $x, y \in H \subseteq K$ such that xa = by. Hence $(a, b) \in \beta_K$.

(ii) Let $H, K \in \overline{\mathcal{C}}$ be such that $\beta_H \subseteq \beta_K$. By Lemma 2.2(ii), $Ker\beta_H = H$ and $Ker\beta_K = K$. Let $x \in H$. Then $x \in Ker\beta_H$. So $(x, e) \in \beta_H \subseteq \beta_K$ for all $e \in E(S)$. Therefore $x \in Ker\beta_K = K$. The proof is completed.

By Lemma 2.2 and 2.4, we have the least group congruence on an E-inversive semigroup.

Theorem 2.5 Let S be an E - inversive semigroup. If U is the smallest element in C, then β_U is the least group congruence on S.

Proof. Let ρ be an arbitrary group congruence on S. By Corollary 2.3, we obtain that $\rho = \beta_K$ where $K = Ker\rho \in \overline{\mathcal{C}}$. Since $U \subseteq K$ and by Lemma 2.4(i), $\beta_U \subseteq \beta_K = \rho$. Hence β_U is the least group congruence on S.

We conclude this section by investigating alternative characterization of a group congruence on an E - inversive semigroup.

Proposition 2.6 Let S be an E - inversive semigroup with $H \in \overline{C}$. If $a, b \in S$, then the following statements are equivalent.

- (i) For all $b' \in W(b)$, $ab' \in H$.
- (ii) For all $a' \in W(a)$, $a'b \in H$.
- (iii) For all $a' \in W(a)$, $ba' \in H$.
- (iv) For all $b' \in W(b)$, $b'a \in H$.

166

The Least Group Congruence on E-inversive Semigroups

- (v) For all $b' \in W(b)$, there exists $x \in H$ such that $axb' \in H$.
- (vi) For all $a' \in W(a)$, there exists $x \in H$ such that $a'xb \in H$.
- (vii) For all $a' \in W(a)$, there exists $x \in H$ such that $bxa' \in H$.
- (viii) For all $b' \in W(b)$, there exists $x \in H$ such that $b'xa \in H$.
- (ix) There exist $x, y \in H$ such that ax = yb.
- (x) There exist $x, y \in H$ such that xa = by.
- (xi) $HaH \cap HbH \neq \emptyset$.

Proof. (i) \Rightarrow (ii) Let $a' \in W(a)$ and $b' \in W(b)$. Then $ab' \in H$ and $a'ab'a \in H$. Now $(a'ab'a)a'b = (a'a)(b'aa'b) \in H$. Therefore $a'b \in H_{\omega} = H$.

(ii) \Rightarrow (i) It is similar to the proof of (i) \Rightarrow (ii).

The proof of (ii) \Leftrightarrow (iii) \Leftrightarrow (iv) are similarly to the proof of (i) \Leftrightarrow (ii).

(iv) \Rightarrow (v) Let $b' \in W(b)$ and $a' \in W(a)$. Then $b'a \in H$ and $b'aa'b \in H$. Now $a(b'aa'b)b' = (ab'aa')(bb') \in HE(S)E(S) \subseteq H$.

 $(\mathbf{v}) \Rightarrow (\mathbf{iv})$ Let $a' \in W(a)$ and $b' \in W(b)$. Then there exists $x \in H$ such that $axb' \in H$. Thus $a'(xab')a \in H$ and $(a'ax)b'a = a'(xab')a \in H$. Therefore $b'a \in H_{\omega} = H$.

 $(\mathbf{v}) \Rightarrow (\mathbf{v})$ Let $a' \in W(a)$ and $b' \in W(b)$. Then there exists $x \in H$ such that $axb' \in H$. Thus $a'(axb')b = (a'a)x(b'b) \in H$. Therefore $a'yb \in H$ where $y = axb' \in H$.

 $(vi) \Rightarrow (v)$ It is similar to the proof of $(v) \Rightarrow (vi)$.

Again, we can show that $(vi) \Leftrightarrow (vii) \Leftrightarrow (viii)$.

 $(\text{viii}) \Rightarrow (\text{ix})$ Let $a' \in W(a)$ and $b' \in W(b)$. Then there exists $x \in H$ such that $b'xa \in H$. Thus $(a'(bb'x)a)(b'b), (aa')(b(b'xa)b') \in H$ and a(a'bb'xab'b) = (aa'bb'xab'b)b. Hence au = vb where $u = a'bb'xab'b, v = aa'bb'xab' \in H$.

 $(ix) \Rightarrow (x)$ Let $a' \in W(a)$ and $b' \in W(b)$. By assumption, there exist $x, y \in H$ such that ax = yb. Thus (bb'axa')a = b(b'yba'a). Put u = (b'b)(axa') and v = (b'yb)(a'a). Thus $u, v \in H$.

 $(\mathbf{x}) \Rightarrow (\mathbf{x})$ Suppose that xa = by for some $x, y \in H$. Then $x^2ay = xby^2$ which implies that $HaH \cap HbH \neq \emptyset$.

 $(\mathrm{xi}) \Rightarrow (\mathrm{v})$ Suppose that $HaH \cap HbH \neq \emptyset$. Let $xay = x_1by_1$ for some $x, y, x_1, y_1 \in H$ and $a' \in W(a), b' \in W(b)$. Then $a'xa, by_1b' \in H$ and $(a'xa)y \in H$. Let u = a'xay. Then $u \in H$. Thus $a(a'xay)b' = (aa')(xay)b' = (aa')(x_1by_1)b' = (aa')x_1(by_1b') \in E(S)HH \subseteq H$.

Remark. Let S be an E-inversive semigroup with $H \in \overline{C}$ and $a, b \in S$. Then $a\beta_H b$ if and only if one of the equivalent conditions in Proposition 2.6 holds.

Theorem 2.7 Let S be an E - inversive semigroup and $H \in \overline{C}$. The mapping $\phi : H \mapsto \beta_H$ and $\varphi : \rho \mapsto Ker\rho$ are mutually - inverse inclusion - preserving mapping from \overline{C} onto the set of all group congruences on S.

Proof. Let $\phi: H \mapsto \beta_H$ and $\varphi: \rho \mapsto Ker\rho$ be defined by $H\phi = \beta_H$ for all $H \in \overline{\mathcal{C}}$ and $\rho\varphi = Ker\rho$ for all group congruence ρ on S. We shall show that $\phi \circ \varphi = 1_{\overline{\mathcal{C}}}$ and $\varphi \circ \phi = 1_{\Gamma}$ where $1_{\overline{\mathcal{C}}}$ is the identity map of $\overline{\mathcal{C}}$ and 1_{Γ} is the identity map of Γ where Γ is the set of all group congruences on S. If $H \in \overline{\mathcal{C}}$, then $H\phi \circ \varphi = \beta_H \varphi = Ker\beta_H = H$ by Lemma 2.2(ii). Thus $\phi \circ \varphi = 1_{\overline{\mathcal{C}}}$. If $\rho \in \Gamma$, then $\rho\varphi \circ \phi = Ker\rho\phi = \beta_{Ker\rho} = \rho$ by Lemma 2.2(ii). Therefore $\varphi \circ \phi = 1_{\Gamma}$. If $H, K \in \overline{\mathcal{C}}$ implies $H \subseteq K$ if and only if $\beta_H \subseteq \beta_K$. It follows that ϕ and φ are inclusion - preserving.

Finally, we have the least group congruence on an E-inversive E-semigroup with commuting idempotents.

Theorem 2.8 If S is an E-inversive E-semigroup with commuting idempotents, then the relation

$$\sigma^* := \Big\{ (a,b) \in S \times S \mid ea = fb \ for \ some \ e, f \in E(S) \Big\}$$

is the least group congruence on S.

Proof. Clearly, σ^* are reflexive and symmetric. Let $a, b, c \in S$. Suppose that $a\sigma^*b$ and $b\sigma^*c$. Then ea = fb and gb = hc for some $e, f, g, h \in E(S)$. Thus gea = gfb = f(gb) = fhc. Note that $ge, fh \in E(S)$. Hence $a\sigma^*c$ and σ^* is an equivalence relation.

Suppose that $a\sigma^*b$. Then ea = fb for some $e, f \in E(S)$. Thus eac = fbc, and so $ac\sigma^*bc$. Let $c' \in W(c)$. Since all idempotents of S commute, we have $(cec')(ca)^* = c(c'c)fb = cf(c'c)b = (cfc')(cb)$. By Proposition 1.3(ii), we have $cec', cfc' \in E(S)$. Hence $ca\sigma^*cb$. Therefore σ^* is a congruence on S. Claim that for any $e \in E(S), e\sigma^*$ is the identity of S/σ^* . Let $e \in E(S), x \in S$ and $x' \in W(x)$. Since E(S) is a subsemigroup of $S, (x'x)e \in E(S)$. Note that (x'x)ex = (x'xe)x, so $(ex, x) \in \sigma^*$. Consider (xex')x = xe(x'x) = x(x'x)e = (xx')(xe). Thus $(x, xe) \in$ σ^* . Therefore $e\sigma^*$ is the identity of S/σ^* . Clearly, $(x\sigma^*)(x'\sigma^*) = (xx')\sigma^* = e\sigma^* =$ $(x'x)\sigma^* = x'\sigma^*x\sigma^*$. Hence σ^* is a group congruence on S. To show that σ^* is the least group congruence on S, let σ be an arbitrary group congruence on S. Let $(a,b) \in \sigma^*$. Then ea = fb for some $e, f \in E(S)$. Thus $a\sigma = (e\sigma)(a\sigma) = (ea)\sigma =$ $(fb)\sigma = (f\sigma)(b\sigma) = (b\sigma)$, so $(a,b) \in \sigma$. Hence σ^* is the least group congruence on S.

References

- A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Amer. Math. Soc., Math. Surveys, No. 7, Vol. I, Providence, R.I., 1961.
- [2] Gomes and M. S. Gracinda, A Characterization of the group congruence on a semigroup, *Semigroup Forum*, 46(1993), 48-53.

- [3] J. M. Howie, Fundamentals of Semigroup Theory, Oxford University Press, 1995.
- [4] D. R. Latorre, Group congruences on regular semigroups, Semigroup Forum, 24(1982), 327-340.
- [5] H. Mitsch, Subdirect products of E-inversive semigroups, J. Austral. Math. Soc., 48(1990), 66-78.
- [6] M. Petrich, *Inverse Semigroups*, Wiley, New York, 1984.
- [7] B. Weipoltshammer, Certain Congruences on E-inversive E-semigroups, Semigroup Forum, 65(2002), 233-248.
- [8] H. Zheng, Group Congruences on E-inversive semigroups, Southeast Asian Bull. Math., 21(1997), 1-8.

(Received 7 September 2005)

Manoj Siripitukdet and Supavinee Sattayaporn Department of Mathematics Naresuan University Phitsanulok 65000, Thailand. e-mail: manojs@nu.ac.th, amath@thaimail.com