Thai Journal of Mathematics Volume 8 (2010) Number 2 : 391–404

www.math.science.cmu.ac.th/thaijournal Online ISSN 1686-0209

Intuitionistic Fuzzy n-Ary Subgroups

D.R. Prince Williams

Abstract: In this paper, we introduce a notion of an intuitionistic fuzzy n-ary subgroup in an *n*-ary group (G, f) and have studied their related properties.

Keywords : Fuzzy subgroup, Fuzzy n-ary subgroup, Intuitionistic fuzzy subgroup, Intuitionistic fuzzy n-ary subgroup.

2000 Mathematics Subject Classification : 03F55, 03E72,16Y30.

1 Introduction

The theory of fuzzy set was first developed by Zadeh [15] and has been applied to many branches in mathematics. Later fuzzification of the concept "group" into "fuzzy subgroup" was made by Rosenfeld [14]. This work was the first fuzzification of any algebraic structure and thus opened a new direction, new exploration, new path of thinking to mathematicians, engineers, computer scientists and many others in various tests. The study of *n*-ary systems was initiated by Kasner [11] in 1904, but the important study on *n*-ary groups was done by Dörnte [4]. The theory of *n*-ary systems have many applications. For example, in the theory of automata [9] *n*-ary semigroup and *n*-ary groups are used. The *n*-ary groupoids are applied in the theory of quantum groups [13]. Also the ternary structures in physis are described by Kerner in [10]. The first fuzzification of *n*-ary system was introduced by Dudek [5]. Moreover Davvz et. al [3] have studied fuzzy *n*-ary groups as a generalization of Rosenfeld's fuzzy groups and have investigated their related properties.

The notion of intuitionistic fuzzy sets introduced by Atanassov [1,2], is a generalization of the notion of fuzzy set. Dudek [7] has introduced the Atanassov idea's in *n*-ary systems. In this paper, we introduce the notion of intuitionistic fuzzy *n*-ary subgroup in *n*-ary group (G, f) and have investigated their related properties.

Copyright \bigodot 2010 by the Mathematical Association of Thailand. All rights reserved.

2 Preliminaries

A non-empty set G together with one n-ary operation $f: G^n \to G$, where $n \geq 2$, is called an *n-ary groupoid* and is denoted by (G, f). According to the general convention used in the theory of *n*-ary groupoids the sequence of elements $x_i, x_{i+1}, ..., x_j$ is denoted by x_i^j . In the case, if j < i, it denotes the empty symbol. If $x_{i+1} = x_{i+2} = ... = x_{i+t} = x$, then instead of x_{i+1}^{i+t} , we write $x_i^{(t)}$. In this convention

$$f(x_1, \dots, x_n) = f(x_1^n)$$

and

$$f(x_1, \dots, x_i, \underbrace{x, \dots, x}_{t}, x_{i+t+1}, \dots, x_n) = f(x_1^i, \overset{(t)}{x}, x_{i+t+1}^n).$$

An *n*-ary groupoid (G, f) is called an (i, j)-associative if

$$f\left(x_{1}^{i-1}, f(x_{i}^{n+i-1}), x_{n+i}^{2n-1}\right) = f\left(x_{1}^{j-1}, f(x_{j}^{n+j-1}), x_{n+j}^{2n-1}\right)$$

hold for all $x_1, ..., x_{2n-1} \in G$. If this identity holds for all $1 \leq i \leq j \leq n$, then we say that the operation f is associative and (G, f) is called an *n*-ary semigroup. It is clear that an *n*-ary groupoid is associative if and only if it is (1, j)-associative for all j = 2, ..., n. In the binary case (i.e. n=2) it is a usual semigroup. If for all $x_0, x_1, ..., x_n \in G$ and fixed $i \in \{1, ..., n\}$ there exists an element $z \in G$ such that

$$f\left(x_{1}^{i-1}, z, x_{i+1}^{n}\right) = x_{0} \tag{1}$$

then we say that this equation is *i*-solvable or solvable at the place *i*. If the solution is unique, then we say that (1) is uniquely *i*-solvable. An *n*-ary groupoid (G, f) uniquely solvable for all i = 1, ..., n is called an *n*-ary quasigroup. An associative *n*-ary quasigroup is called an *n*-ary group.

Fixing an *n*-ary operation f, where $n \ge 3$, the elements a_2^{n-2} we obtain the new binary operation $x \diamond y = f(x, a_2^{n-2}, y)$. If (G, f) is an *n*-ary group then (G, \diamond) is a group. Choosing different elements a_2^{n-2} we obtain different groups. All these groups are isomorphic[8]. So, we can consider only the groups of the form

$$ret_{a}(G, f) = (G, \circ), \text{ where } x \circ y = f(x, \overset{(n-2)}{a}, y).$$

In this group $e = \overline{a}, x^{-1} = f(\overline{a}, \overset{(n-3)}{a}, \overline{x}, \overline{a}).$

In the theory of n-ary groups, the following Theorem plays an important role.

Theorem 2.1.[8] For any n-ary group (G, f) there exist a group (G, \circ) , its automorphism φ and an element $b \in G$ such that

$$f(x_1^n) = x_1 \circ \varphi(x_2) \circ \phi^2(x_3) \circ \dots \circ \phi^{n-1}(x_n) \circ b \tag{2}$$

holds for all $x_1^n \in G$.

In what follows, G is a non-empty set and (G, f) is an *n*-ary group unless otherwise specified.

An intuitionistic fuzzy set (briefly, IFS) A in a non-empty set G is an object having the form [1]

$$A = \{ (x, \mu_A(x), \nu_A(x) | x \in G) \}$$

where the functions $\mu_A : G \to [0,1]$ and $\nu_A : G \to [0,1]$ denote the degree of membership and the degree of non-membership, respectively, and

$$0 \le \mu_A(x) + \nu_A(x) \le 1, \forall \in G.$$

An intuitionistic fuzzy set $A = \{(x, \mu_A(x), \nu_A(x)) | x \in G\}$ in G can be identified to an ordered pair (μ_A, ν_A) in $I^G \times I^G$. For the sake of simplicity, we shall use the symbol $A = (\mu_A, \nu_A)$ for the *IFS* $A = \{(x, \mu_A(x), \nu_A(x) | x \in G)\}$.

Definition 2.2.[3] Let (G, f) be an *n*-ary group. A fuzzy subset of G is called a *fuzzy subgroup* of (G, f) if the following axioms holds:

 $(\operatorname{FnS1})(\forall x_1^n \in G), (\mu(f(x_1^n) \ge \min\{\mu(x_1), ..., \mu(x_n)\}), (\operatorname{FnS2})(\forall x \in G), (\mu(\overline{x}) \ge \mu(x)).$

Note that for n = 3 the second condition (FnS2) of definition 2.2 can be replaced by the condition

 $(\operatorname{FnS3})(\forall x \in G), (\mu(\overline{x}) = \mu(x)).$

because in this case n = 3, we have $\overline{x} = x$. These two conditions are equivalent for all *n*-ary groups in which for every $x \in G$ there exists a natural number k such that $\overline{x}^{(k)} = x$, where $\overline{x}^{(k)}$ denotes the elements skew to $\overline{x}^{(k-1)}$ and $\overline{x}^{(0)} = x$. But, as it was observed in [6], there are fuzzy *n*-ary subgroups in which $\mu(\overline{x}) > \mu(x)$ for all $x \in G$.

3 Intuitionistic fuzzy *n*-ary subgroups

Definition 3.1. An *IFS* $A = (\mu_A, \nu_A)$ in *G* is called an *intuitionistic fuzzy n*-ary subgroup of (G, f) if the following axioms holds:

(IFnS1) $(\forall x_1^n \in G), (\mu(f(x_1^n) \ge \min\{\mu(x_1), ..., \mu(x_n)\}),$ (IFnS2) $(\forall x_1^n \in G), (\nu(f(x_1^n) \le \max\{\nu(x_1), ..., \nu(x_n)\}),$ (IFnS3) $(\forall x \in G), (\mu(\overline{x}) \ge \mu(x)),$ (IFnS4) $(\forall x \in G), (\nu(\overline{x}) \le \nu(x)).$

Example 3.2. Consider (\mathbb{Z}_4, f) , where $f : \mathbb{Z}_4^4 \to \mathbb{Z}_4$ is defined by

 $f(x_1, x_2, x_3, x_4) = max(x_1, x_2, x_3, x_4)$. Clearly (\mathbb{Z}_4, f) is a 4-ary subgroup derived from additive group \mathbb{Z}_4 . Define *IFS* $A = (\mu_A, \nu_A)$ in (\mathbb{Z}_4, f) as follows:

$$\mu_A(x) = \begin{cases} 0.7 & if \ x = 0, \\ 0.2 & if \ x = 1, 2, 3. \end{cases} \quad \nu_A(x) = \begin{cases} 0.2 & if \ x = 0, \\ 0.9 & if \ x = 1, 2, 3 \end{cases}$$

Then it is easy to verify that *IFS* $A = (\mu_A, \nu_A)$ is an intuitionistic 4-ary fuzzy subgroup of (\mathbb{Z}_4, f) .

Theorem 3.3. If $\{A_i | i \in \Lambda\}$ is an arbitrary family of an intuitionistic fuzzy *n*-ary subgroup of (G, f) then $\bigcap A_i$ is an intuitionistic fuzzy *n*-ary subgroup of (G, f), where $\bigcap A_i = \{(x, \land \mu_{A_i}(x), \lor \nu_{A_i}(x)) | x \in G)\}.$

Proof. The proof is trivial.

Theorem 3.4. If an IFS $A = (\mu_A, \nu_A)$ in G is an intuitionistic fuzzy *n*-ary subgroup of (G, f) then so is $\Box A$, where $\Box A = \{(x, \mu_A(x), 1 - \mu_A(x)) | x \in G\}$.

Proof. It is sufficient to show that $\overline{\mu}_A$ satisfies condition (IFnS2) and (IFnS4). Let $x_1^n \in G$. Then

$$\overline{\mu}_A(f(x_1^n)) = 1 - \mu_A(f(x_1^n)) \leq 1 - \min\{\mu_A(x_1), ..., \mu_A(x_n)\} = \max\{\mu_A(x_1), ..., \mu_A(x_n)\}.$$

and

$$\overline{\mu}_A(\overline{x}) = 1 - \mu_A(\overline{x}) \le 1 - \mu(\overline{x}) = \overline{\mu}(x).$$

Hence $\Box A$ is an intuitionistic fuzzy *n*-ary subgroup of (G, f).

Definition 3.5.[7] Let $A = (\mu_A, \nu_A)$ be an *IFS* in *G* and let $t \in [0, 1]$. Then the set

$$U(\mu_A, t) := \{x \in G | \mu_A(x) \ge t\} \text{(resp. } L(\nu_A, t) := \{x \in G | \nu_A(x) \le t\} \text{)}$$

is called μ_A -level t-cut(resp. ν_A -level t-cut) of G.

The following Theorem is a consequence of the Transfer Principle described in [12].

Theorem 3.6. An IFS $A = (\mu_A, \nu_A)$ in G with the images $Im(\mu_A) = \{t_i : i \in I\}$ and $Im(\nu_A) = \{t_j : j \in I\}$, is an intuitionistic fuzzy n-ary subgroup of (G, f) if and only if the μ_A -level t-cut and ν_A -level t-cut of G are n-ary subgroup of (G, f) for every $t \in [0, 1]$ such that $t \in Im(\mu_A) \cap Im(\nu_A)$, which are called μ_A -level n-ary subgroup and ν_A -level n-ary subgroups respectively.

Proof. Let $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy *n*-ary subgroup of (G, f). If $x_1^n \in G$ and $t \in [0, 1]$, then $\mu(x_i) \ge t$ for all i = 1, 2, ..., n. Thus

$$\mu_A(f(x_1^n) \ge \min\{\mu_A(x_1), ..., \mu_A(x_n)\} \ge t,$$

which implies $f(x_1^n) \in U(\mu_A, t)$ and

$$\nu_A(f(x_1^n) \le \max\{\nu_A(x_1), ..., \nu_A(x_n)\} \le t,$$

which implies $f(x_1^n) \in L(\nu_A, t)$. Moreover, for some $x \in U(\mu_A, t)$ and $x \in L(\nu_A, t)$, we have

$$\mu_A((\overline{x}) \ge \mu_A(x)) \ge t \text{ and } \nu_A((\overline{x}) \le \nu_A(x)) \le t,$$

which implies $\overline{x} \in U(\mu_A, t)$ and $\overline{x} \in L(\nu_A, t)$. Thus μ_A -level *t*-cut and ν_A -level *t*-cut are *n*-ary subgroup of (G, .).

Conversely, assume that μ_A -level *t*-cut and ν_A -level *t*-cut are *n*-ary subgroup of (G, .). Let us define

$$t_0 = min\{\mu_A(x_1), ..., \mu_A(x_n)\},\$$

and

$$t_1 = max\{\nu_A(x_1), ..., \nu_A(x_n)\},\$$

for some $x_1^n \in G$. Then obviously $x_1^n \in U(\mu_A, t_0)$ and $x_1^n \in L(\nu_A, t_1)$, consequently $f(x_1^n) \in U(\mu_A, t_0)$ and $f(x_1^n) \in L(\nu_A, t_1)$. Thus

$$\mu_A(f(x_1^n)) \ge t_0 = \min\{\mu_A(x_1), ..., \mu_A(x_n)\}$$

and

$$\nu_A(f(x_1^n)) \le t_1 = max\{\nu_A(x_1), ..., \nu_A(x_n)\}.$$

Now let $x \in U(\mu_A, t)$ and $x \in L(\nu_A, t)$. Then $\mu(x) = t_0 \ge t$ and $\nu(x) = t_1 \le t$. Thus $x \in U(\mu_A, t_0)$ and $x \in L(\nu_A, t_1)$. Since, by the assumption, $\overline{x} \in U(\mu_A, t_0)$ and $\overline{x} \in L(\nu_A, t_1)$. Whence $\mu_A(\overline{x}) \ge t_0 = \mu_A(x)$ and $\nu_A(\overline{x}) \ge t_1 = \nu_A(x)$. This complete the proof. \Box

Using the above theorem, we can prove the following characterization of intuitionistic fuzzy n-ary subgroup.

Theorem 3.7. An IFS $A = (\mu_A, \nu_A)$ in G, is an intuitionistic fuzzy n-ary subgroup of (G, f) if and only if the μ_A -level t-cut and ν_A -level t-cut of G are n-ary subgroup of (G, f) for all i = 1, 2, ..., n and all $x_1^n \in G$, A satisfies the following conditions:

(i)
$$\mu_A(f(x_1^n) \ge \min\{\mu_A(x_1), ..., \mu_A(x_n)\}$$

(*ii*)
$$\nu_A(f(x_1^n) \le max\{\nu_A(x_1), ..., \nu_A(x_n)\},$$

(*iii*)
$$\mu_A(x_i) \ge \min\{\mu_A(x_1), ..., \mu_A(x_{i-1}), \mu_A(f(x_1^n)), \mu_A(x_{i-1}), ..., \mu_A(x_n)\}$$

(*iv*) $\nu_A(x_i) \le \max\{\nu_A(x_1), ..., \nu_A(x_{i-1}), \nu_A(f(x_1^n)), \nu_A(x_{i-1}), ..., \nu_A(x_n)\}.$

Proof. Assume that $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy *n*-ary subgroup of (G, f). Similarly as in the proof of Theorem 3.5, we can prove each non-empty level subset $U(\mu_A, t)$ and $L(\nu_A, t)$ are closed under the operation f, that is $x_1^n \in U(\mu_A, t)$ and $x_1^n \in L(\nu_A, t)$ and $f(x_1^n) \in U(\mu_A, t)$ and $f(x_1^n) \in L(\nu_A, t)$. Now let $x_0, x_1^{i-1}, x_{i+1}^n$, where $x_0 = f(x_1^{i-1}, z, x_{i+1}^n)$ for some i = 1, 2, ..., n and

Now let $x_0, x_1^{i-1}, x_{i+1}^n$, where $x_0 = f(x_1^{i-1}, z, x_{i+1}^n)$ for some i = 1, 2, ..., n and $z \in G$ which implies $x_0 \in U(\mu_A, t)$ and $x_0 \in L(\nu_A, t)$. Then, according to *(iii)* and *(iv)*, we have $\mu_A(z) \ge t$ and $\nu_A(z) \le t$. So, the equation (1) has a solution $z \in \mu_A(t)$ and $z \in \nu_A(t)$. This mean that μ_A -level *t*-cut and ν_A -level *t*-cut are an *n*-ary subgroups.

Conversely, assume that μ -level *t*-cut and ν -level *t*-cut are an *n*-ary subgroups. Then it is easy to prove the conditions (*i*) and (*ii*). For $x_1^n \in G$, we define

$$t_0 = \min\{\mu_A(x_1), \dots, \mu_A(x_{i-1}), \mu_A(f(x_1^n)), \mu_A(x_{i-1}), \dots, \mu_A(x_n)\}$$

and

$$t_1 = max\{\nu_A(x_1), ..., \nu_A(x_{i-1}), \nu_A(f(x_1^n)), \nu_A(x_{i-1}), ..., \nu_A(x_n)\}.$$

Then $x_1^{i-1}, x_{i+1}^n, f(x_1^n) \in U(\mu_A, t_0)$ and $x_1^{i-1}, x_{i+1}^n, f(x_1^n) \in L(\nu_A, t_1)$. Whence, according to the definition of *n*-ary group, we conclude $x_i \in U(\mu_A, t_0)$ and $x_i \in L(\nu_A, t_1)$. Thus $\mu(x_i) \geq t_0$ and $\nu(x_i) \leq t_1$. This proves the conditions (*iii*) and (*iv*).

Definition 3.8. Let (G, f) and (G', f) be an *n*-ary groups. A mapping $\alpha : G \to G'$ is called an *n*-ary homomorphism if $\alpha(f(x_1^n)) = f(\alpha^n(x_1^n))$, where $\alpha^n(x_1^n) = (\alpha(x_1), ..., \alpha(x_n))$ for all $x_1^n \in G$.

For any *IFS* $A = (\mu_A, \nu_A)$ in G', we define the *preimage* of A under α , denoted by $\alpha^{-1}(A)$, is an *IFS* in G defined by

$$\alpha^{-1}(A) = (\mu_{\alpha^{-1}(A)}, \nu_{\alpha^{-1}(A)}),$$

where

$$\mu_{\alpha^{-1}(A)}(x) = \mu_A(\alpha(x))$$
 and $\nu_{\alpha^{-1}(A)}(x) = \nu_A(\alpha(x)), \forall x \in G$

For any *IFS* $A = (\mu_A, \nu_A)$ in *G*, we define the *image* of *A* under α , denoted by $\alpha(A)$, is an *IFS* in *G'* defined by

$$\alpha(A) = (\alpha_{sup}(\mu_A), \alpha_{inf}(\nu_A)),$$

where

$$\alpha_{\sup}(\mu_A)(y) = \begin{cases} \sup_{x \in \alpha^{-1}(y)} \mu_A(x), & \text{if } \alpha^{-1}(y) \neq \phi \\ x \in \alpha^{-1}(y) & 0, & \text{otherwise.} \end{cases}$$

and

$$\alpha_{\inf}(\nu_A)(y) = \begin{cases} \inf_{x \in \alpha^{-1}(y)} \nu_A(x), & \text{if } \alpha^{-1}(y) \neq \phi, \\ 0, & \text{otherwise.} \end{cases}$$

for all $x \in G$ and $y \in G'$.

Theorem 3.9. Let α be a n-ary homomorphism mapping from G into G' with $\alpha(\overline{x}) = \alpha(x)$ for all $x \in G$ and $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy n-ary subgroup of (G', f). Then $\alpha^{-1}(A)$ is an intuitionistic fuzzy n-ary subgroup of (G, f).

Proof. Let $x_1^n \in G$, we have

$$\mu_{\alpha^{-1}(A)}(f(x_1^n)) = \mu_A(\alpha(f(x_1^n)) = \mu_A(f(\alpha^n(x_1^n)))$$

$$\geq \min\{\mu_A(\alpha(x_1), ..., \mu_A(\alpha(x_n))\}$$

$$= \min\{\mu_{\alpha^{-1}(A)}(x_1), ..., \mu_{\alpha^{-1}(A)}(x_n)\}.$$

$$\nu_{\alpha^{-1}(A)}(f(x_1^n)) = \nu_A(\alpha(f(x_1^n)) = \mu_A(f(\alpha^n(x_1^n))))$$

$$\leq max\{\nu_A(\alpha(x_1), ..., \nu_A(\alpha(x_n))\}$$

$$= max\{\nu_{\alpha^{-1}(A)}(x_1), ..., \nu_{\alpha^{-1}(A)}(x_n)\}$$

$$\mu_{\alpha^{-1}(A)}(\overline{x}) = \mu_A(\alpha(\overline{x})) \ge \mu_A(\alpha(x)) = \mu_{\alpha^{-1}(A)}(x)$$

$$\nu_{\alpha^{-1}(A)}(\overline{x}) = \nu_A(\alpha(\overline{x})) \le \mu_A(\alpha(x)) = \nu_{\alpha^{-1}(A)}(x).$$

This completes the proof.

If we strengthen the condition of $\alpha,$ then we can construct the converse of Theorem 3.9 as follows.

Theorem 3.10. Let α be an n-ary homomorphism from G into G' and $\alpha^{-1}(A) = (\mu_{\alpha^{-1}(A)}, \nu_{\alpha^{-1}(A)})$ is an intuitionistic fuzzy n-ary subgroup of (G, f). Then $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy n-ary subgroup of (G', f).

Proof. For any $x_1 \in G'$, there exists $a_1 \in G$ such that $\alpha(a_1) = x_1$ and For any $f(x_1^n) \in (G', f)$, there exists $f(a_1^n) \in (G, f)$ such that $\alpha(f(a_1^n)) = f(x_1^n)$. Then

$$\mu_A(f(x_1^n)) = \mu_A(\alpha(f(a_1^n)) = \mu_{\alpha^{-1}(A)}(f(a_1^n))$$

$$\geq \min\{\mu_{\alpha^{-1}(A)}(a_1), \mu_{\alpha^{-1}(A)}(a_2), ..., \mu_{\alpha^{-1}(A)}(a_n)\}$$

$$= \min\{\mu_A(\alpha(a_1), ..., \mu_A(\alpha(a_n))\}$$

$$= \min\{\mu_A(x_1), ..., \mu_A(x_n)\}.$$

$$\nu_{A}(f(x_{1}^{n})) = \nu_{A}(\alpha(f(a_{1}^{n})) = \nu_{\alpha^{-1}(A)}(f(a_{1}^{n}))) \\
\leq \max\{\nu_{\alpha^{-1}(A)}(a_{1}), \nu_{\alpha^{-1}(A)}(a_{2}), ..., \nu_{\alpha^{-1}(A)}(a_{n})\} \\
= \max\{\nu_{A}(\alpha(a_{1}), ..., \nu_{A}(\alpha(a_{n}))\} \\
= \max\{\nu_{A}(x_{1}), ..., \nu_{A}(x_{n})\}.$$

For any $\overline{x} \in G'$, there exists $\overline{a} \in G$ such that $\alpha(\overline{a}) = \overline{x}$, we have

$$\mu_A(\overline{x}) = \mu_A(\alpha(\overline{a})) = \mu_{\alpha^{-1}(A)}(\overline{a}) \ge \mu_{\alpha^{-1}(A)}(a) = \mu_A(\alpha(a)) = \mu_A(x).$$

$$\nu_A(\overline{x}) = \nu_A(\alpha(\overline{a})) = \nu_{\alpha^{-1}(A)}(\overline{a}) \le \nu_{\alpha^{-1}(A)}(a) = \nu_A(\alpha(a)) = \nu_A(x).$$

This completes the proof.

Theorem 3.11. Let α be a mapping from G into G'. If $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy n-ary subgroup of (G, f), then $\alpha(A) = (x, \alpha_{sup}(\mu_A), \alpha_{inf}(\nu_A))$ is an intuitionistic fuzzy n-ary subgroup of (G', f).

Proof. Let α be a mapping from G into G' and let $x_1^n \in G, y_1^n \in G'$. Noticing that

$$\{ x_i (i = 1, 2, ..., n) | x_i \in \alpha^{-1}(f(y_1^n)) \} \subseteq \{ f(x_1^n) \in G | x_1 \in \alpha^{-1}(y_1), x_2 \in \alpha^{-1}(y_2), ..., x_n \in \alpha^{-1}(y_n)) \}.$$

we have

$$\begin{split} \alpha_{sup}(\mu_A)(f(y_1^n)) &= sup\{\mu_A(x_1^n)|x_i \in \alpha^{-1}(f(y_1^n))\} \\ &\geq sup\{\mu_A(f(x_1^n)|x_1 \in \alpha^{-1}(y_1), x_2 \in \alpha^{-1}(y_2), ..., x_n \in \alpha^{-1}(y_n))\} \\ &\geq sup\{min\{\mu_A(x_1), \mu_A(x_2), ..., \mu_A(x_n)\}|x_1 \in \alpha^{-1}(y_1), x_2 \in \alpha^{-1}(y_2), ..., x_n \in \alpha^{-1}(y_n))\} \\ &= min\{sup\{\mu_A(x_1)|x_1 \in \alpha^{-1}(y_1)\}, sup\{\mu_A(x_2)|x_1 \in \alpha^{-1}(y_2)\}, ..., sup\{\mu_A(x_n)|x_1 \in \alpha^{-1}(y_n)\}\} \\ &= min\{\alpha_{sup}(\mu_A)(y_1), \alpha_{sup}(\mu_A)(y_2), ..., \alpha_{sup}(\mu_A)(y_n)\}. \end{split}$$

$$\alpha_{inf}(\nu_A)(f(y_1^n)) &= inf\{\nu_A(x_1^n)|x_i \in \alpha^{-1}(f(y_1^n))\} \\ &\leq inf\{\nu_A(f(x_1^n))|x_1 \in \alpha^{-1}(y_1), x_2 \in \alpha^{-1}(y_2), ..., x_n \in \alpha^{-1}(y_n))\} \\ &\leq inf\{max\{\nu_A(x_1), \nu_A(x_2), ..., \nu_A(x_n)\}|x_1 \in \alpha^{-1}(y_1), x_2 \in \alpha^{-1}(y_2), ..., x_n \in \alpha^{-1}(y_n))\} \\ &= max\{inf\{\nu_A(x_1)|x_1 \in \alpha^{-1}(y_1)\}, inf\{\nu_A(x_2)|x_1 \in \alpha^{-1}(y_2)\}, ..., x_n \in \alpha^{-1}(y_n)\}\} \\ &= max\{inf\{\nu_A(x_1)|x_1 \in \alpha^{-1}(y_1)\}, inf\{\nu_A(x_2)|x_1 \in \alpha^{-1}(y_2)\}, ..., x_n \in \alpha^{-1}(y_n)\}\} \\ &= max\{inf\{\nu_A(x_1)|x_1 \in \alpha^{-1}(y_1)\}, inf\{\nu_A(x_2)|x_1 \in \alpha^{-1}(y_2)\}, ..., x_n \in \alpha^{-1}(y_n)\}\} \\ &= max\{inf\{\nu_A(x_1)|x_1 \in \alpha^{-1}(y_1)\}, inf\{\nu_A(x_2)|x_1 \in \alpha^{-1}(y_2)\}, ..., x_n \in \alpha^{-1}(y_n)\}\} \\ &= max\{inf\{\nu_A(x_1)|x_1 \in \alpha^{-1}(y_1)\}, inf\{\nu_A(x_2)|x_1 \in \alpha^{-1}(y_2)\}, ..., x_n \in \alpha^{-1}(y_n)\}\} \\ &= max\{inf\{\nu_A(x_1)|x_1 \in \alpha^{-1}(y_1)\}, inf\{\nu_A(x_2)|x_1 \in \alpha^{-1}(y_2)\}, ..., x_n \in \alpha^{-1}(y_n)\}\} \\ &= max\{inf\{\nu_A(x_1)|x_1 \in \alpha^{-1}(y_1)\}, inf\{\nu_A(x_2)|x_1 \in \alpha^{-1}(y_2)\}, ..., x_n \in \alpha^{-1}(y_n)\}\} \\ &= max\{inf\{\nu_A(x_1)|x_1 \in \alpha^{-1}(y_n)\}, inf\{\nu_A(x_2)|x_1 \in \alpha^{-1}(y_2)\}, ..., x_n \in \alpha^{-1}(y_n)\} \\ &= max\{inf\{\nu_A(x_1)|x_1 \in \alpha^{-1}(y_n)\}, inf\{\nu_A(x_2)|x_1 \in \alpha^{-1}(y_2)\}, ..., x_n \in \alpha^{-1}(y_n)\}\} \\ &= max\{inf\{\nu_A(x_1)|x_1 \in \alpha^{-1}(y_1)\}, inf\{\nu_A(x_2)|x_1 \in \alpha^{-1}(y_2)\}, ..., x_n \in \alpha^{-1}(y_n)\} \\ &= max\{inf\{\nu_A(x_1)|x_1 \in \alpha^{-1}(y_n)\}, inf\{\nu_A(x_2)|x_1 \in \alpha^{-1}(y_2)\}, ..., x_n \in \alpha^{-1}(y_n)\} \\ &= max\{inf\{\nu_A(x_1)|x_1 \in \alpha^{-1}(y_n)\}, inf\{\nu_A(x_2)|x_1 \in \alpha^{-1}(y_n)\}, ..., x_n \in \alpha^{-1}(y_n)\} \\ &= max\{inf\{\nu_A(x_1)|x_1 \in \alpha^{-1}(y_n)\}, inf\{\nu_A(x_2)|x_1 \in \alpha^{-1}(y_n)\}, ..., x_n \in \alpha^{-1}(y_n)\} \\ &= max\{inf\{\nu_A(x_1)|x_1 \in \alpha^{-1}($$

...,
$$inf\{\nu_A(x_n)|x_1 \in \alpha^{-1}(y_n)\}\}$$

 $= max\{\alpha_{inf}(\nu_A)(y_1), \alpha_{inf}(\nu_A)(y_2), ..., \alpha_{inf}(\nu_A)(y_n)\}.$

$$\begin{aligned} \alpha_{sup}(\mu_A)(\overline{x}) &= \sup\{\mu_A(\overline{x})|\overline{x} \in \alpha^{-1}(f(\overline{y}))\} \\ &\geq \sup\{\mu_A(x)|x \in \alpha^{-1}(f(y))\} \\ &= \alpha_{sup}(\mu_A)(x). \end{aligned}$$
$$\begin{aligned} \alpha_{inf}(\nu_A)(\overline{x}) &= \inf\{\nu_A(\overline{x})|\overline{x} \in \alpha^{-1}(f(\overline{y}))\} \\ &\leq \inf\{\nu_A(x)|x \in \alpha^{-1}(f(y))\} \\ &= \alpha_{inf}(\nu_A)(x). \end{aligned}$$

This completes the proof.

Corollary 3.12. An IFS $A = (\mu_A, \nu_A)$ defined on group (G, .) is an Intuitionistic fuzzy subgroup if and only if (1) $\mu_A(xy) \ge \min\{\mu_A(x), \mu_A(y)\}$ and $\nu_A(xy) \le \max\{\nu_A(x), \nu_A(y)\}$, (2) $\mu_A(x) \ge \min\{\mu_A(y), \mu_A(xy)\}$ and $\nu_A(x) \le \max\{\nu_A(y), \nu_A(xy)\}$, (3) $\mu_A(y) \ge \min\{\mu_A(x), \mu_A(xy)\}$ and $\nu_A(y) \le \max\{\nu_A(x), \nu_A(xy)\}$. holds for all $x, y \in G$.

Theorem 3.13. Let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy n-ary subgroup of (G, f). If there exists an element $a \in G$ such that $\mu_A(a) \ge \mu_A(x)$ and $\nu_A(a) \le \nu_A(x)$ for every $x \in G$, then $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy n-ary subgroup of a group ret_a(G, f).

Proof. For all $x, y, a \in G$ we have

$$\begin{split} \mu_{A}(x \circ y) &= \mu_{A}(f(x, \overset{(n-2)}{a}, y) \geq \min\{\mu_{A}(x), \mu_{A}(a), \mu_{A}(y)\} = \min\{\mu_{A}(x), \mu_{A}(y)\}, \\ \nu_{A}(x \circ y) &= \nu_{A}(f(x, \overset{(n-2)}{a}, y) \leq \max\{\nu_{A}(x), \nu_{A}(a), \nu_{A}(y)\} = \max\{\nu_{A}(x), \nu_{A}(y)\}, \\ \mu_{A}(x^{-1}) &= \mu_{A}(f(\overline{a}, \overset{(n-3)}{x} \overline{x}, \overline{a})) \geq \min\{\mu_{A}(x), \mu_{A}(\overline{x}), \mu_{A}(a), \mu_{A}(\overline{a})\} = \mu_{A}(x), \\ \nu_{A}(x^{-1}) &= \nu_{A}(f(\overline{a}, \overset{(n-3)}{x} \overline{x}, \overline{a})) \leq \max\{\nu_{A}(x), \nu_{A}(\overline{x}), \nu_{A}(a), \nu_{A}(\overline{a})\} = \nu_{A}(x). \end{split}$$

which complete the proof.

In Theorem 3.13, the assumptions that $\mu_A(a) \ge \mu_A(x)$ and $\nu_A(a) \le \nu_A(x)$ cannot be omitted.

Examples 3.14. Consider (\mathbb{Z}_4, f) , where $f : \mathbb{Z}_4^3 \to \mathbb{Z}_4$ is defined by

 $f(x_1, x_2, x_3) = max(x_1, x_2, x_3)$. Clearly, (\mathbb{Z}_4, f) is a ternary subgroup derived from \mathbb{Z}_4 . Define an *IFS* $A = (\mu_A, \nu_A)$ as follows:

$$\mu_A(x) = \begin{cases} 1 & \text{if } x = 0, \\ 0.2 & x = 1, 2, 3. \end{cases} \quad \nu_A(x) = \begin{cases} 0 & \text{if } x = 0, \\ 0.9 & x = 1, 2, 3. \end{cases}$$

clearly $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy ternary subgroup of (\mathbb{Z}_4, f) . For $ret_1(\mathbb{Z}_4, f)$, we have

$$\mu_A(0 \circ 0) = \mu_A((f(0, 1, 0))) = \mu_A(1) = 0.2 \not\geq \min\{\mu_A(0), \mu_A(0)\} = 1.$$

$$\nu_A(0 \circ 0) = \nu_A((f(0, 1, 0))) = \nu_A(1) = 0.9 \not\leq \max\{\nu_A(0), \nu_A(0)\} = 0.$$

Hence the assumptions $\mu_A(a) \ge \mu_A(x)$ and $\nu_A(a) \le \nu_A(x)$ cannot be omitted.

Theorem 3.15. Let (G, f) be an n-ary group. If $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy n-ary subgroup of a group $ret_a(G, f)$ and $\mu_A(a) \ge \mu_A(x)$, $\nu_A(a) \le \nu_A(x)$ for all $a, x \in G$, then $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy n-ary subgroup of (G, f).

Proof. According to Theorem 2.1, any *n*-ary group can be represented of the form (2), where $(G, \circ) = ret_a(G, f), \varphi(x) = f(\overline{a}, x, \overset{(n-2)}{x})$ and $b = f(\overline{a}, ..., \overline{a})$. Then we have

$$\mu_{A}(\varphi(x)) = \mu_{A}(f(\overline{a}, x, \overset{(n-2)}{x})) \ge \min\{\mu_{A}(\mu_{A}(\overline{a}), \mu_{A}(x), \mu_{A}(a)\} = \mu_{A}(x).$$

$$\mu_{A}(\varphi^{2}(x)) = \mu_{A}(f(\overline{a}, \varphi(x), \overset{(n-2)}{x}))$$

$$\ge \min\{\mu_{A}(\mu_{A}(\overline{a}), \mu_{A}(\varphi(x)), \mu_{A}(a)\}$$

$$= \mu_{A}(\varphi(x))$$

$$\ge \mu_{A}(x).$$

Consequently, $\mu_A(\varphi^k(x)) \ge \mu_A(x)$ for all $x \in G$ and $k \in \mathbb{N}$ and

$$\nu_{A}(\varphi(x)) = \nu_{A}(f(\overline{a}, x, \overset{(n-2)}{x})) \leq max\{\nu_{A}(\nu_{A}(\overline{a}), \nu_{A}(x), \nu_{A}(a)\} = \nu_{A}(x).$$

$$\nu_{A}(\varphi^{2}(x)) = \nu_{A}(f(\overline{a}, \varphi(x), \overset{(n-2)}{x}))$$

$$\leq max\{\nu_{A}(\nu_{A}(\overline{a}), \nu_{A}(\varphi(x)), \nu_{A}(a)\}$$

$$= \nu_{A}(\varphi(x)) \leq \nu_{A}(x).$$

Consequently, $\nu_A(\varphi^k(x)) \leq \nu_A(x)$ for all $x \in G$ and $k \in \mathbb{N}$. Similarly, for all $x \in G$ we have

$$\mu_A(b) = \mu_A(f(\overline{a}, ..., \overline{a})) \ge \mu_A(\overline{a}) \ge \mu_A(x).$$

$$\nu_A(b) = \nu_A(f(\overline{a}, ..., \overline{a})) \le \nu_A(\overline{a}) \le \nu_A(x).$$

Thus

$$\mu_A(f(x_1^n)) = \mu_A(x_1 \circ \varphi(x_2) \circ \varphi^2(x_3) \circ \dots \circ \varphi^{n-2}(x_n) \circ b) \geq \min\{\mu_A(x_1), \mu_A(\varphi(x_2)), \mu_A(\varphi^2(x_3)), \dots, \mu_A(\varphi^{n-2}(x_n)), \mu_A(b)\} \geq \min\{\mu_A(x_1), \mu_A((x_2)), \mu_A((x_3)), \dots, \mu_A(x_n), \mu_A(b)\}$$

 $\geq \min\{\mu_A(x_1), \mu_A((x_2)), \mu_A((x_3)), ..., \mu_A(x_n)\}.$

Intuitionistic fuzzy n-ary subgroups

$$\begin{aligned}
\nu_A(f(x_1^n)) &= \nu_A(x_1 \circ \varphi(x_2) \circ \varphi^2(x_3) \circ \dots \circ \varphi^{n-2}(x_n) \circ b) \\
&\leq \max\{\nu_A(x_1), \nu_A(\varphi(x_2)), \nu_A(\varphi^2(x_3)), \dots, \nu_A(\varphi^{n-2}(x_n)), \nu_A(b)\} \\
&\leq \max\{\nu_A(x_1), \nu_A((x_2)), \nu_A((x_3)), \dots, \nu_A(x_n), \nu_A(b)\} \\
&\leq \max\{\nu_A(x_1), \nu_A((x_2)), \nu_A((x_3)), \dots, \nu_A(x_n)\}.
\end{aligned}$$

From (4) and (7) of [3], we have

$$\overline{x} = \left(\varphi(x) \circ \varphi^2(x) \circ \dots \circ \varphi^{n-2}(x) \circ b\right)^{-1}$$

Thus

$$\mu_{A}(\overline{x}) = \mu_{A}\left(\left(\varphi(x)\circ\varphi^{2}(x)\circ\ldots\circ\varphi^{n-2}(x)\circ b\right)^{-1}\right)$$

$$\geq \mu_{A}\left(\varphi(x)\circ\varphi^{2}(x)\circ\ldots\circ\varphi^{n-2}(x)\circ b\right)$$

$$\geq \min\{\mu_{A}(\varphi(x)),\mu_{A}(\varphi^{2}(x)),\ldots,\mu_{A}(\varphi^{n-2}(x)),\mu_{A}(b)\}$$

$$\geq \min\{\mu_{A}(x),\mu_{A}(b)\} = \mu_{A}((x)).$$

$$\begin{aligned}
\nu_A(\overline{x}) &= \nu_A \left(\left(\varphi(x) \circ \varphi^2(x) \circ \dots \circ \varphi^{n-2}(x) \circ b \right)^{-1} \right) \\
&\leq \nu_A \left(\varphi(x) \circ \varphi^2(x) \circ \dots \circ \varphi^{n-2}(x) \circ b \right) \\
&\leq \max\{\nu_A(\varphi(x)), \nu_A(\varphi^2(x)), \dots, \nu_A(\varphi^{n-2}(x)), \nu_A(b)\} \\
&\leq \max\{\nu_A(x), \nu_A(b)\} = \nu_A(x).
\end{aligned}$$

This completes the proof.

Corollary 3.16. If (G, f) is a ternary group, then any intuitionistic fuzzy subgroup of $ret_a(G, f)$ is an intuitionistic fuzzy ternary subgroup of (G, f).

Proof. Since \overline{a} is a neutral element of a group $ret_a(G, f)$ then $\mu_A(\overline{a}) \ge \mu_A(x)$ and $\nu_A(\overline{a}) \le \nu_A(x)$ for all $x \in G$. Thus $\mu_A(\overline{a}) \ge \mu_A(a)$ and $\nu_A(\overline{a}) \le \nu_A(a)$. But in ternary group $\overline{\overline{a}} = a$ for any $a \in G$, whence $\mu(a) = \mu_A(\overline{\overline{a}}) \ge \mu_A(\overline{a}) \ge \mu_A(x)$ and $\nu(a) = \nu_A(\overline{\overline{a}}) \le \nu_A(\overline{a}) \le \nu_A(x)$. So, $\mu_A(a) = \mu_A(\overline{\overline{a}}) \ge \mu_A(x)$ and $\nu_A(a) =$ $\nu_A(\overline{\overline{a}}) \le \nu_A(x)$ for all $x \in G$. This means that the assumptions of Theorem 3.15 are satisfied. \Box

Example 3.17. Consider the ternary group (\mathbb{Z}_{12}, f) , where $f : \mathbb{Z}_{12}^3 \to \mathbb{Z}_{12}$ is defined by $f(x_1, x_2, x_3) = max(x_1, x_2, x_3)$, derived from the additive group \mathbb{Z}_{12} . Let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy subgroup of the group of $ret_1(G, f)$ induced by subgroups $S_1 = \{11\}, S_2 = \{5, 11\}$ and $S_3 = \{1, 3, 5, 7, 9, 11\}$. Define the *IFS* $A = (\mu_A, \nu_A)$ as follows:

$$\mu_A (x) = \begin{cases} 0.8 & if \ x = 11, \\ 0.6 & if \ x = 5, \\ 0.4 & if \ x = 1, 3, 7, 9, \\ 0.2 & if \ x \notin S_3. \end{cases} \qquad \nu_A (x) = \begin{cases} 0.1 & if \ x = 11, \\ 0.3 & if \ x = 5, \\ 0.5 & if \ x = 1, 3, 7, 9, \\ 0.9 & if \ x \notin S_3. \end{cases}$$

Then

$$\mu_A(\overline{5}) = \mu_A(7) = 0.4 \not\geq = 0.6 = \mu_A(5).$$

$$\nu_A(\overline{5}) = \mu_A(7) = 0.5 \not\leq = 0.3 = \nu_A(5).$$

Hence $A = (\mu_A, \nu_A)$ is not an intuitionistic fuzzy ternary subgroup of (G, f).

Observations. From the above Example 3.16 it follows that:

(1) There are intuitionistic fuzzy subgroups of $ret_a(G, f)$ which are not intuitionistic fuzzy *n*-ary subgroups of (G, f).

(2) In Theorem 3.15 the assumptions $\mu_A(a) \ge \mu_A(x)$ and $\nu_A(a) \le \nu_A(x)$ can not be omitted. In the above example we have $\mu_A(1) = 0.4 \ge 0.6 = \mu_A(5)$ and $\nu_A(1) = 0.5 \le 0.3 = \nu_A(5)$.

(3) The assumptions $\mu_A(a) \geq \mu_A(x)$ and $\nu_A(a) \leq \nu_A(x)$ cannot be replaced by the natural assumption $\mu_A(\overline{a}) \geq \mu_A(x)$ and $\nu_A(\overline{a}) \leq \nu_A(x).(\overline{a}$ is the identity of $ret_a(G, f)$. In the above example $\overline{1} = 11$, then $\mu_A(11) \geq \mu_A(x)$ and $\nu_A(11) \leq \nu_A(x)$ for all $x \in \mathbb{Z}_{12}$.

Theorem 3.18. Let (G, f) be an n-ary group of b-derived from the group (G, \circ) . Any intuitionistic fuzzy n-ary subgroup $A = (\mu_A, \nu_A)$ of (G, \circ) such that $\mu_A(b) \ge \mu_A(x)$ and $\nu_A(b) \le \nu_A(x)$ for every $x \in G$ is an intuitionistic fuzzy n-ary subgroup of (G, f).

Proof. The conditions (IFnS1) and (IFns2) are obvious. To prove (IFnS3) and (IFns4), we have *n*-ary group (G, f) *b*-derived from the group (G, \circ) , which implies

$$\overline{x} = (x^{n-2} \circ b)^{-1}$$

where x^{n-2} is the power of x in $(G, \circ)[4]$. Thus, for all $x \in G$

$$\mu_A(\overline{x}) = \mu_A((x^{n-2} \circ b)^{-1}) \ge \mu_A(x^{n-2} \circ b) \ge \min\{\mu_A(x^{n-2}), \mu_A(b)\} = \mu_A(x).$$

$$\nu_A(\overline{x}) = \nu_A((x^{n-2} \circ b)^{-1}) \le \nu_A(x^{n-2} \circ b) \le \max\{\nu_A(x^{n-2}), \nu_A(b)\} = \nu_A(x).$$

This complete the proof.

Corollary3.19. Any intuitionistic fuzzy group of a group (G, \circ) is a intuitionistic fuzzy *n*-ary subgroup of an *n*-ary group (G, f) derived from (G, \circ) .

Proof. If *n*-ary group (G, f) is derived from the group (G, \circ) then b = e. Thus $\mu_A(e) \ge \mu_A(x)$ and $\nu_A(e) \le \nu_A(x)$ for all $x \in G$.

Acknowledgement : The author is extremely grateful to the learned referee for his / her valuable comments and suggestions which helped me a lot for improving the standard of this paper.

References

- K.T. Atanassov., "Intuitionistic fuzzy set", Fuzzy sets and Systems. 35 (1986) 87 - 96.
- K.T. Atanassov., "New operations defined over the intuitionistic fuzzy sets", Fuzzy sets and Systems, 61 (1994) 137 - 142.
- [3] B. Davvaz and W.A. Dudek., "Fuzzy n-ary groups as a generalization of Rosenfeld's fuzzy groups", J. of Mult-Valued Logic and Soft Computing(preprint).
- [4] W. Dörnte., "Untersuchungen über einen verallgemeinerten Gruppenbegriff", Math. Z. 29 (1928) 1 - 19.
- [5] W.A. Dudek., "Fuzzification of n-ary groupoids", Quasigroups and Related Systems. 7 (2000) 45 - 66.
- [6] W.A. Dudek., "On some old and new problems in n-ary groups", Quasigroups and Related Systems. 8 (2001) 15 - 36.
- [7] W.A. Dudek., "Intuitionistic fuzzy approach to n-ary systems", Quasigroups and Related Systems. 15 (2005) 213 - 228.
- [8] W.A. Dudek and J.Michalski., "On a generalization of Hosszú theorem", Demonstratio Mathematica. 15(1982) 783-805.
- [9] J.W. Grzymala-Busse., "On retacts of polyadic groups", J. Assoc. Comput. Mach. 16 (1969) 208 - 219.
- [10] R.Karner., "Ternary algebraic structures and their applications in physics", Univ. P. and M.Curie, Paris 2000.
- [11] R.Kasner., "An extension of the group concepts", Bull. Amer. Math. Soc. 10(1904) 290-291.
- [12] M.Kondo and W.A. Dudek., "On the transfer principle in fuzzy theory, Mathware and Soft Computing.12(2005), 41-55.
- [13] D. Nikshych and L. Vainerman., "Finite quantum groupoids and their Applications", Univ. California, Los Angeles 2000.
- [14] Rosenfeld. A., "Fuzzy groups", J. Math. Anal. Appl. 35 (1971), 512 517.
- [15] A.Zadeh., "Fuzzy sets", Information and Control 8 (1965), 338 353.

(Received 22 June 2009)

D.R. Prince Williams Department of Information Technology, College of Applied Sciences, Ministry of Higher Education, PB:135, Sohar-311, Sultanate of Oman. e-mail : princeshree1@rediffmail.com