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1 Introduction

The theory of fuzzy set was first developed by Zadeh [15] and has been applied
to many branches in mathematics. Later fuzzification of the concept “group” into
“fuzzy subgroup” was made by Rosenfeld [14]. This work was the first fuzzifica-
tion of any algebraic structure and thus opened a new direction, new exploration,
new path of thinking to mathematicians, engineers, computer scientists and many
others in various tests. The study of n-ary systems was initiated by Kasner [11]
in 1904, but the important study on n-ary groups was done by Dörnte [4]. The
theory of n-ary systems have many applications. For example, in the theory of
automata [9] n-ary semigroup and n-ary groups are used. The n-ary groupoids
are applied in the theory of quantum groups [13]. Also the ternary structures
in physis are described by Kerner in [10]. The first fuzzification of n-ary system
was introduced by Dudek [5]. Moreover Davvz et. al [3] have studied fuzzy n-ary
groups as a generalization of Rosenfeld’s fuzzy groups and have investigated their
related properties.
The notion of intuitionistic fuzzy sets introduced by Atanassov [1,2] , is a general-
ization of the notion of fuzzy set. Dudek [7] has introduced the Atanassov idea’s in
n-ary systems. In this paper, we introduce the notion of intuitionistic fuzzy n-ary
subgroup in n-ary group (G, f) and have investigated their related properties.

Copyright c© 2010 by the Mathematical Association of Thailand. All rights

reserved.
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2 Preliminaries

A non-empty set G together with one n-ary operation f : Gn → G, where
n ≥ 2, is called an n-ary groupoid and is denoted by (G, f) . According to the
general convention used in the theory of n-ary groupoids the sequence of elements
xi, xi+1, ..., xj is denoted by xj

i . In the case, if j < i, it denotes the empty symbol.

If xi+1 = xi+2 = ... = xi+t = x, then instead of xi+t
i+1, we write

(t)
x . In this

convention

f(x1, ..., xn) = f(xn
1 )

and

f(x1, ..., xi, x, ..., x
︸ ︷︷ ︸

t

, xi+t+1, ..., xn) = f(xi
1,

(t)
x , xn

i+t+1).

An n-ary groupoid (G, f) is called an (i, j)-associative if

f
(
xi−1

1 , f(xn+i−1
i ), x2n−1

n+i

)
= f

(

xj−1
1 , f(xn+j−1

j ), x2n−1
n+j

)

hold for all x1, ..., x2n−1 ∈ G. If this identity holds for all 1 ≤ i ≤ j ≤ n,then we
say that the operation f is associative and (G, f) is called an n-ary semigroup. It
is clear that an n-ary groupoid is associative if and only if it is (1, j)-associative
for all j = 2, .., n. In the binary case (i.e. n=2) it is a usual semigroup.If for all
x0, x1, ..., xn ∈ G and fixed i ∈ {1, ..., n} there exists an element z ∈ G such that

f
(
xi−1

1 , z, xn
i+1

)
= x0 (1)

then we say that this equation is i-solvable or solvable at the place i.If the solution
is unique, then we say that (1) is uniquely i-solvable. An n-ary groupoid (G, f)
uniquely solvable for all i = 1, ..., n is called an n-ary quasigroup. An associative
n-ary quasigroup is called an n-ary group .
Fixing an n-ary operation f , where n ≥ 3, the elements an−2

2 we obtain the new
binary operation x ⋄ y = f(x, an−2

2 , y). If (G, f) is an n-ary group then (G, ⋄) is
a group. Choosing different elements an−2

2 we obtain different groups. All these
groups are isomorphic[8]. So, we can consider only the groups of the form

reta(G, f) = (G, ◦), where x ◦ y = f(x,
(n−2)

a , y).

In this group e = a, x−1 = f(a,
(n−3)

a , x, a).

In the theory of n-ary groups, the following Theorem plays an important role.

Theorem 2.1.[8] For any n-ary group (G, f) there exist a group (G, ◦),its
automorphism ϕ and an element b ∈ G such that

f(xn
1 ) = x1 ◦ ϕ(x2) ◦ φ2(x3) ◦ ... ◦ φn−1(xn) ◦ b (2)
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holds for all xn
1 ∈ G.

In what follows, G is a non-empty set and (G, f) is an n-ary group unless
otherwise specified.

An intuitionistic fuzzy set (briefly,IFS) A in a non-empty set G is an object
having the form [1]

A = {(x, µA(x), νA(x)|x ∈ G)}

where the functions µA : G → [0, 1] and νA : G → [0, 1] denote the degree of
membership and the degree of non-membership, respectively, and

0 ≤ µA(x) + νA(x) ≤ 1, ∀ ∈ G.

An intuitionistic fuzzy set A = {(x, µA(x), νA(x))|x ∈ G} in G can be identified
to an ordered pair (µA, νA) in IG × IG. For the sake of simplicity, we shall use the
symbol A = (µA, νA) for the IFS A = {(x, µA(x), νA(x)|x ∈ G)}.

Definition 2.2.[3] Let (G, f) be an n-ary group. A fuzzy subset of G is called
a fuzzy subgroup of (G, f) if the following axioms holds:

(FnS1)(∀xn
1 ∈ G), (µ(f(xn

1 ) ≥ min{µ(x1), ..., µ(xn)}),
(FnS2)(∀x ∈ G), (µ(x) ≥ µ(x)).

Note that for n = 3 the second condition (FnS2) of definition 2.2 can be replaced
by the condition

(FnS3)(∀x ∈ G), (µ(x) = µ(x)).
because in this case n = 3, we have x = x. These two conditions are equivalent
for all n-ary groups in which for every x ∈ G there exists a natural number k such
that x(k) = x, where x(k) denotes the elements skew to x(k−1) and x(0) = x.But,
as it was observed in [6], there are fuzzy n-ary subgroups in which µ(x) > µ(x)
for all x ∈ G.

3 Intuitionistic fuzzy n-ary subgroups

Definition 3.1. An IFS A = (µA, νA) in G is called an intuitionistic fuzzy

n-ary subgroup of (G, f) if the following axioms holds:

(IFnS1) (∀xn
1 ∈ G), (µ(f(xn

1 ) ≥ min{µ(x1), ..., µ(xn)}),
(IFnS2) (∀xn

1 ∈ G), (ν(f(xn
1 ) ≤ max{ν(x1), ..., ν(xn)}),

(IFnS3) (∀x ∈ G), (µ(x) ≥ µ(x)),

(IFnS4) (∀x ∈ G), (ν(x) ≤ ν(x)).

Example 3.2. Consider (Z4, f),where f : Z4
4 → Z4 is defined by

f(x1, x2, x3, x4) = max(x1, x2, x3, x4). Clearly (Z4, f) is a 4-ary subgroup
derived from additive group Z4. Define IFS A = (µA, νA) in (Z4, f) as follows:
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µA(x) =

{
0.7 if x = 0,
0.2 if x = 1, 2, 3.

νA(x) =

{
0.2 if x = 0,
0.9 if x = 1, 2, 3.

Then it is easy to verify that IFS A = (µA, νA) is an intuitionistic 4-ary fuzzy
subgroup of (Z4, f).

Theorem 3.3. If {Ai|i ∈ Λ} is an arbitrary family of an intuitionistic fuzzy

n-ary subgroup of (G, f) then
⋂

Ai is an intuitionistic fuzzy n-ary subgroup of

(G, f), where
⋂

Ai = {(x,∧µAi
(x),∨νAi

(x))|x ∈ G)}.

Proof. The proof is trivial. 2

Theorem 3.4. If an IFS A = (µA, νA) in G is an intuitionistic fuzzy n-ary

subgroup of (G, f) then so is �A, where �A = {(x, µA(x), 1 − µA(x))|x ∈ G}.

Proof. It is sufficient to show that µA satisfies condition (IFnS2) and (IFnS4).
Let xn

1 ∈ G. Then

µA(f(xn
1 )) = 1 − µA(f(xn

1 ))

≤ 1 − min{µA(x1), ..., µA(xn)}

= max{µA(x1), ..., µA(xn)}.

and
µA(x) = 1 − µA(x) ≤ 1 − µ(x) = µ(x).

Hence �A is an intuitionistic fuzzy n-ary subgroup of (G, f). 2

Definition 3.5.[7] Let A = (µA, νA) be an IFS in G and let t ∈ [0, 1]. Then
the set

U(µA, t) := {x ∈ G|µA(x) ≥ t}(resp. L(νA, t) := {x ∈ G|νA(x) ≤ t})

is called µA-level t-cut(resp. νA-level t-cut) of G.

The following Theorem is a consequence of the Transfer Principle described in
[12].

Theorem 3.6. An IFS A = (µA, νA) in G with the images Im(µA) =
{ti : i ∈ I} and Im(νA) = {tj : j ∈ I}, is an intuitionistic fuzzy n-ary subgroup

of (G, f) if and only if the µA-level t-cut and νA-level t-cut of G are n-ary

subgroup of (G, f) for every t ∈ [0, 1] such that t ∈ Im(µA) ∩ Im(νA), which are

called µA-level n-ary subgroup and νA-level n-ary subgroups respectively.
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Proof. Let A = (µA, νA) is an intuitionistic fuzzy n-ary subgroup of (G, f).
If xn

1 ∈ Gand t ∈ [0, 1], then µ(xi) ≥ t for all i = 1, 2, ..., n. Thus

µA(f(xn
1 ) ≥ min{µA(x1), ..., µA(xn)} ≥ t,

which implies f(xn
1 ) ∈ U(µA, t) and

νA(f(xn
1 ) ≤ max{νA(x1), ..., νA(xn)} ≤ t,

which implies f(xn
1 ) ∈ L(νA, t). Moreover, for some x ∈ U(µA, t) and x ∈ L(νA, t),

we have
µA((x) ≥ µA(x)) ≥ t and νA((x) ≤ νA(x)) ≤ t,

which implies x ∈ U(µA, t) and x ∈ L(νA, t). Thus µA-level t-cut and νA-level
t-cut are n-ary subgroup of (G, .).

Conversely, assume that µA-level t-cut and νA-level t-cut are n-ary subgroup
of (G, .). Let us define

t0 = min{µA(x1), ..., µA(xn)},

and
t1 = max{νA(x1), ..., νA(xn)},

for some xn
1 ∈ G. Then obviously xn

1 ∈ U(µA, t0) and xn
1 ∈ L(νA, t1), consequently

f(xn
1 ) ∈ U(µA, t0) and f(xn

1 ) ∈ L(νA, t1). Thus

µA(f(xn
1 )) ≥ t0 = min{µA(x1), ..., µA(xn)}

and
νA(f(xn

1 )) ≤ t1 = max{νA(x1), ..., νA(xn)}.

Now let x ∈ U(µA, t) and x ∈ L(νA, t). Then µ(x) = t0 ≥ t and ν(x) = t1 ≤ t.
Thus x ∈ U(µA, t0) and x ∈ L(νA, t1). Since, by the assumption, x ∈ U(µA, t0)
and x ∈ L(νA, t1). Whence µA(x) ≥ t0 = µA(x) and νA(x) ≥ t1 = νA(x). This
complete the proof. 2

Using the above theorem,we can prove the following characterization of
intuitionistic fuzzy n-ary subgroup.

Theorem 3.7. An IFS A = (µA, νA) in G, is an intuitionistic fuzzy n-ary

subgroup of (G, f) if and only if theµA-level t-cut and νA-level t-cut of G are

n-ary subgroup of (G, f) for all i = 1, 2, ..., n and all xn
1 ∈ G, A satisfies the fol-

lowing conditions:

(i) µA(f(xn
1 ) ≥ min{µA(x1), ..., µA(xn)},

(ii) νA(f(xn
1 ) ≤ max{νA(x1), ..., νA(xn)},
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(iii) µA(xi) ≥ min{µA(x1), ..., µA(xi−1), µA(f(xn
1 )), µA(xi−1), ..., µA(xn)},

(iv) νA(xi) ≤ max{νA(x1), ..., νA(xi−1), νA(f(xn
1 )), νA(xi−1), ..., νA(xn)}.

Proof. Assume that A = (µA, νA) is an intuitionistic fuzzy n-ary subgroupof
(G, f) .Similarly as in the proof of Theorem 3.5, we can prove each non-empty level
subset U(µA, t) and L(νA, t) are closed under the operation f , that is xn

1 ∈ U(µA, t)
and xn

1 ∈ L(νA, t) implies f(xn
1 ) ∈ U(µA, t) and f(xn

1 ) ∈ L(νA, t).
Now let x0, x

i−1
1 , xn

i+1, where x0 = f(xi−1
1 , z, xn

i+1) for some i = 1, 2, ..., n and
z ∈ G which implies x0 ∈ U(µA, t) and x0 ∈ L(νA, t).Then,according to (iii)
and (iv), we have µA(z) ≥ t and νA(z) ≤ t. So, the equation (1) has a solution
z ∈ µA(t) and z ∈ νA(t). This mean that µA-level t-cut and νA-level t-cut are an
n-ary subgroups.
Conversely, assume that µ-level t-cut and ν-level t-cut are an n-ary subgroups.
Then it is easy to prove the conditions (i) and (ii). For xn

1 ∈ G, we define

t0 = min{µA(x1), ..., µA(xi−1), µA(f(xn
1 )), µA(xi−1), ..., µA(xn)}

and
t1 = max{νA(x1), ..., νA(xi−1), νA(f(xn

1 )), νA(xi−1), ..., νA(xn)}.

Then xi−1
1 , xn

i+1, f(xn
1 ) ∈ U(µA, t0) and xi−1

1 , xn
i+1, f(xn

1 ) ∈ L(νA, t1). Whence,
according to the definition of n-ary group, we conclude xi ∈ U(µA, t0) and xi ∈
L(νA, t1). Thus µ(xi) ≥ t0 and ν(xi) ≤ t1. This proves the conditions (iii) and
(iv). 2

Definition 3.8. Let (G, f) and (G′, f) be an n-ary groups. A mapping α : G →
G′ is called an n-ary homomorphism if α(f(xn

1 )) = f(αn(xn
1 )), where αn(xn

1 ) =
(α(x1), ..., α(xn)) for all xn

1 ∈ G.

For any IFS A = (µA, νA) in G′, we define the preimage of A under α,
denoted by α−1(A), is an IFS in G defined by

α−1(A) = (µα−1(A), να−1(A)),

where
µα−1(A)(x) = µA(α(x)) and να−1(A)(x) = νA(α(x)), ∀x ∈ G.

For any IFS A = (µA, νA) in G, we define the image of A under α, denoted by
α(A), is an IFS in G′ defined by

α(A) = (αsup(µA), αinf (νA)),

where

αsup (µA) (y) =

{
sup

x∈α−1(y)

µA(x), if α−1(y) 6= φ,

0, otherwise.
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and

αinf (νA) (y) =

{
inf

x∈α−1(y)
νA(x), if α−1(y) 6= φ,

0, otherwise.

for all x ∈ G and y ∈ G′.

Theorem 3.9. Let α be a n-ary homomorphism mapping from G into G′ with

α(x) = α(x) for all x ∈ G and A = (µA, νA) is an intuitionistic fuzzy n-ary

subgroup of (G′, f). Then α−1(A) is an intuitionistic fuzzy n-ary subgroup of

(G, f).

Proof. Let xn
1 ∈ G, we have

µα−1(A)(f(xn
1 )) = µA(α(f(xn

1 )) = µA(f(αn(xn
1 )))

≥ min{µA(α(x1), ..., µA(α(xn)}

= min{µα−1(A)(x1), ..., µα−1(A)(xn)}.

να−1(A)(f(xn
1 )) = νA(α(f(xn

1 )) = µA(f(αn(xn
1 )))

≤ max{νA(α(x1), ..., νA(α(xn)}

= max{να−1(A)(x1), ..., να−1(A)(xn)}.

µα−1(A)(x) = µA(α(x)) ≥ µA(α(x)) = µα−1(A)(x)

να−1(A)(x) = νA(α(x)) ≤ µA(α(x)) = να−1(A)(x).

This completes the proof. 2

If we strengthen the condition of α, then we can construct the converse of
Theorem 3.9 as follows.

Theorem 3.10. Let α be an n-ary homomorphism from G into G′ and α−1(A) =
(µα−1(A), να−1(A)) is an intuitionistic fuzzy n-ary subgroup of (G, f).Then A =
(µA, νA) is an intuitionistic fuzzy n-ary subgroup of (G′, f).

Proof. For any x1 ∈ G′,there exists a1 ∈ G such that α(a1) = x1 and For any
f(xn

1 ) ∈ (G′, f), there exists f(an
1 ) ∈ (G, f) such that α(f(an

1 )) = f(xn
1 ). Then

µA(f(xn
1 )) = µA(α(f(an

1 )) = µα−1(A)(f(an
1 ))

≥ min{µα−1(A)(a1), µα−1(A)(a2), ..., µα−1(A)(an)}

= min{µA(α(a1), ..., µA(α(an)}

= min{µA(x1), ..., µA(xn)}.
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νA(f(xn
1 )) = νA(α(f(an

1 )) = να−1(A)(f(an
1 ))

≤ max{να−1(A)(a1), να−1(A)(a2), ..., να−1(A)(an)}

= max{νA(α(a1), ..., νA(α(an)}

= max{νA(x1), ..., νA(xn)}.

For any x ∈ G′, there exists a ∈ G such that α(a) = x, we have

µA(x) = µA(α(a)) = µα−1(A)(a) ≥ µα−1(A)(a) = µA(α(a)) = µA(x).

νA(x) = νA(α(a)) = να−1(A)(a) ≤ να−1(A)(a) = νA(α(a)) = νA(x).

This completes the proof. 2

Theorem 3.11. Let α be a mapping from G into G′. If A = (µA, νA) is an

intuitionistic fuzzy n-ary subgroup of (G, f) , then α(A) = (x, αsup(µA), αinf (νA))
is an intuitionistic fuzzy n-ary subgroup of (G′, f).

Proof. Let α be a mapping from G into G′ and let xn
1 ∈ G, yn

1 ∈ G′. Noticing
that

{xi(i = 1, 2, ..., n)
∣
∣xi ∈ α−1(f(yn

1 ))} ⊆ {f(xn
1 ) ∈ G|x1 ∈ α−1(y1),

x2 ∈ α−1(y2), ..., xn ∈ α−1(yn))}.

we have

αsup(µA)(f(yn
1 )) = sup{µA(xn

1 )|xi ∈ α−1(f(yn
1 ))}

≥ sup{µA(f(xn
1 )|x1 ∈ α−1(y1), x2 ∈ α−1(y2), ...,

xn ∈ α−1(yn))}

≥ sup{min{µA(x1), µA(x2), ..., µA(xn)}|x1 ∈ α−1(y1),

x2 ∈ α−1(y2), ..., xn ∈ α−1(yn))}

= min{sup{µA(x1)|x1 ∈ α−1(y1)},

sup{µA(x2)|x1 ∈ α−1(y2)}, ..., sup{µA(xn)|x1 ∈ α−1(yn)}}

= min{αsup(µA)(y1), αsup(µA)(y2), ..., αsup(µA)(yn)}.

αinf (νA)(f(yn
1 )) = inf{νA(xn

1 )|xi ∈ α−1(f(yn
1 ))}

≤ inf{νA(f(xn
1 ))|x1 ∈ α−1(y1), x2 ∈ α−1(y2), ...,

xn ∈ α−1(yn))}

≤ inf{max{νA(x1), νA(x2), ..., νA(xn)}|x1 ∈ α−1(y1),

x2 ∈ α−1(y2), ..., xn ∈ α−1(yn))}

= max{inf{νA(x1)|x1 ∈ α−1(y1)}, inf{νA(x2)|x1 ∈ α−1(y2)},

..., inf{νA(xn)|x1 ∈ α−1(yn)}}

= max{αinf (νA)(y1), αinf (νA)(y2), ..., αinf (νA)(yn)}.
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αsup(µA)(x) = sup{µA(x)|x ∈ α−1(f(y))}

≥ sup{µA(x)|x ∈ α−1(f(y))}

= αsup(µA)(x).

αinf (νA)(x) = inf{νA(x)|x ∈ α−1(f(y))}

≤ inf{νA(x)|x ∈ α−1(f(y))}

= αinf (νA)(x).

This completes the proof. 2

Corollary 3.12. An IFS A = (µA, νA) defined on group (G, .) is an Intu-

itionistic fuzzy subgroup if and only if

(1) µA(xy) ≥ min{µA(x), µA(y)} and νA(xy) ≤ max{νA(x), νA(y)},
(2) µA(x) ≥ min{µA(y), µA(xy)} and νA(x) ≤ max{νA(y), νA(xy)},
(3) µA(y) ≥ min{µA(x), µA(xy)} and νA(y) ≤ max{νA(x), νA(xy)}.
holds for all x, y ∈ G.

Theorem 3.13. Let A = (µA, νA) be an intuitionistic fuzzy n-ary subgroup

of (G, f) . If there exists an element a ∈ G such that µA(a) ≥ µA(x) and

νA(a) ≤ νA(x) for every x ∈ G, then A = (µA, νA) is an intuitionistic fuzzy

n-ary subgroup of a group reta(G, f).

Proof. For all x, y, a ∈ G we have

µA(x ◦ y) = µA(f(x,
(n−2)

a , y) ≥ min{µA(x), µA(a), µA(y)} = min{µA(x), µA(y)}.

νA(x ◦ y) = νA(f(x,
(n−2)

a , y) ≤ max{νA(x), νA(a), νA(y)} = max{νA(x), νA(y)}.

µA(x−1) = µA(f(a,
(n−3)

x x, a)) ≥ min{µA(x), µA(x), µA(a), µA(a)} = µA(x).

νA(x−1) = νA(f(a,
(n−3)

x x, a)) ≤ max{νA(x), νA(x), νA(a), νA(a)} = νA(x).

which complete the proof. 2

In Theorem 3.13, the assumptions that µA(a) ≥ µA(x) and νA(a) ≤ νA(x)
cannot be omitted.

Examples 3.14. Consider (Z4, f), where f : Z3
4 → Z4 is defined by

f(x1, x2, x3) = max(x1, x2, x3). Clearly, (Z4, f) is a ternary subgroup derived
from Z4. Define an IFS A = (µA, νA) as follows:

µA(x) =

{
1 if x = 0,
0.2 x = 1, 2, 3.

νA(x) =

{
0 if x = 0,
0.9 x = 1, 2, 3.
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clearly A = (µA, νA) is an intuitionistic fuzzy ternary subgroup of (Z4, f).For
ret1(Z4, f),we have

µA(0 ◦ 0) = µA((f(0, 1, 0)) = µA(1) = 0.2 � min{µA(0), µA(0)} = 1.

νA(0 ◦ 0) = νA((f(0, 1, 0)) = νA(1) = 0.9 � max{νA(0), νA(0)} = 0.

Hence the assumptions µA(a) ≥ µA(x) and νA(a) ≤ νA(x) cannot be omitted.

Theorem 3.15. Let (G, f) be an n-ary group. If A = (µA, νA) is an intuitionistic

fuzzy n-ary subgroup of a group reta(G, f) and µA(a) ≥ µA(x), νA(a) ≤ νA(x)
for all a, x ∈ G, then A = (µA, νA) is an intuitionistic fuzzy n-ary subgroup of

(G, f) .

Proof. According to Theorem 2.1, any n-ary group can be represented of the

form (2), where (G, ◦) = reta(G, f), ϕ(x) = f(a, x,
(n−2)

x ) and b = f(a, ..., a). Then
we have

µA(ϕ(x)) = µA(f(a, x,
(n−2)

x )) ≥ min{µA(µA(a), µA(x), µA(a)} = µA(x).

µA(ϕ2(x)) = µA(f(a, ϕ(x),
(n−2)

x ))

≥ min{µA(µA(a), µA(ϕ(x)), µA(a)}

= µA(ϕ(x))

≥ µA(x).

Consequently, µA(ϕk(x)) ≥ µA(x) for all x ∈ G and k ∈ N and

νA(ϕ(x)) = νA(f(a, x,
(n−2)

x )) ≤ max{νA(νA(a), νA(x), νA(a)} = νA(x).

νA(ϕ2(x)) = νA(f(a, ϕ(x),
(n−2)

x ))

≤ max{νA(νA(a), νA(ϕ(x)), νA(a)}

= νA(ϕ(x)) ≤ νA(x).

Consequently, νA(ϕk(x)) ≤ νA(x) for all x ∈ G and k ∈ N. Similarly, for all x ∈ G
we have

µA(b) = µA(f(a, ..., a)) ≥ µA(a) ≥ µA(x).

νA(b) = νA(f(a, ..., a)) ≤ νA(a) ≤ νA(x).

Thus

µA(f(xn
1 )) = µA(x1 ◦ ϕ(x2) ◦ ϕ2(x3) ◦ ... ◦ ϕn−2(xn) ◦ b)

≥ min{µA(x1), µA(ϕ(x2)), µA(ϕ2(x3)), ..., µA(ϕn−2(xn)), µA(b)}

≥ min{µA(x1), µA((x2)), µA((x3)), ..., µA(xn), µA(b)}

≥ min{µA(x1), µA((x2)), µA((x3)), ..., µA(xn)}.
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νA(f(xn
1 )) = νA(x1 ◦ ϕ(x2) ◦ ϕ2(x3) ◦ ... ◦ ϕn−2(xn) ◦ b)

≤ max{νA(x1), νA(ϕ(x2)), νA(ϕ2(x3)), ..., νA(ϕn−2(xn)), νA(b)}

≤ max{νA(x1), νA((x2)), νA((x3)), ..., νA(xn), νA(b)}

≤ max{νA(x1), νA((x2)), νA((x3)), ..., νA(xn)}.

From (4) and (7)of [3], we have

x =
(
ϕ(x) ◦ ϕ2(x) ◦ ... ◦ ϕn−2(x) ◦ b

)−1

Thus

µA(x) = µA

((
ϕ(x) ◦ ϕ2(x) ◦ ... ◦ ϕn−2(x) ◦ b

)−1
)

≥ µA

(
ϕ(x) ◦ ϕ2(x) ◦ ... ◦ ϕn−2(x) ◦ b

)

≥ min{µA(ϕ(x)), µA(ϕ2(x)), ..., µA(ϕn−2(x)), µA(b)}

≥ min{µA(x), µA(b)} = µA((x)).

νA(x) = νA

((
ϕ(x) ◦ ϕ2(x) ◦ ... ◦ ϕn−2(x) ◦ b

)−1
)

≤ νA

(
ϕ(x) ◦ ϕ2(x) ◦ ... ◦ ϕn−2(x) ◦ b

)

≤ max{νA(ϕ(x)), νA(ϕ2(x)), ..., νA(ϕn−2(x)), νA(b)}

≤ max{νA(x), νA(b)} = νA(x).

This completes the proof. 2

Corollary 3.16. If (G, f) is a ternary group, then any intuitionistic fuzzy

subgroup of reta(G, f) is an intuitionistic fuzzy ternary subgroup of (G, f).

Proof. Since a is a neutral element of a group reta(G, f) then µA(a) ≥ µA(x)
and νA(a) ≤ νA(x) for all x ∈ G. Thus µA(a) ≥ µA(a) and νA(a) ≤ νA(a). But
in ternary group a = a for any a ∈ G, whence µ(a) = µA(a) ≥ µA(a) ≥ µA(x)
and ν(a) = νA(a) ≤ νA(a) ≤ νA(x). So, µA(a) = µA(a) ≥ µA(x) and νA(a) =
νA(a) ≤ νA(x) for all x ∈ G. This means that the assumptions of Theorem 3.15
are satisfied. 2

Example 3.17. Consider the ternary group (Z12, f), where f : Z3
12 → Z12 is

defined by f(x1, x2, x3) = max(x1, x2, x3), derived from the additive group Z12.
Let A = (µA, νA) be an intuitionistic fuzzy subgroup of the group of ret1(G, f)
induced by subgroups S1 = {11},S2 = {5, 11} and S3 = {1, 3, 5, 7, 9, 11}. Define
the IFS A = (µA, νA) as follows:

µA (x) =







0.8 if x = 11,
0.6 if x = 5,
0.4 if x = 1, 3, 7, 9,
0.2 if x /∈ S3.

νA (x) =







0.1 if x = 11,
0.3 if x = 5,
0.5 if x = 1, 3, 7, 9,
0.9 if x /∈ S3.
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Then

µA(5) = µA(7) = 0.4 � = 0.6 = µA(5).

νA(5) = µA(7) = 0.5 � = 0.3 = νA(5).

Hence A = (µA, νA) is not an intuitionistic fuzzy ternary subgroup of (G, f) .

Observations. From the above Example 3.16 it follows that:
(1) There are intuitionistic fuzzy subgroups of reta(G, f) which are not intuitionistic
fuzzy n-ary subgroups of (G, f) .
(2) In Theorem 3.15 the assumptions µA(a) ≥ µA(x) and νA(a) ≤ νA(x) can
not be omitted.In the above example we have µA(1) = 0.4 � 0.6 = µA(5) and
νA(1) = 0.5 � 0.3 = νA(5).
(3) The assumptions µA(a) ≥ µA(x) and νA(a) ≤ νA(x) cannot be replaced
by the natural assumption µA(a) ≥ µA(x) and νA(a) ≤ νA(x).(a is the iden-
tity of reta(G, f)). In the above example 1 = 11, then µA(11) ≥ µA(x) and
νA(11) ≤ νA(x) for all x ∈ Z12.

Theorem 3.18. Let (G, f) be an n-ary group of b-derived from the group

(G, ◦). Any intuitionistic fuzzy n-ary subgroup A = (µA, νA) of (G, ◦) such that

µA(b) ≥ µA(x) and νA(b) ≤ νA(x) for every x ∈ G is an intuitionistic fuzzy n-ary

subgroup of (G, f) .

Proof. The conditions (IFnS1) and (IFns2) are obvious. To prove (IFnS3) and
(IFns4), we have n-ary group (G, f) b-derived from the group (G, ◦), which
implies

x = (xn−2 ◦ b)−1,

where xn−2 is the power of x in (G, ◦)[4] .
Thus, for all x ∈ G

µA(x) = µA((xn−2 ◦ b)−1) ≥ µA(xn−2 ◦ b) ≥ min{µA(xn−2), µA(b)} = µA(x).

νA(x) = νA((xn−2 ◦ b)−1) ≤ νA(xn−2 ◦ b) ≤ max{νA(xn−2), νA(b)} = νA(x).

This complete the proof. 2

Corollary3.19. Any intuitionistic fuzzy group of a group (G, ◦) is a intuitionistic

fuzzy n-ary subgroup of an n-ary group (G, f) derived from (G, ◦).

Proof. If n-ary group (G, f) is derived from the group (G, ◦) then b = e. Thus
µA(e) ≥ µA(x) and νA(e) ≤ νA(x) for all x ∈ G. 2
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