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A kind of product of submodules

and some related results

M.J. Nikmehr1, S. Heidari and R. Nikandish

Abstract : Let R be a commutative ring with identity, M an R-module and K1,
K2 submodules of M . In this article, we define a kind of product between K1 and
K2. In a special case of this product, we focus on M2 as an R(M)-module and we
show that, in many cases, the study of M as an R-module can be replaced by the
study of M2 as an R(M)-module.
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1 Introduction

In this paper, all rings are commutative with identity and all modules are
unitary. Let M be an R-module; the idealization of M , R(M), introduced by
Nagata in [11], and many papers have been devoted to this concept. Idealization
is useful for generalizing results from rings to modules and constructing examples
of commutative rings with zero-divisors (see [2] and [9, Section 25]). Let K1 and
K2 be submodules of M . In this article, we construct an algebraic object by K1

and K2 denoted by K1K2, called product of K1 and K2. We show that K1K2,
with appropriate operations, has an R(M)-module structure. Our main aim of
this paper is to study some of the most important properties of R(M)-module
MM = M2. For instance, in section 2, we give a necessary and sufficient condition
under which M2 is a projective R(M)-module. In section 3, we find primary and
secondary decompositions for R(M)-module M2. Now, we define the concepts
that we will need. Recall that R(M) = R(+)M with coordinate-wise addition and
multiplication

(r1, m1)(r2, m2) = (r1r2, r1m2 + r2m1),
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is a commutative ring with identity, called the idealization of M . Note that R
naturally embeds into R(M) via r −→ r(+)0, if N is a submodule of M , then
0(+)N is an ideal of R(M), 0(+)M is a nilpotent ideal of R(M) of index 2, every
ideal that contains 0(+)M has the form I(+)M for some ideal I of R, and every
ideal that is contained in 0(+)N has the form 0(+)K for some submodule K
of N . The purpose of idealization is to put M inside a commutative ring A so
that the structure of M as an R-module is essentially the same as that of M as
an A-module, that is, an ideal of A. Since R ∼= R(M)/0(+)M , I −→ I(+)M
gives a one-to-one correspondence between ideals of R and ideals of R(M) that
contains 0(+)M . Thus the prime (maximal) ideals of R(M) have the form P (+)M
where P is a prime (maximal) ideal of R. Some basic results about idealization
can be found in [9] and [2]. Generalizing the case for ideals, an R-module M is
defined to be a cancellation module if IM = JM for ideals I and J of R implies
I = J (equivalently, [IM : M ] = I for all ideals I of R) see [3]. Examples of
cancellation modules include invertible ideals, free modules and finitely generated
faithful multiplication modules [4, Corollary to Theorem 9]. It is also defined that
M is a weak cancellation module if IM = JM implies I + AnnM = J + AnnM
(equivalently, [IM : M ] = I + AnnM). An R-module M is cancellation if and
only if it is a faithful weak cancellation module. A submodule N of M is said to
be join principal if for all ideals A of R and all submodules K of M [(AN + K) :
N ] = A + [K : N ] (see [3]). Setting K = 0, N becomes weak cancellation. Thus
join principal submodules are weak cancellation. The trace ideal of an R-module
M is Tr(M) = Σf∈Hom(M,R)f(M). If M is projective, then M = Tr(M)M ,
Ann(M) = AnnTr(M) and Tr(M) is a pure ideal of R [8, Proposition 3.30].

2 Product of Submodules

In this section first we introduce a new product between submodules of an
R-module M .
Definition. Let M be an R-module and K1, K2 submodules of M . Define the
product of K1 and K2 as follows:

K1K2 = {(1, k1 + k2)|k1 ∈ K1, k2 ∈ K2}.

One can check that K1K2 forms an R(M)-module under below operations:

(1, k1 + k2) + (1, k
′

1 + k
′

2) = (1, k1 + k
′

1 + k2 + k
′

2),

(r, m)(1, k1 + k2) = (1, rk1 + rk2),

where k1, k
′

1 ∈ K1, k2, k
′

2 ∈ K2, r ∈ R and m ∈ M .
Our starting point is the following result.

Theorem 2.1. Let M be an R-module. Then every submodule of M2 is of the
form N2, in which N is a submodule of M .
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Proof. Let H be a submodule of M2. Put N = {h | (1, h) ∈ H}. One can check
that N is a submodule of M and N2 = H . It is easily checked that if N is a
submodule of M then N2 is a submodule of M2.

For an R-module M , following [7], we set

M(P ) = {x ∈ M | sx ∈ PM for some s ∈ R \ P},

in which P is prime ideal of R. In [7], it is shown that M(P ) = M or M(P ) is a
submodule of M , for every P ∈ Spec(R). As usual, we will denote the Support of
M by

SuppRM = {P ∈ Spec(R) | there exists 0 6= x ∈ M s.t. Ann(x) ⊆ P}.

Recall that an R-module M is called quasi multiplication if M(P ) = PM , for all
P ∈ SuppRM . For a reference on quasi multiplication module see [7]. The next
result will be used in the Theorem 2.2.

Lemma 2.1. Let M be an R-module. Then
(i) SuppR(+)MM2 = {P (+)M | P ∈ SuppRM}.
(ii) M2(P (+)M) = {(1, m) ∈ M2 | m ∈ M(P )}, for every P ∈ Spec(R).

Proof. (i) If P ∈ SuppRM , then there exists a none-zero element x ∈ M such
that Ann(x) ⊆ P . Since Ann(1, x) = {(r, m) | r ∈ Ann(x)} ⊆ P (+)M , we
have P (+)M ∈ SuppR(M)M

2. Now, let P (+)M ∈ SuppR(M)M
2. Then there

exists 0 6= (1, x) ∈ M2 such that Ann(1, x) ⊆ P (+)M and hence Ann(x) ⊆ P .
Therefore, P ∈ SuppRM . It follows that

SuppR(+)MM2 = {P (+)M | P ∈ SuppRM}.

(ii) Let P ∈ Spec(R). Clearly, {(1, m) ∈ M2 | m ∈ M(P )} ⊆ M2(P (+)M). So
we have only to prove the converse. Let (1, m) ∈ M2(P (+)M). Then there exists
(s1, m1) ∈ R(M)\P (+)M such that (s1, m1)(1, m) ∈ (P (+)M)M2. It follows that
s1m ∈ PM and hence m ∈ M(P ), and so M2(P (+)M) ⊆ {(1, m) ∈ M2 | m ∈
M(P )}.

The next result shows that M is a quasi multiplication R-module if and only if
M2 is a quasi multiplication R(M)-module.

Theorem 2.2. Let M be an R-module. Then M is a quasi multiplication R-
module if and only if M2 is a quasi multiplication R(M)-module.

Proof. Suppose that M2 is quasi multiplication and P ∈ SuppRM . Then M2(P (+)M) =
(P (+)M)M2. By Lemma 2.1 (ii), we have M(P ) = PM . Hence M is quasi mul-
tiplication.
Conversely, let M be quasi multiplication and P (+)M ∈ SuppR(M)M

2. By
Lemma 2.1, we have P ∈ SuppM and

M2(P (+)M) = {(1, m) | m ∈ M(P ) = PM} = (P (+)M)M2.

Hence M2 is a quasi multiplication R(M)-module.
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The following question is interesting: Does M2 as an R(M)-module have all prop-
erties of R-module M? It is easily checked that Q is a faithful Z-module, but
Ann(Q2) = Ann(Q)(+)Q = 0(+)Q. In fact, the answer of the above question is
negative.

Theorem 2.3. Let M be an R-module. Then

Tr(M2) = Tr(M)(+)
∑

g∈Hom(M,M)
g(M) = Tr(M)(+)M.

Proof. To see why this is true note first that if f ∈ HomR(+)M (M2, R(+)M), then
there exist g1 ∈ HomR(M, R) and g2 ∈ HomR(M, M) such that f = g1(+)g2.
Hence

Tr(M2) =
∑

f∈Hom(M2,R(M))

f(M2)

=
∑

g1∈Hom(M,R),g2∈Hom(M,M)

g1(M)(+)g2(M)

=
∑

g1∈Hom(M,R)

g1(M)(+)
∑

g2∈Hom(M,M)

g2(M)

⊆ Tr(M)(+)M.

Conversely, let g ∈ Hom(M, R). Define f : M2 −→ R(M) as follows: for each
(1, m1 + m2) ∈ M2, f(1, m1 + m2) = g(m1 + m2)(+)id(m1 + m2). It is clear that
f is well defined and R(M)-homomorphism. Hence

Tr(M)(+)M =
∑

g∈Hom(M,R)

g(M)(+)M ⊆
∑

f(M2) ⊆ Tr(M2).

It follows that Tr(M2) = Tr(M)(+)M .

Lemma 2.2. Let M be a projective R-module. Then Tr(M) is a finitely generated
ideal of R if and only if Tr(M2) is a finitely generated ideal of R(M).

Proof. Let Tr(M) be finitely generated. By Theorem 2.3 and [8, Proposition 3.3]

Tr(M2) = Tr(M)(+)M = Tr(M)(+)Tr(M)M.

Hence Tr(M2) is finitely generated if and only if Tr(M) is finitely generated, by
[1, Theorem 7(1)].

It is shown in [8, Lemma 3.23] that an R-module M is projective if and only if
there exist families {mi}i∈I in M and {fi}i∈I in M∗ = HomR(M, R) such that
every m ∈ M is a finite sum m = Σmifi(m) where fi(m) = 0 almost for every
i ∈ I. In the next theorem, we prove that M is a projective R-module if and only
if M2 is a projective R(M)-module.
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Theorem 2.4. Let M be an R-module. Then M is projective if and only if M2

is projective.

Proof. Let M be a projective R-module and (1, m) ∈ M2. Then there exist families
{mi}i∈I in M and {fi}i∈I in M∗ = HomR(M, R) such that m = Σmifi(m). Thus

(1, m) = (1, Σmifi(m)) = Σ(1, mifi(m)) = Σ(fi(m), 0)(1, mi).

Put gi = fi(+)0 and ti = (1, mi). Hence (1, m) = Σtigi(1, m), in which gi ∈
HomR(M)(M

2, R(M)). Therefore, M2 is a projective. The proof of the converse
is similar.

One may ask the following question. If M is a weak cancellation R-module, can
we deduce that M2 is a weak cancellation R(M)-module? The following corollary
gives an affirmative answer in the case projective modules. But first note that by
[13, Theorem 4.1], any projective module is a weak cancellation if and only if its
trace is finitely generated ideal.

Corollary 2.5. Let M be a projective R-module. Then M is a weak cancellation
R-module if and only if M2 is a weak cancellation R(M)-module.

Proof. Let M be a weak cancellation projective R-module. By [13, Theorem 4.1],
Tr(M) is finitely generated. Hence Tr(M2) is finitely generated, by Lemma 2.2.
Theorem 2.4 and [13, Theorem 4.1] follow that M2 is a weak cancellation module.
The proof of the other side is similar.

Corollary 2.6. Let M be a projective R-module. Then M is a cancellation R-
module if and only if M2 is a cancellation R(M)-module.

Proof. Let M be a cancellation projective R-module. By [13, Theorem 4.2],
Tr(M) = R. Hence Tr(M2) = Tr(M)(+)M = R(M), by Theorem 2.3. Thus
M2 is a cancellation module. The proof of the converse is similar.

By Corollary 2.6 and [13, Example 1.3], if F is a free R-module, then F 2 is a
cancellation R(M)-module.
It is shown in [10, Theorem 7.6], M is flat if and only if for every pair of finite
subsets {x1, ..., xn} and {a1, ..., an} of M and R, respectively, such that Σn

i=1aixi =
0 there exist elements z1, ..., zk ∈ M and bij ∈ R ( i = 1, ..., n and j = 1, ..., k)
such that Σn

i=1bijai = 0 (j = 1, ..., k) and xi = Σk
j=1bijzj. Now, we show that M

is flat if and only if M2 is flat.

Theorem 2.7. Let M be an R-module. Then M is a flat R-module if and only if
M2 is a flat R(M)-module.

Proof. Let M be a flat R-module and Σn
i=1(ai, mi)(1, xi) = 0, where {(ai, mi)}

n
i=1

and {(1, xi)}
n
i=1 are arbitrary subsets of R(M) and M2. So Σn

i=1aixi = 0. Since
M is flat, there exist elements z1, ..., zk ∈ M and bij ∈ R ( i = 1, ..., n and
j = 1, ..., k) such that Σn

i=1bijai = 0 (j = 1, ..., k) and xi = Σk
j=1bijzj. Thus

Σn
i=1(bij , 0)(ai, 0) = 0 and (1, xi) = Σk

j=1(bij , 0)(1, zj). Therefore, M2 is a flat
R-module. The proof of the converse is similar.
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3 Product of Submodules and Decompositions

In this section we show that if N has a primary (secondary) decomposition
then N2 has a primary (resp. secondary) decomposition. We recall from [10], that
a submodule Q of M is said to be a primary submodule precisely when M/Q 6= 0
and for each a ∈ ZdvR(M

Q
) there exists n ∈ N such that an(M

Q
) = 0. Now, if Q

is a primary submodule of M , then P := rad(AnnR
M
Q

) is a prime ideal of R. In
this case we say that Q is a P -primary submodule of M , or Q is P -primary in
M . Let N be a proper submodule of M . A primary decomposition of N in M
is an expression for N as an intersection of finitely many primary submodules of
M . We say that N is a decomposable submodule of M precisely when it has a
primary decomposition in M .
First we need the following.

Theorem 3.1. Let Q1, ..., Qn be submodules of an R-module M . Then (Q1+Q2+
· · · + Qn)2 = Q2

1 + Q2
2 + · · · + Q2

n and (Q1 ∩ Q2 · · · ∩ Qn)2 = Q2
1 ∩ Q2

2 ∩ · · · ∩ Q2
n.

Proof. The proof is trivial.

Theorem 3.2. Let N be a submodule of an R-module M . Then N has a primary
decomposition if and only if N2 has a primary decomposition.

Proof. Suppose that N = Q1∩Q2∩· · ·∩Qn is a primary decomposition for N and
rad(AnnR

M
Qi

) = Pi, for every i with 1 ≤ i ≤ n. By Theorem 3.1, N2 = Q2
1 ∩Q2

2 ∩

· · ·∩Q2
n. To see why this is a primary decomposition for N2, note first that M2

Q2

i

6= 0,

for every i with 1 ≤ i ≤ n. If (r, m) ∈ Zdv(M2

Q2

i

), then r ∈ Zdv( M
Qi

) and hence there

exists n ∈ N such that rn( M
Qi

) = 0. Hence (r, m)n(M2

Q2

i

) = (rn, nrn−1m)(M2

Q2

i

) = 0.

It remains to show that rad(AnnR(M)
M2

Q2

i

) = Pi(+)M , for every i with 1 ≤ i ≤ n.

Let (t, m) ∈ rad(AnnR(M)
M2

Q2

i

). Then there exists n ∈ N such that tnM ⊆ Qi.

Thus t ∈ rad(AnnR
M
Qi

) = Pi. It turns out that rad(AnnR(M)
M2

Q2

i

) ⊆ Pi(+)M . One

can easily check that Pi(+)M ⊆ rad(AnnR(M)
M2

Q2

i

). It follows that Pi(+)M =

rad(AnnR(M)
M2

Q2

i

) and so Q2
i is a primary submodule of M2, for every i with

1 ≤ i ≤ n. The proof of the converse is similar.

I.G. Macdonald in [5] has developed the theory of attached prime ideals and sec-
ondary representations of a module, which is, in a certain sense, dual to the theory
of associated prime ideals and primary decompositions. Let us recall from [10],
the definition of secondary module. Recall that an R-module M is said to be
secondary if M 6= 0 and for each a ∈ R the endomorphism ϕa : M → M defined
by ϕa(m) = am (for m ∈ M) is either surjective or nilpotent. If M is secondary,
then P = rad(AnnM) is a prime ideal and M is said to be P -secondary. A sec-
ondary representation of an R-module M is an expression of M as a finite sum of
secondary submodules

M = N1 + N2 + · · · + Nn.
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Theorem 3.3. Let N be a submodule of an R-module M . Then N has a secondary
representation if and only if N2 has a secondary representation.

Proof. Let N = Q1 + Q2 + · · · + Qn be a secondary representation of N with
rad(AnnQi) = Pi, for every i with 1 ≤ i ≤ n. By Theorem 3.1, N2 = Q2

1 +
Q2

2 + · · · + Q2
n. To see why this is a secondary representation of the N2 note first

that for each (r, m) ∈ R(M) the endomorphism φ(r,m) : Q2
i → Q2

i defined by
φ(r,m)((1, q)) = (r, m)(1, q) = (1, rq) induce endomorphism ϕr : Qi → Qi defined
by ϕr(q) = rq. ϕr is either surjective or nilpotent. It follows that φ(r,m) is either
surjective or nilpotent. It remains to show that rad(AnnQ2

i ) = Pi(+)M , for every
i with 1 ≤ i ≤ n. Let (t, m) ∈ rad(AnnQ2

i ). Then there exists n ∈ N such that
tnQi = 0. Hence t ∈ rad(AnnQi) = Pi. It turns out that rad(AnnQ2

i ) ⊆ Pi(+)M .
One can easily check that Pi(+)M ⊆ rad(AnnQ2

i ). Thus Pi(+)M = rad(AnnQ2
i )

and so Q2
i is a secondary submodule of M2, for every i with 1 ≤ i ≤ n. The proof

of the converse is similar.

Example 3.1. Let R be an integral domain and K be the quotient field of R. Then
K2 is a 0(+)M secondary R(K)-module. In particular, Q2 is a 0(+)Q secondary
Z(+)Q-module.

Example 3.2. If P is a maximal ideal of R, then R2

(P n)2 is a P (+)R-secondary

R(R)-module, for every n ∈ N.

Example 3.3. Let R be a local ring with the unique maximal ideal P . If every
element of P is nilpotent, then R2 is a P (+)R-secondary R(R)-module.

Acknowledgement : The authors thank to the referee for his valuable sugges-
tions.
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