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Abstract : The main purpose of this paper is to define the sequence space
bs(p,s)and determine the necessary and sufficient conditions on the matrix se-
quence A = (Ai) in order that A ∈ (X, Y ), where X = l∞(p, s), bs(p, s) and Y =
l∞, f, bs, fs.These results are more general than those of Lascarides and Mad-
dox[6],Basar Solak[3],Nanda[10] and Solak[12].

Keywords : Infinite matrices, Almost convergence, A-summability.

2000 Mathematics Subject Classification : 40C05, 40H05, 46A45.

1 Introduction

Let A = (ank) be an infinite matrix of real numbers ank(n, k = 0, 1, · · · ) and
X,Y be two non-empty subsets of the space W of real sequences.We say that A
defines a (matrix) transformation from X into Y,and we denote it by A:X→Y, if
for every sequence x=(xk) ∈X,the sequence Ax=(An(x)) is in Y,where the series
An(x) =

∑

k ankxk converges for all n. By (X,Y) we denote the class of all such
matrices.

By l∞ and bs we denote the spaces of all bounded sequences and bounded series
respectively.The shift operator D is defined on l∞ by (DX)n = xn+1.A Banach
limit L is defined on l∞ as a non-negative linear functional,such that L(Dx)=L(x)
and L(e)=1,where e=(1,1,1—)(see[1]).A sequence x ∈ l∞ is said to be almost
convergent to the generalized limit ℓ if all Banach limits of x is ℓ and denoted by f-

limx=ℓ.Lorentz[7] proved that f-limx=ℓ if and only if limm
(xn+xn+1+···+xn−m+1)

m
=

l uniformly in n.It is well known that a convergent sequence is almost convergent
such that its limit and generalized limit are equal.

Given any infinite series
∑

an,it is said to be almost convergent if its sequence
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of partial sums is almost convergent.By f and fs we denote the spaces of all almost
convergent real sequences and series,respectively.

For a sequence p = (pk) with pk > 0,the following sequence spaces where
defined by Maddox[6,9] and Solak[12],respectively:

l(p) := {x :
∑

k

|xk|
pk < ∞}, 1 < pk ≤ suppk < ∞,

l∞(p) := {x : supk |xk|
pk < ∞},

bs(p) := {x : supk |
k
∑

n=0
xn|

pk < ∞},

In [4] and [2],the spaces l(p) and l∞(p) were extended respectively to l(p, s)
and l∞(p,s) for s ≥ 0.i.e,

l(p, s) := {x :
∑

k

k−s|xk|
pk < ∞},

l∞(p, s) := {x : supk k−s|xk|
pk < ∞},

Here we give an obvious extension of bs(p) to bs(p,s) for s ≥ 0.i.e.

bs(p, s) := {x : supk k−s|
k
∑

n=0
xn|

pk < ∞},

Let A denote the sequence of real matrices Ai = (a
(i)
nk).We write for a sequence

x = (xk).

(Ax)i
n =

∑

k

a
(i)
nkxk

if it exists for each n,i and

Ax = ((Ax)i
n)∞n,i=0

A sequence x is said to be A-summable to ℓ if limn(Ax)i
n = l, uniformly in i.To

denote the matrix sequence A of the class (X,Y), we write A ∈ (X, Y ).If a
(i)
nk = ank

for all i, then A reduces to the usual summability method A and if a
(i)
nk = 1(n = k)

for all i,= 0(n 6= k) for all i.then A corresponds to the identity matrix I which
is equivalent to ordinary convergence.So the method A is more general than the
usual summability method A.

Throughout the sections 2 and 3 by s = (sk) we denote the sequence of partial
sums of the series

∑

xn.Thus it is clear that s ∈ l∞(orf),whenever x ∈ bs(orfs).

2 Matrix sequences from l∞(p.s) into l∞.f.bs and
fs.

Theorem 2.1. A ∈ (l∞(p.s).l∞) if and only if (2.1) holds.

D(N) = sup
n,i

∑

k

k
s

pk |ank(i)|N
1

pk < ∞ for every integer N > 1. (2.1)

To prove Theorem 2.1 we require he following result.
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Lemma 2.2. (see Stieglitz[13], Folgerung[1])
Given B = (Bi), then he following three statements are equivalent.
(a) Bx exists for all x ∈ l∞.
(b) Bx exists for all x ∈ c0.

(c)
∑

k

|b
(i)
nk| < ∞, (n.i), where c0 denoes the space of sequences convergent to zero.

Proof of the Theorem 2.1. Necessity. Suppose that A ∈ (l∞(p.s).l∞). If the
condition (2.1) is not true, then there exists an integer N > 1 such that D(N) = ∞.

Then, by Lemma 1, the matrix sequence Bx = (b
(i)
nk) = (a

(i)
nkk

s
pk N

1
pk ) /∈ (l∞, l∞)

for some integer N > 1. So, there exists x ∈ l∞, such that Bx /∈ l∞. Now,

y = (yk) = (N
1

pk k
s

pk xk) ∈ l∞(p.s), but Ay = Bx /∈ l∞, which contradicts the fact
that A ∈ (l∞(p.s), l∞). Hence 2.1 is necessary.

Sufficiency. Let the condition (2.1) holds and x ∈ l∞(p.s). If we choose an
integer N > max(1, sup

k

k−s|xk|
pk), then for every n,i.

∣

∣

∣
(Ax)i

n

∣

∣

∣
=

∣

∣

∣

∣

∣

∑

k

a
(i)
nkxk

∣

∣

∣

∣

∣

=
∑

k

∣

∣

∣
a
(i)
nkxk

∣

∣

∣
=
∑

k

∣

∣

∣
a
(i)
nk

∣

∣

∣
k

s
pk N

1
pk ≤ D(N).

And therefore A ∈ (l∞(p.s), l∞). This completes the proof of the Theorem 2.1.

Theorem 2.3. (a) A ∈ (l∞(p.s).f) if and only if (2.1) holds and,

f − lima
(i)
nk = ak, uniformly in i, for each k, (2.2)

lim
q

∑

k

1

q
+ 1

∣

∣

∣

∣

∣

∑

m=0

an+m,k(i) − ak

∣

∣

∣

∣

∣

= 0, uniformlyinn, i. (2.3)

(b) A ∈ (l∞(p, s), f0) if and only if (2.1) holds and (2.2), (2.3) also hold with
ak = 0 for each k, where f0 denotes the linear space of all almost convergent
sequences whose generalized limit is zero.

To prove the Theorem 2.3 we require the following result (see Basar Solak[3]).

Lemma 2.4. A ∈ (l∞, f) if and only if (2.2), (2.3) hold and sup
n,i

∑

k

∣

∣

∣
a
(i)
nk

∣

∣

∣
< ∞.

Proof of the Theorem 2.3 (a). Necessity. Let A ∈ (l∞(p.s), f). Since
(l∞(p, s), f) ⊂ (l∞(p.s), l∞), the condition (2.1) must hold.the necessity of (2.2) is
obtained by taking x = ek, where ek is the sequence whose only non-zero term is 1
in the k-th place. Since ek ∈ l∞(p.s) for each k. If (2.3) is not true,then by Lemma

2.4, the matrix sequence B = (a
(i)
nkk

s
pk N

1
pk ) /∈ (l∞, f) for some integer N > 1. So

that there exists x ∈ l∞ such that Bx 6∈ f . Let us take y = (k
s

pk N
1

pk xk) ∈ l∞(p.s),
but Ay = Bx 6∈ f . This contradicts the fact that A ∈ (l∞(p.s), f). Hence (2.3) is
true.
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Sufficiency: Suppose that the conditions (2.1)-(2.3) hold and x ∈ l∞(p.s).
Since x ∈ l∞(p.s) and the series

∑

ak converges absolutely, the series
∑

akxk also
converges absolutely,say to the value b0. By using similar technique as in [3], we
get by (2.3).

0 ≤ lim
q

∣

∣

∣

∣

∣

1

q
+ 1

q
∑

m=0

(Ax)i
n+mb0

∣

∣

∣

∣

∣

= lim
q

1

q + 1

∣

∣

∣

∣

∣

q
∑

m=0

∑

k

(an+m,k(i) − ak)xk

∣

∣

∣

∣

∣

≤ lim
q

∑

k

1

q + 1

∣

∣

∣

∣

∣

q
∑

m=0

an+m,k(i) − ak

∣

∣

∣

∣

∣

|xk| ≤ Klim
∑

k

1

q + 1

∣

∣

∣

∣

∣

q
∑

m=0

an+m,k(i) − ak

∣

∣

∣

∣

∣

= 0,

uniformly in n,i. This means that f − limAx = b0, uniformly in n,i and hence
A ∈ (l∞(p.s), f). Proof of (b) follows from (a) by taking ak = 0 for each k. This
completes the proof of the Theorem 2.3.

Theorem 2.5. (a) A ∈ (l∞(p.s).bs) if and only if (2.4) holds. For every integer
N > 1,

sup
n,i

∑

k

∣

∣

∣

∣

∣

n
∑

j=0

ajk(i)

∣

∣

∣

∣

∣

k
s

pk N
1

pk < ∞. (2.4)

Proof. Let x ∈ l∞(p.s). Consider the following equality obtained from the m-th

partial sums of
m
∑

j=0

(Ax)i
j ,

n
∑

j=0

m
∑

k=0

ajk(i)xk =

m
∑

k=0

(

n
∑

j=0

ajk(i)

)

xk : m, n, i = 0, 1... (2.5)

we get by leting m → ∞ in (2.5) that

n
∑

j=0

∑

k

ajk(i)xk =
∑

k

(

n
∑

j=0

ajk(i)

)

xk : n, i = 0, 1... (2.6)

Thus it is seen in (2.6) that B = bnk(i) ∈ (l∞(p.s).l∞), where

bnk(i) =

n
∑

j=0

ajk(i)

for all n,k and i. Therefore B ∈ (l∞(p.s).l∞), if and only if A ∈ (l∞(p.s).bs). This
completes the proof of Theorem 2.5.
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Theorem 2.6. (a) A ∈ (l∞(p.s).fs) if and only if (2.4) holds and

f − lim

n
∑

j=0

ajk(i) = ak, uniformly in i for each k, (2.7)

lim
q

∑

k

1

q + 1
|

q
∑

m=0

n+m
∑

j=0

ajk(i) − ak| = 0, uniformly in n,i. (2.8)

(b) A ∈ (l∞(p.s), f0s) if and only if (2.4) holds and (2.7), (2.8) also hold with
ak = 0 for each k, where f0s denotes the linear space of all almost convergent
series whose generalized sum is zero.

Proof (a). Necessity. Let A ∈ (l∞(p.s).fs) and x ∈ l∞(p.s) the necessity of
(2.7) is proved by taking x = ek. Now, reconsider the equality (2.6). It is seen by
passing f-limit in (2.6) that B = (bnk(i)) ∈ (l∞(p.s).f), where

bnk(i) =

n
∑

j=0

ajk(i) for all n, k and i.

Therefore, B = bnk(i) satisfies (2.1), (2.3) and these are equivalent to (2.4), (2.8)
respectively.

Sufficiency: Suppose (2.4), (2.7), (2.8) hold and x ∈ l∞(p.s). Again consider

B =

(

n
∑

j=0

ajk(i)

)

In (2.6). Therefore, it follows immediately that B = bnk(i) satisfies (2.1), (2.2) and
(2.3) if and only if A = ank(i) satisfies (2.4), (2.7) and (2.8) respectively. Hence
B ∈ (l∞(p.s).f), and this yields, by passing f-limit in (2.6) that x ∈ fs. Then
A ∈ (l∞(p.s).fs),.

Proof of (b) follows from (a) by taking ak = 0 for each k. This completes the
proof of Theorem 2.6.

3 Matrix sequences from bs(p,s) into l∞.f.bs and
fs.

Theorem 3.1. A ∈ bs(p, s).l∞ if and only if (3.1), (3.2) holds. For every integer
N > 1

sup
n,i

∑

k

|∆ank(i)|k
s

pk N
1

pk < ∞. (3.1)

lim
k

ank(i) = 0for each n,i. (3.2)

Where ∆ank(i) = ank(i) − an,k+1(i).
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Proof. Necessity. Let A ∈ bs(p, s).l∞ and x ∈ bs(p.s). To show the necessity of
(3.2), we assume that (3.2) is not true for some n,i and obtain a contradiction as in
Theorem 2.1 of [11]. Indeed under this assumption we can find some x ∈ bs(p, s)
such that Ax ∈ l∞. For example of we choose x = (−1)n ∈ bs(p, s) then

(Ax)i
n =

∑

k

ank(i)(−1)k

However,the series
∑

k

ank(i)(−1)k

does not converge for each n,i. That is to say that A-transform of the series
∑

(−1)n which belongs to bs(p,s) does not even exist. But this contradicts the
fact that A ∈ bs(p, s).l∞. Hence (3.2) is necessary.

Let us consider the equality

m
∑

k=0

ank(i)xk =

m−1
∑

k=0

∆ank(i)sk + anm(i)sm, : m, n, i = 0, 1... (3.3)

obtained by applying Abel’s partial summation to the m-th partial sums of Ax.By
letting m → ∞ in (3.3) and from (3.2),we have

∑

k

ank(i) =
∑

k

∆ank(i)sk : n, i = 0, 1... (3.4)

Thus,it is that seen that C = cnk(i) ∈ (l∞(p, s), l∞) where cnk(i) = ∆ank(i), for
all n,k and i. Therefore C = cnk(i) satisfies (2.1) which is equivalent to (3.1).

Sufficiency: Suppose that the conditions (3.1), (3.2) hold and x ∈ bs(p, s).
Now reconsider C = cnk(i) in (3.4). Therefore C = cnk(i) satisfies (2.1) if and only
if A = ank(i) satisfies (3.1) is true. So C ∈ (l∞(p, s), l∞). This implies by (3.4)
that A ∈ bs(p, s)).l∞). This completes the proof of Theorem 3.1.

Theorem 3.2. (a) A ∈ bs(p.s).f if and only if (3.1), (3.2), (3.5) and (3.6) hold.

f − limank(i) = ak, uniformly in i for each k. (3.5)

lim
q

∑

k

1

q
+ 1|

q
∑

j=0

(∆an+j,k(i) − ak)| = 0, uniformly in n,i. (3.6)

(b) A ∈ bs(p.s).f0 if and only if (3.1), (3.2) hold and (3.5), (3.6) also hold with
ak = 0 for each k.

Proof (a). Necessity. Suppose A ∈ (bs(p, s), f). Since (bs(p,s),f)⊂ (bs(p, s), l∞),
the necessity of (3.1) and (3.2) are obvious. The necessity of (3.6) is easily proved
in the same way as was (2.2), with bs(p,s) instead of l∞(p, s).
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Now, reconsider the equality (3.4). It is seen by passing to f-limit in (3.4) that
B = (bnk(i)) ∈ (l∞(p.s).f), where bnk(i) = ∆ank(i) for all n,k and i. Therefore
B = (bnk(i)), satisfies (2.3) which is equivalent to (3.6).

Sufficiency: Suppose that the conditions (3.1), (3.2), (3.5), (3.6) hold and
x ∈ bs(p, s). Let us reconsider B = (∆ank(i)) in (3.4). Therefore B = ank(i)
satisfies (2.1), (2.2) and (2.3) if and only if A = ank(i) satisfies (3.1), (3.2), (3.5)
and (3.6) respectively is true. Hence B ∈ (l∞(p, s), f) and this yields by passing
f-limit in (3.4) that Ax ∈ f . This asserts that every element of bs(p,s) is almost
A-summable i.e, A ∈ (l∞(p, s), f).

Proof of (b) follows from (a) by taking ak = 0 for each k. This completes the
proof of Theorem 3.2.

Theorem 3.3. A ∈ (bs(p, s), bs) if and only if (3.2)and(3.7) hold. For every
integer N > 1,

sup
n,i

∑

k

∣

∣

∣

∣

∣

n
∑

j=0

∆ajk(i)

∣

∣

∣

∣

∣

k
s

pk N
1

pk < ∞. (3.7)

Proof (a). Necessity. Let A ∈ (bs(p, s), bs) and x ∈ bs(p, s). Since (bs(p, s), bs) ⊂
(bs(p, s), l∞), the necessity of (3.2) is obvious Theorem 3.1.

Now, consider the equality, which is obtained in a similar way of (3.3);

n
∑

j=0

m
∑

k=0

ajk(i)xk =

m−1
∑

k=0

(

n
∑

j=0

∆ajk(i))sk +

n
∑

j=0

ajm(i) sm : m, n, i = 0, 1... (3.8)

Therefore, we get by considering (3.2) and letting m → ∞ in (3.8) that

n
∑

j=0

∑

k

ajk(i)xk =
∑

k

(

n
∑

j=0

∆ajk(i))sk : n, i = 0, 1... (3.9)

Thus it is seen that B = bnk(i) ∈ (l∞(p.s).l∞), where bnk(i) =
n
∑

j=0

∆ajk(i) for all

n,k and i. So B = bnk(i) satisfies (2.1)which is equivalent to (3.7).
The sufficiency is trivial. This completes the proof of Theorem 3.3.

Theorem 3.4. (a) A ∈ (bs(p.s).fs) if and only if (3.2), (3.7), (3.10) and (3.11)
hold.

f − lim

n
∑

j=0

ajk(i) = ak, uniformly in i for each k. (3.10)

lim
q

∑

k

1

q + 1

∣

∣

∣

∣

∣

q
∑

j=0

n+j
∑

m=0

∆(ank(i) − (ak))

∣

∣

∣

∣

∣

= 0, uniformly in n,i. (3.11)

(b) A ∈ (bs(p.s), f0s). if and only if (3.2), (3.7) hold and (3.10), 3.11) also hold
with ak = 0 for each k.
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Proof (a). Necessity. Let A ∈ (bs(p, s), fs) and x ∈ bs(p, s). Since (bs(p,s),fs)⊂
(bs(p, s), bs), the necessity of (3.2) and (3.7) are obvious by Theorem 3.3. The
necessity of (3.10) is proved by the analogous argument of (3.5).

Now, reconsider the equality (3.9). It is seen by passing f-limit in (3.9) that
B = bnk(i) ∈ (l∞(p.s).f), where

bnk(i) =

n
∑

j=0

∆ajk(i) for all n, k and i.

So B = bnk(i) satisfies (2.3) which is equivalent to (3.11).
The sufficiency and the proof of (b) is obvious. This completes the proof of

Theorem 3.4.
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