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Chromatic Uniqueness of Certain

Bipartite Graphs with Six Edges Deleted
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Abstract : For integers p, q, s with p ≥ q ≥ 2 and s ≥ 0, let K−s
2 (p, q) denote the

set of 2−connected bipartite graphs which can be obtained from Kp,q by deleting
a set of s edges. F.M.Dong et al. (Discrete Math. vol.224 (2000) 107–124) proved
that for any graph G ∈ K−s

2 (p, q) with p ≥ q ≥ 3 and 0 ≤ s ≤ min {4, q− 1}, then
G is chromatically unique. In this paper, we study the chromaticity of any graph
G ∈ K−s

2 (p, q) when p ≥ 6, q = 4 and s = 6.
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1 Introduction

All graphs considered here are simple graphs. For a graph G, let V (G), ∆(G)
and P (G, λ) be the vertex set, maximum degree and the chromatic polynomial of
G, respectively.

Two graphs G and H are said to be chromatically equivalent (or simply
χ−equivalent), symbolically G ∼ H , if P (G, l) = P (H, l). The equivalence class
determined by G under ∼ is denoted by [G]. A graph G is chromatically unique
(or simply χ−unique) if H ∼= G whenever H ∼ G, i.e, [G] = {G} up to isomor-
phism. For a set G of graphs, if [G] ⊆ G for every G ∈ G, then G is said to be
χ−closed. For two sets G1 and G2 of graphs, if P (G1, λ) 6= P (G2, λ) for every
G1 ∈ G1 and G2 ∈ G2, then G1 and G2 are said to be chromatically disjoint, or
simply χ−disjoint.

For integers p, q, s with p ≥ q ≥ 2 and s ≥ 0, let K−s(p, q) (resp. K−s
2 (p, q))

denote the set of connected (resp. 2−connected) bipartite graphs which can be
obtained from Kp,q by deleting a set of s edges.

In [4, 5], Dong et al. proved the following results.
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Lemma 1.1. If p ≥ q ≥ 3 and s ≤ p + q − 4, then for any G ∈ K−s(p, q) with
δ(G) ≥ 2, then G is 2-connected.

Theorem 1.2. For integers p, q, s with p ≥ q ≥ 2 and 0 ≤ s ≤ q − 1, K−s
2 (p, q) is

χ-closed.

Teo and Koh [13] showed that every graph in K(p, q)∪K−1(p, q) is χ−unique.
The case when s ≥ 2 has been studied by Giudici and Lima de Sa [6], Peng [7],
Borowiecki and Drgas-Burchardt [1]. Their typical results are of the following:

(i) If 2 ≤ s ≤ 4 and p − q is small enough, then each graph in K−s(p, q) is
χ−unique;

(ii) If G ∈ K−s(p, q), where 0 ≤ p − q ≤ 1, such that the set of s edges deleted
forms a matching, then G is χ−unique.

Chen [2] showed that if G ∈ K−s(p, q), where 3 ≤ s ≤ p − q and

q ≥ max

{

1

2
(p − q)(s − 1) +

3

2
,

8

27
(p − q)2 +

1

3
(p − q) + 5s + 6

}

,

and the set of s edges deleted forms a matching or a star, then G is χ−unique.
In [5], Dong et al. proved that any 2−connected graph obtained from Kp,q by
deleting a set of edges that forms a matching of size at most q − 1 or that induces
a star is chromatically unique.

Very recently, Dong et al. [4] showed that any graph in K−s
2 (p, q) is χ-unique

if p ≥ q ≥ 3 and 1 ≤ s ≤ min{4, q − 1}. In [9], we proved that any graph in
K−s

2 (p, q) is χ-unique if p ≥ q ≥ 6 and s = 5; or p ≥ q ≥ 7 and s = 6. In [10, 11],
we extended this study for the case p > q = 5 and s = 5; or p > q = 4 and s = 5.
In this paper, we shall study the chromaticity of any graph in K−s

2 (p, q) when
p ≥ 6, q = 4 and s = 6.

2 Preliminary Results and Notation

For a bipartite graph G = (A, B; E) with bipartition A and B and edge set E,
let G′ = (A′, B′; E′) be the bipartite graph induced by the edge set E′ = {xy | xy /∈
E, x ∈ A, y ∈ B }, where A′ ⊆ A and B′ ⊆ B. We write G′ = Kp,q − G, where
p = |A| and q = |B|.

For a graph G and a positive integer k, a partition {A1, A2, . . . , Ak} of V (G)
is called a k-independent partition in G if each Ai is a non-empty independent set
of G. Let α(G, k) denote the number of k-independent partitions in G. For any
graph G of order n, we have (see [8]):

P (G, λ) =

n
∑

k=1

α(G, k)λ(λ − 1) · · · (λ − k + 1).

Thus, we have
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Lemma 2.1. If G ∼ H, then α(G, k) = α(H, k) for k = 1, 2, . . ..

For any bipartite graph G = (A, B; E) with bipartition A and B and edge set
E, let

α′(G, 3) = α(G, 3) − (2|A|−1 + 2|B|−1 − 2). (2.1)

For a bipartite graph G = (A, B; E), let

Ω(G) = { Q | Q is an independent set in G with Q ∩ A 6= ∅, Q ∩ B 6= ∅ }.

Lemma 2.2. (Dong et al. [5]) For G ∈ K−s(p, q),

α′(G, 3) = |Ω(G)| ≥ 2∆(G′) + s − 1 − ∆(G′).

For a bipartite graph G = (A, B; E), the number of 4−independent partitions
{A1, A2, A3, A4 } in G with Ai ⊆ A or Ai ⊆ B for all i = 1, 2, 3, 4 is

(2|A|−1 − 1)(2|B|−1 − 1) +
1

3!
(3|A| − 3 · 2|A| + 3) +

1

3!
(3|B| − 3 · 2|B| + 3)

= (2|A|−1 − 2)(2|B|−1 − 2) +
1

2
(3|A|−1 + 3|B|−1) − 2.

Define

α′(G, 4) = α(G, 4) − { (2|A|−1 − 2)(2|B|−1 − 2) +
1

2
(3|A|−1 + 3|B|−1) − 2 }.

Observe that for G, H ∈ K−s(p, q),

α(G, 4) = α(H, 4) if and only if α′(G, 4) = α′(H, 4).

The following results will be used to prove our main theorem.

Lemma 2.3. (Dong et al. [3]) For G = (A, B; E) ∈ K−s(p, q) with |A| = p and
|B| = q,

α′(G, 4) =
∑

Q∈Ω(G)

(2p−1−|Q∩A| + 2q−1−|Q∩B| − 2) +

∣

∣

∣

∣

{ {Q1, Q2 } | Q1, Q2 ∈ Ω(G), Q1 ∩ Q2 = ∅ }

∣

∣

∣

∣

.

Lemma 2.4. (Dong et al. [5]) For a bipartite graph G = (A, B; E), if uvw is a
path in G′ with dG′(u) = 1 and dG′(v) = 2, then for any k ≥ 2,

α(G, k) = α(G + uv, k) + α(G − {u, v}, k − 1) + α(G − {u, v, w}, k − 1).

Theorem 2.5. (Dong et al. [5]) For integers p,q,s with p ≥ q ≥ 3 and 0 ≤ s ≤
2q − 3, and G ∈ K−s

2 (p, q),
[G] ⊆ K−s

2 (p, q),

if one of the following conditions is satisfied:
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(i) s ≤ q − 1;

(ii) s = q ≥ 6 and p ≥ 2;

(iii) p ≥ q + 4;

(iv) p ∈ {q + 3, q + 1} and 0 ≤ s ≤ 2q − 4;

(v) p = q + 2 and △(G′) ≥ s + 3 − q;

(vi) p = q and α′(Gi, 3) < 2p−2.

3 Main Result

In [9], we proved that every graph in K−s
2 (p, q) is χ-unique if p ≥ q ≥ 6 and

s = 5 or s = 6. In [10], we showed that every graph in K−s
2 (p, q) is χ-unique if

p > q = 5 and s = 5. In [11], we proved that every graph in K−s
2 (p, q) is χ-unique

if p > q = 4 and s = 5. In this section, we shall prove that every graph in K−s
2 (p, q)

is χ-unique if p ≥ 6, q = 4 and s = 6.
Let G be any graph in K−6

2 (p, q), and G′ = K(p, q) − G. By construction
method and Lemma 1.1, one can easily verify that there are 44 structures of G′

(q = 4 and G is 2−connected), which are named as G′
1, G′

2, . . ., G′
44 (see Table

1). We group the graphs G1, G2, . . ., G44 according to their values of α′(Gi, 3),
which can be calculated by using Lemma 2.2 and these values are in column three
of Table 1. Thus we have the following observations.

(i) α′(Gi, 3) = 8, for i=1;

(ii) α′(Gi, 3) = 9, for i=2,3,4,5;

(iii) α′(Gi, 3) = 10, for i=6,7,. . . ,11;

(iv) α′(Gi, 3) = 11, for i=12,13,. . . ,17;

(v) α′(Gi, 3) = 12, for i=18,19,. . . ,25;

(vi) α′(Gi, 3) = 13, for i=26,27,28;

(vii) α′(Gi, 3) = 14, for i=29,30;

(viii) α′(Gi, 3) = 15, for i=31,32;

(ix) α′(Gi, 3) = 17, for i=33,34;

(x) α′(Gi, 3) = 18, for i=35,36,37;

(xi) α′(Gi, 3) = 19, for i=38,39;

(xii) α′(Gi, 3) = 20, for i=40;

(xiii) α′(Gi, 3) = 21, for i=41;

(xiv) α′(Gi, 3) = 32, for i=42;
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(xv) α′(Gi, 3) = 33, for i=43;

(xvi α′(Gi, 3) = 63, for i=44.

We then group these graphs according to their α′(Gi, 3). Hence we have the
following classification of the graphs.

T1 = { G1 }

T2 = { G2, G3, G4, G5 }

T3 = { G6, G7, . . . , G11 }

T4 = { G12, G13, . . . , G17 }

T5 = { G18, G19, . . . , G25 }

T6 = { G26, G27, G28 }

T7 = { G29, G30 }

T8 = { G31, G32 }

T9 = { G33, G34 }

T10 = { G35, G36, G37 }

T11 = { G38, G39 }

T12 = { G40 }

T13 = { G41 }

T14 = { G42 }

T15 = { G43 }

T16 = { G44 }

We also calculate the values of α′(Gi, 4) by using Lemma 2.3 and we list
them in column four of Table 1. We now present our main result in the following
theorem.

Theorem 3.1. Every graph in K−6
2 (p, q) with p > q = 4 is χ-unique if one of the

following conditions is satisfied:

(i) p ≥ 7,

(ii) p = 6 and △(G′) ≥ 5.

Proof Observe that for any i, j with 1 ≤ i < j ≤ 16, α′(G, 3) < α′(H, 3)
if G ∈ Ti and H ∈ Tj . Thus by Lemma 2.1 and Equation (2.1), Ti and Tj

(1 ≤ i < j ≤ 16) are χ−disjoint and since K−6
2 (p, 4) is χ−closed under the

conditions (iii) or (iv) of Theorem 2.5, then each Ti (1 ≤ i ≤ 16) is χ−closed.
Hence, for each i, to show that all graphs in Ti are χ−unique, it suffices to show
that for any two graphs, G, H ∈ Ti, if G 6∼= H , then either α′(G, 4) 6= α′(H, 4)
or α(G, 5) 6= α(H, 5). Note that T1, T12, T13, T14, T15 and T16 contains only one
graph G1, G41, G42, G43 and G44, respectively and hence G1, G40, G41, G42, G43

and G44 are χ−unique. The remaining work is to compare every two graphs in Ti
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for 2 ≤ i ≤ 11. Note that all graphs in Ti (2 ≤ i ≤ 11) are not considerable for
the case p = 6 since △(G′) < 5. Thus, for all Ti (2 ≤ i ≤ 11), we only consider
the case p ≥ 7.

[1] T2

α′(G4, 4) − α′(G2, 4)

=

[

3 · 2p−3 + 3 · 2q−2 + 21

]

−

[

4 · 2p−3 + 5 · 2q−3 + 14

]

= −2p−3 + 2q−3 + 7 < 0,

α′(G2, 4) − α′(G3, 4)

=

[

4 · 2p−3 + 5 · 2q−3 + 14

]

−

[

4 · 2p−3 + 5 · 2q−3 + 18

]

= −4 < 0,

α′(G3, 4) − α′(G5, 4)

=

[

4 · 2p−3 + 5 · 2q−3 + 18

]

−

[

4 · 2p−3 + 5 · 2q−3 + 21

]

= −3 < 0.

Thus, we can conclude that α′(Gi, 4) 6= α′(Gj , 4) for 2 ≤ i < j ≤ 5.

[2] T3

α′(G11, 4) − α′(G7, 4)

=

[

7 · 2p−4 + 4 · 2q−2 + 16

]

−

[

5 · 2p−3 + 7 · 2q−3 + 18

]

= −3 · 2p−4 + 2q−3 − 2 < 0,

α′(G7, 4) − α′(G6, 4)

=

[

5 · 2p−3 + 7 · 2q−3 + 18

]

−

[

6 · 2p−3 + 6 · 2q−3 + 14

]

= −2p−3 + 2q−3 + 4 < 0,

α′(G6, 4) − α′(G8, 4)

=

[

6 · 2p−3 + 6 · 2q−3 + 14

]

−

[

6 · 2p−3 + 6 · 2q−3 + 18

]

= −4 < 0,

α′(G8, 4) − α′(G9, 4)

=

[

6 · 2p−3 + 6 · 2q−3 + 18

]

−

[

6 · 2p−3 + 6 · 2q−3 + 18

]

= 0,

α′(G8, 4) − α′(G10, 4)

=

[

6 · 2p−3 + 6 · 2q−3 + 18

]

−

[

6 · 2p−3 + 6 · 2q−3 + 19

]

= −1 < 0.

Thus, we can conclude that α′(Gi, 4) 6= α′(Gj , 4) for 6 ≤ i < j ≤ 12 except for
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the graphs G8 and G9. Since α′(G8, 4) = α′(G9, 4), we need to compare α(G8, 5)
and α(G9, 5). By using Lemma 2.4, we can show that α(G8, 5) 6= α(G9, 5) (see
[12]).

[3] T4

α′(G15, 4) − α′(G17, 4)

=

[

9 · 2p−4 + 5 · 2q−2 + 21

]

−

[

11 · 2p−4 + 9 · 2q−3 + 12

]

= −2p−3 + 2q−3 + 9 < 0,

α′(G17, 4) − α′(G16, 4)

=

[

11 · 2p−4 + 9 · 2q−3 + 12

]

−

[

11 · 2p−4 + 9 · 2q−3 + 21

]

= −9 < 0,

α′(G16, 4) − α′(G14, 4)

=

[

11 · 2p−4 + 9 · 2q−3 + 21

]

−

[

7 · 2p−3 + 7 · 2q−3 + 11

]

= −3 · 2p−4 + 2 · 2q−3 + 10 < 0,

α′(G14, 4) − α′(G12, 4)

=

[

7 · 2p−3 + 7 · 2q−3 + 11

]

−

[

7 · 2p−3 + 8 · 2q−3 + 15

]

= −2q−3 − 4 < 0,

α′(G12, 4) − α′(G13, 4)

=

[

7 · 2p−3 + 8 · 2q−3 + 15

]

−

[

7 · 2q−3 + 8 · 2p−3 + 15

]

= −2p−3 + 2q−3 < 0.

Thus, we can conclude that α′(Gi, 4) 6= α′(Gj , 4) for 13 ≤ i < j ≤ 18.

[4] T5: We consider two cases p = 7 and p ≥ 8.

(4.1) Case 1: When p = 7.
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α′(G25, 4) − α′(G23, 4)

=

[

13 · 2p−4 + 11 · 2q−3 + 12

]

−

[

13 · 2p−4 + 11 · 2q−3 + 18

]

− 6 < 0,

α′(G23, 4) − α′(G22, 4)

=

[

13 · 2p−4 + 11 · 2q−3 + 18

]

−

[

15 · 2p−4 + 10 · 2q−3 + 8

]

= −2 · 2p−4 + 2q−3 + 10 < 0,

α′(G22, 4) − α′(G21, 4)

=

[

15 · 2p−4 + 10 · 2q−3 + 8

]

−

[

13 · 2p−4 + 11 · 2q−3 + 24

]

= −2 · 2p−4 − 2q−3 − 16 < 0,

α′(G21, 4) − α′(G24, 4)

=

[

13 · 2p−4 + 11 · 2q−3 + 24

]

−

[

15 · 2p−4 + 10 · 2q−3 + 18

]

= −2 · 2p−4 + 2q−3 + 6 < 0,

α′(G24, 4) − α′(G18, 4)

=

[

15 · 2p−4 + 10 · 2q−3 + 18

]

−

[

8 · 2p−3 + 9 · 2q−3 + 17

]

= −2p−4 + 2q−3 + 1 < 0,

α′(G18, 4) − α′(G20, 4)

=

[

8 · 2p−3 + 9 · 2q−3 + 17

]

−

[

9 · 2p−3 + 9 · 2q−3 + 12

]

= −2p−3 + 5 < 0,

α′(G20, 4) − α′(G19, 4)

=

[

9 · 2p−3 + 9 · 2q−3 + 12

]

−

[

8 · 2q−3 + 9 · 2p−3 + 17

]

= 2q−3 − 5 < 0.

Thus, we have α′(G25, 4) < α′(G23, 4) < α′(G22, 4) < α′(G21, 4) < α′(G24, 4) <
α′(G18, 4) < α′(G20, 4) < α′(G19, 4).

(4.2) Case 2: When p ≥ 8, we can easily show that α′(G25, 4) <
α′(G23, 4) < α′(G21, 4) < α′(G22, 4) < α′(G24, 4) < α′(G18, 4) < α′(G20, 4) <
α′(G19, 4).

Thus, we conclude that α′(Gi, 4) 6= α′(Gj , 4) for 18 ≤ i < j ≤ 25.

Similarly, we can show that for any two graphs, G,H ∈ Ti (6 ≤ i ≤ 11),
then α′(G, 4) 6= α′(H, 4). For details, see [12]. Hence, the proof of the
theorem is now completed.



Chromatic uniqueness of certain bipartite graphs... 347

In view of Theorem 3.1 and results in [9], we posed the following prob-
lem:

Problem. Study the chromaticity of any graph in K−6

2
(p, q) with p >

q and q = 5, 6.

Acknowledgement: The authors would like to extend their sincere thanks
to referee for his comments and suggestions on the manuscript. This work
was supported by Universiti Sains Malaysia under Short Term Grant, Ac-
count Number: 304/PMATHS/637053.

References

[1] M. Borowiecki, E. Drgas-Burchardt, Classes of chromatically unique
graphs, Discrete Math., 111(1993),71-74.

[2] X. Chen, Some families of chromatically unique bipartite graphs, Dis-
crete Math., 184(1998), 245-253.

[3] F.M. Dong, K.M. Koh, K.L. Teo, C.H.C. Little, M.D. Hendy, An at-
tempt to classify bipartite graphs by chromatic polynomials, Discrete
Math., 222(2000), 73-88.

[4] F.M. Dong, K.M. Koh, K.L. Teo, C.H.C. Little, M.D. Hendy, Chro-
matically unique graphs with low 3-independent partition numbers, Dis-
crete Math., 224(2000), 107-124.

[5] F.M. Dong, K.M. Koh, K.L. Teo, C.H.C. Little, M.D. Hendy, Sharp
bounds for the numbers of 3-partitions and the chromaticity of bipartite
graphs, J. Graph Theory, 37(2001) 48-77.

[6] R.E. Giudici, E. Lima de Sa, Chromatic uniqueness of certain bipartite
graphs, Congr. Numer., 76(1990), 69-75.

[7] Y.H. Peng, Chromatic uniqueness of certain bipartite graphs, Discrete
Math. 94 (1991),129–140.

[8] R.C.Read, W.T. Tutte, Chromatic polynomials, in: L.W. Beineke,
R.J. Wilson (Eds.), Selected Topics in Graph Theory III, Academic
Press, New York, 1988, pp. 15-42.

[9] H. Roslan and Y.H. Peng, Chromatic uniqueness of complete bipar-
tite graphs with Five or Six Edges Deleted, Int. J. Contemp. Math.
Sciences, Vol. 4, No. 36 (2009), 1765–1777.



348 Thai J. Math. 8(2) (2010)/ Y.H. Peng and H. Roslan

[10] H. Roslan and Y.H. Peng, Chromatic uniqueness of complete bipar-
tite graphs with Five Edges Deleted, Oriental Journal of Mathematical
Sciences, Vol. 1, No. 1, 2007, 71-77.

[11] H. Roslan and Y.H. Peng, A family of chromatically unique bipartite
graphs, Far East Journal of Mathematics Sceinces, accepted for publi-
cation.

[12] H. Roslan and Y.H. Peng, Chromatic uniqueness of complete bipartite
graphs with Six Edges Deleted, Technical Report, School of Mathemat-
ics, Universiti Sains Malaysia, 2008.

[13] C.P. Teo, K.M. Koh, The chromaticity of complete bipartite graphs
with at most one edge deleted, J. Graph Theory, 14(1990), 89-99.

(Received 7 November 2008)

Yee-Hock Peng
Department of Mathematics, and
Institute of Mathematical Research,
Universiti Putra Malaysia,
43400 UPM Serdang, MALAYSIA
e-mail : yhpeng88@yahoo.com

Roslan Hasni
School of Mathematics,
Universiti Sains Malaysia,
11800 USM Penang, MALAYSIA.
e-mail : hroslan@cs.usm.my



Chromatic uniqueness of certain bipartite graphs... 349



350 Thai J. Math. 8(2) (2010)/ Y.H. Peng and H. Roslan



Chromatic uniqueness of certain bipartite graphs... 351



352 Thai J. Math. 8(2) (2010)/ Y.H. Peng and H. Roslan



Chromatic uniqueness of certain bipartite graphs... 353



354 Thai J. Math. 8(2) (2010)/ Y.H. Peng and H. Roslan


