Idempotent and Regular Elements in $H_{y p_{G}(3)}$

S. Sudsanit and S. Leeratanavalee ${ }^{1}$

Abstract

The concepts of an idempotent element and a regular element are important role in semigroup theory. In this paper we characterize idempotent and regular elememts of the set of all generalized hypersubstitutions of type $\tau=(3)$.

Keywords : Generalized hypersubstitution, Idempotent element, Regular element.
2000 Mathematics Subject Classification : 08A05, 20M07.

1 Introduction

All idempotent elements and all regular elements of the set of all generalized hypersubstitutions of type $\tau=(2)$ were studied by W. Puninagool and S. Leeratanavalee [3], [4]. In this paper we characterize idempotent and regular elememts of the set of all generalized hypersubstitutions of type $\tau=(3)$.

A generalized hypersubstitution of type $\tau=\left(n_{i}\right)_{i \in I}$ is a mapping σ which maps each n_{i}-ary operation symbol of type τ to the set $W_{\tau}(X)$ of all terms of type τ built up by operation symbols from $\left\{f_{i} \mid i \in I\right\}$ where f_{i} is n_{i}-ary and variables from a countably infinite alphabet $X:=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ which does not necessarily preserve the arity. We denote the set of all generalized hypersubstitutions of type τ by $H y p_{G}(\tau)$. To define a binary operation on $H y p_{G}(\tau)$, we define at first the concept of generalized superposition of terms $S^{m}: W_{\tau}(X)^{m+1} \rightarrow W_{\tau}(X)$ by the following steps:
(i) If $t=x_{j}, 1 \leq j \leq m$, then $S^{m}\left(x_{j}, t_{1}, \ldots, t_{m}\right):=t_{j}$.
(ii) If $t=x_{j}, m<j \in \mathbb{N}$, then $S^{m}\left(x_{j}, t_{1}, \ldots, t_{m}\right):=x_{j}$.
(iii) If $t=f_{i}\left(s_{1}, \ldots, s_{n_{i}}\right)$, then

$$
S^{m}\left(t, t_{1}, \ldots, t_{m}\right):=f_{i}\left(S^{m}\left(s_{1}, t_{1}, \ldots, t_{m}\right), \ldots, S^{m}\left(s_{n_{i}}, t_{1}, \ldots, t_{m}\right)\right)
$$

[^0]We extend a generalized hypersubstitution σ to a mapping $\hat{\sigma}: W_{\tau}(X) \rightarrow$ $W_{\tau}(X)$ inductively defined as follows:
(i) $\hat{\sigma}[x]:=x \in X$,
(ii) $\hat{\sigma}\left[f_{i}\left(t_{1}, \ldots, t_{n_{i}}\right)\right]:=S^{n_{i}}\left(\sigma\left(f_{i}\right), \hat{\sigma}\left[t_{1}\right], \ldots, \hat{\sigma}\left[t_{n_{i}}\right]\right)$, for any n_{i}-ary operation symbol f_{i} supposed that $\hat{\sigma}\left[t_{j}\right], 1 \leq j \leq n_{i}$ are already defined.

Then we define a binary operation \circ_{G} on $H y p_{G}(\tau)$ by $\sigma_{1} \circ_{G} \sigma_{2}:=\hat{\sigma}_{1} \circ \sigma_{2}$ where \circ denotes the usual composition of mappings and $\sigma_{1}, \sigma_{2} \in H y p_{G}(\tau)$. Let $\sigma_{i d}$ be the hypersubstitution which maps each n_{i}-ary operation symbol f_{i} to the term $f_{i}\left(x_{1}, \ldots, x_{n_{i}}\right)$. It turns out that $\underline{H y p_{G}(\tau)}=\left(H y p_{G}(\tau) ; \circ_{G}, \sigma_{i d}\right)$ is a monoid and $\sigma_{i d}$ is the identity element.

Proposition 1.1. ([2]) For arbitrary terms $t, t_{1}, \ldots, t_{n} \in W_{\tau}(X)$ and for arbitrary generalized hypersubstitutions $\sigma, \sigma_{1}, \sigma_{2}$ we have
(i) $S^{n}\left(\hat{\sigma}[t], \hat{\sigma}\left[t_{1}\right], \ldots, \hat{\sigma}\left[t_{n}\right]\right)=\hat{\sigma}\left[S^{n}\left(t, t_{1}, \ldots, t_{n}\right)\right]$,
(ii) $\left(\hat{\sigma}_{1} \circ \sigma_{2}\right)^{\kappa}=\hat{\sigma}_{1} \circ \hat{\sigma}_{2}$.

Proposition 1.2. ([2]) $\underline{\operatorname{Hyp}}{ }_{G}(\tau)=\left(\operatorname{Hyp}_{G}(\tau) ; \circ_{G}, \sigma_{i d}\right)$ is a monoid and the set of all hypersubstitutions of type τ forms a submonoid of $\underline{H y p_{G}(\tau)}$.

For more details on generalized hypersubstitutions see [2].

2 Idempotent elements in $H y p_{G}(3)$

In this section we characterize idempotent generalized hypersubstitutions of type $\tau=(3)$. We have only one ternary operation symbol, say f. The generalized hypersubstitution σ which maps f to the term t is denoted by σ_{t}. For any term $t \in W_{(3)}(X)$, the set of all variables occurring in t is denoted by $\operatorname{var}(t)$. First, we will recall the definition of an idempotent element.

Definition 2.1. ([1]) For any semigroup S, an element $e \in S$ is called idempotent if ee $=e$. In general, by $E(S)$ we denote the set of all idempotent elements of S.

Proposition 2.2. An element $\sigma_{t} \in H y p_{G}(3)$ is idempotent if and only if $\hat{\sigma}_{t}[t]=t$.
Proof. Assume that σ_{t} is idempotent, i.e. $\sigma_{t}^{2}=\sigma_{t}$. Then

$$
\hat{\sigma}_{t}[t]=\hat{\sigma}_{t}\left[\sigma_{t}(f)\right]=\sigma_{t}^{2}(f)=\sigma_{t}(f)=t
$$

Conversely, let $\hat{\sigma}_{t}[t]=t$. We have $\left(\sigma_{t} \circ_{G} \sigma_{t}\right)(f)=\hat{\sigma}_{t}\left[\sigma_{t}(f)\right]=\hat{\sigma}_{t}[t]=t=\sigma_{t}(f)$. Thus $\sigma_{t}^{2}=\sigma_{t}$, i.e. σ_{t} is idempotent.

Proposition 2.3. For every $x_{i} \in X, \sigma_{x_{i}}$ and $\sigma_{i d}$ are idempotent.

Proof. Since for every $x_{i} \in X, \hat{\sigma}_{x_{i}}\left[x_{i}\right]=x_{i}$. By Proposition 2.2 we have $\sigma_{x_{i}}$ is idempotent. $\sigma_{i d}$ is idempotent because it is a neutral element.

Note that for any $t \in W_{(3)}(X) \backslash X$ and $x_{1}, x_{2}, x_{3} \notin \operatorname{var}(t), \sigma_{t}$ is idempotent. Because there has nothing to substitute in the term $\hat{\sigma}_{t}[t]$. Thus $\hat{\sigma}_{t}[t]=t$.
Theorem 2.4. Let $\tau=(3)$ be a type with a ternary operation symbol f. Let $t=f\left(t_{1}, t_{2}, t_{3}\right) \in W_{(3)}(X)$ and $\operatorname{var}(t) \cap X_{3} \neq \emptyset$. Then σ_{t} is idempotent if and only $t_{i}=x_{i}$ for all $x_{i} \in \operatorname{var}(t) \cap X_{3}$.

Proof. Assume that σ_{t} is idempotent. Then

$$
\begin{aligned}
S^{3}\left(f\left(t_{1}, t_{2}, t_{3}\right), \hat{\sigma}_{f\left(t_{1}, t_{2}, t_{3}\right)}\left[t_{1}\right], \hat{\sigma}_{f\left(t_{1}, t_{2}, t_{3}\right)}\left[t_{2}\right], \hat{\sigma}_{f\left(t_{1}, t_{2}, t_{3}\right)}\left[t_{3}\right]\right) & =\sigma_{f\left(t_{1}, t_{2}, t_{3}\right)}^{2}(f) \\
& =\sigma_{f\left(t_{1}, t_{2}, t_{3}\right)}(f) \\
& =f\left(t_{1}, t_{2}, t_{3}\right)
\end{aligned}
$$

Suppose that there exists $x_{i} \in \operatorname{var}(t) \cap X_{3}$ such that $t_{i} \neq x_{i}$. If $t_{i} \in X$, then $\hat{\sigma}_{f\left(t_{1}, t_{2}, t_{3}\right)}\left[t_{i}\right]=t_{i} \neq x_{i}$. So

$$
S^{3}\left(f\left(t_{1}, t_{2}, t_{3}\right), \hat{\sigma}_{f\left(t_{1}, t_{2}, t_{3}\right)}\left[t_{1}\right], \hat{\sigma}_{f\left(t_{1}, t_{2}, t_{3}\right)}\left[t_{2}\right], \hat{\sigma}_{f\left(t_{1}, t_{2}, t_{3}\right)}\left[t_{3}\right]\right) \neq f\left(t_{1}, t_{2}, t_{3}\right)
$$

and it is a contradiction. If $t_{i} \notin X$, then $\hat{\sigma}_{f\left(t_{1}, t_{2}, t_{3}\right)}\left[t_{i}\right] \notin X$. We obtain

$$
o p(t)=o p\left(S^{3}\left(f\left(t_{1}, t_{2}, t_{3}\right), \hat{\sigma}_{f\left(t_{1}, t_{2}, t_{3}\right)}\left[t_{1}\right], \hat{\sigma}_{f\left(t_{1}, t_{2}, t_{3}\right)}\left[t_{2}\right], \hat{\sigma}_{f\left(t_{1}, t_{2}, t_{3}\right)}\left[t_{3}\right]\right)\right)>o p(t)
$$

where $o p(t)$ denotes the number of all operation symbols occurring in t. This is a contradiction. For the converse direction, consider

$$
\begin{aligned}
\hat{\sigma}_{t}[t] & =\hat{\sigma}_{f\left(t_{1}, t_{2}, t_{3}\right)}\left[f\left(t_{1}, t_{2}, t_{3}\right)\right] \\
& =S^{3}\left(\sigma_{f\left(t_{1}, t_{2}, t_{3}\right)}(f), \hat{\sigma}_{f\left(t_{1}, t_{2}, t_{3}\right)}\left[t_{1}\right], \hat{\sigma}_{f\left(t_{1}, t_{2}, t_{3}\right)}\left[t_{2}\right], \hat{\sigma}_{f\left(t_{1}, t_{2}, t_{3}\right)}\left[t_{3}\right]\right)
\end{aligned}
$$

Since $\operatorname{var}(t) \cap X_{3} \neq \emptyset$ and $t_{i}=x_{i}$ for all $x_{i} \in \operatorname{var}(t) \cap X_{3}$. Then after substitution in the term t we get the term t again. Thus σ_{t} is idempotent.

Let $i, j, k \in \mathbb{N}$. For convenience, we denote:

$$
\begin{aligned}
& E_{0}:=\left\{\sigma_{t} \mid t \in X\right\} \cup\left\{\sigma_{t} \mid t \in W_{(3)}(X) \backslash X \text { and } x_{1}, x_{2}, x_{3} \notin \operatorname{var}(t)\right\}, \\
& E_{1}:=\left\{\sigma_{f\left(x_{1}, x_{2}, x_{2}\right)}, \sigma_{f\left(x_{i}, x_{3}, x_{3}\right)}, \sigma_{f\left(x_{3}, x_{j}, x_{3}\right)}, \sigma_{f\left(x_{2}, x_{2}, x_{k}\right)} \mid i \neq 2, j, k \neq 1\right\}, \\
& E_{2}:=\left\{\sigma_{f\left(x_{1}, x_{j}, x_{k}\right)} \mid j \neq 3, k \neq 2\right\}, \\
& E_{3}:=\left\{\sigma_{f\left(x_{i}, x_{2}, x_{k}\right)} \mid i>3, k \neq 1\right\}, \\
& E_{4}:=\left\{\sigma_{f\left(x_{i}, x_{j}, x_{k}\right)} \mid i, j>3, k \geq 3\right\}, \\
& E_{5}:=\left\{\sigma_{f\left(x_{1}, x_{j}, t\right)} \mid j \notin\{2,3\}, t \notin X \text { and } x_{2}, x_{3} \notin \operatorname{var}(t)\right\} \cup\left\{\sigma_{f\left(x_{1}, x_{2}, t\right)} \mid\right. \\
& \left.t \notin X \text { and } x_{3} \notin \operatorname{var}(t)\right\} \cup\left\{\sigma_{f\left(x_{i}, x_{2}, t\right) \mid} \mid i \notin\{1,3\}, t \notin X \text { and } x_{1}, x_{3} \notin \operatorname{var}(t)\right\}, \\
& E_{6}:=\left\{\sigma_{f\left(x_{1}, t, x_{k}\right)} \mid t \notin X, x_{2}, x_{3} \notin \operatorname{var}(t) \text { and } k \notin\{2,3\}\right\} \cup\left\{\sigma_{f\left(x_{1}, t, x_{3}\right)} \mid\right. \\
& \left.t \notin X \text { and } x_{2} \notin \operatorname{var}(t)\right\} \cup\left\{\sigma_{f\left(x_{i}, t, x_{3}\right)} \mid i \notin\{1,2\}, t \notin X \text { and } x_{1}, x_{2} \notin \operatorname{var}(t)\right\}, \\
& E_{7}:=\left\{\sigma_{f\left(t, x_{2}, x_{k}\right)} \mid t \notin X, x_{1}, x_{3} \notin \operatorname{var}(t) \text { and } k \notin\{1,3\}\right\} \cup\left\{\sigma_{f\left(t, x_{2}, x_{3}\right)} \mid\right. \\
& \left.t \notin X \text { and } x_{1} \notin \operatorname{var}(t)\right\} \cup\left\{\sigma_{f\left(t, x_{j}, x_{3}\right)} \mid t \notin X, x_{1}, x_{2} \notin \operatorname{var}(t) \operatorname{and} j \notin\{1,2\}\right\}, \\
& E_{8}:=\left\{\sigma_{\left.f\left(x_{1}, t_{1}, t_{2}\right) \mid t_{1}, t_{2} \notin X \text { and } x_{2}, x_{3} \notin \operatorname{var}\left(t_{1}\right) \cup \operatorname{var}\left(t_{2}\right)\right\} \cup\left\{\sigma_{f\left(t_{1}, x_{2}, t_{2}\right)} \mid\right.}\right. \\
& \left.t_{1}, t_{2} \notin X \text { and } x_{1}, x_{3} \notin \operatorname{var}\left(t_{1}\right) \cup \operatorname{var}\left(t_{2}\right)\right\} \cup\left\{\sigma_{f\left(t_{1}, t_{2}, x_{3}\right)} \mid t_{1}, t_{2} \notin X \operatorname{and} x_{1}, x_{2} \notin\right. \\
& \left.\operatorname{var}\left(t_{1}\right) \cup \operatorname{var}\left(t_{2}\right)\right\} .
\end{aligned}
$$

By Theorem 2.4, we have
Corollary 2.5. $E\left(\operatorname{Hyp}_{G}(3)\right)=E_{0} \cup E_{1} \cup E_{2} \cup \ldots \cup E_{8}$ 。

3 The Regular Elements in $\boldsymbol{H y p}_{G}(3)$

In this section we will determine all regular elements of Hyp_{G} (3). At first we want to recall the definition of a regular element.
Definition 3.1. An element a of a semigroup S is called regular if there exists $x \in S$ such that $a x a=a$. The semigroup S is called regular if all its elements are regular.

It is clear that for all $\sigma_{x_{i}}$ where $i \in \mathbb{N}$ and $x_{i} \in X$ is regular and $\sigma_{i d}$ is also regular. If $\operatorname{var}(t) \cap X_{3}=\emptyset$ where $X_{3}=\left\{x_{1}, x_{2}, x_{3}\right\}$, then $\sigma_{t}{ }^{\circ}{ }_{G} \sigma_{s}{ }^{\circ}{ }_{G} \sigma_{t}=\sigma_{t}$ where $\sigma_{s} \in W_{(3)}(X)$ and thus σ_{t} is regular. Then we consider only the case $\operatorname{var}(t) \cap X_{3} \neq \emptyset$.
Proposition 3.2. Let $t=f\left(t_{1}, t_{2}, t_{3}\right)$, $s=f\left(s_{1}, s_{2}, s_{3}\right)$ and $\emptyset \neq \operatorname{var}(t) \cap X_{3}=$ $\left\{x_{1}\right\}$.
If $t_{j}=x_{1}$ and $s_{1}=x_{j}$ where $j \in\{1,2,3\}$, then σ_{t} is regular. Otherwise σ_{t} is not regular.

Proof. Consider $\left(\sigma_{t} \circ_{G} \sigma_{s} \circ_{G} \sigma_{t}\right)(f)=\hat{\sigma}_{t}\left[\hat{\sigma}_{s}[t]\right]$. Since

$$
\begin{aligned}
\hat{\sigma}_{s}[t] & =S^{3}\left(s, \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \hat{\sigma}_{s}\left[t_{3}\right]\right) \\
& =S^{3}\left(f\left(s_{1}, s_{2}, s_{3}\right), \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \hat{\sigma}_{s}\left[t_{3}\right]\right) \\
& =S^{3}\left(f\left(x_{j}, s_{2}, s_{3}\right), \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \hat{\sigma}_{s}\left[t_{3}\right]\right) \quad \text { since } s_{1}=x_{j} \\
& =f\left(\hat{\sigma}_{s}\left[t_{j}\right], t_{4}, t_{5}\right) \quad \text { where } t_{4}, t_{5} \in W_{(3)}(X) \\
& =f\left(x_{1}, t_{4}, t_{5}\right) \quad \text { since } t_{j}=x_{1} .
\end{aligned}
$$

Next, we consider $\hat{\sigma}_{t}\left[\hat{\sigma}_{s}[t]\right]=\hat{\sigma}_{t}\left[f\left(x_{1}, t_{4}, t_{5}\right)\right]$. Since $\emptyset \neq \operatorname{var}(t) \cap X_{3}=\left\{x_{1}\right\}$, so $x_{1} \in \operatorname{var}(t)$ is substituted by the term x_{1} and $x_{m} \in \operatorname{var}(t)$ is untouched. Hence $\hat{\sigma}_{t}\left[\hat{\sigma}_{s}[t]\right]=t$. Therefore σ_{t} is regular.

Now, let $t_{j} \neq x_{1}$. Suppose that σ_{t} is regular, thus there exists $\sigma_{s} \in$ $\operatorname{Hyp}_{G}(3)$ such that $\hat{\sigma}_{t}\left[\hat{\sigma}_{s}[t]\right]=t$. We let $\hat{\sigma}_{s}[t]=f\left(u_{1}, u_{2}, u_{3}\right)$. Since $\emptyset \neq \operatorname{var}(t) \cap$ $X_{3}=\left\{x_{1}\right\}$. So $u_{1}=x_{1}$. But since $f\left(u_{1}, u_{2}, u_{3}\right)=S^{3}\left(s, \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \hat{\sigma}_{s}\left[t_{3}\right]\right)=$ $S^{3}\left(f\left(s_{1}, s_{2}, s_{3}\right), \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \hat{\sigma}_{s}\left[t_{3}\right]\right)$ and $s_{1}=x_{j}$. Hence $s_{1} \in \operatorname{var}(s)$ is substituted by the term $\hat{\sigma}\left[t_{j}\right] \neq \hat{\sigma}\left[x_{1}\right]=x_{1}$ which contradicts to $u_{1}=x_{1}$. Therefore σ_{t} is not regular.
Proposition 3.3. Let $t=f\left(t_{1}, t_{2}, t_{3}\right)$, $s=f\left(s_{1}, s_{2}, s_{3}\right)$ and $\emptyset \neq \operatorname{var}(t) \cap X_{3}=$ $\left\{x_{2}\right\}$.
If $t_{j}=x_{2}$ and $s_{2}=x_{j}$ where $j \in\{1,2,3\}$, then σ_{t} is regular. Otherwise σ_{t} is not regular.

Proof. Consider $\left(\sigma_{t} \circ_{G} \sigma_{s} \circ_{G} \sigma_{t}\right)(f)=\hat{\sigma}_{t}\left[\hat{\sigma}_{s}[t]\right]$. Since

$$
\begin{aligned}
\hat{\sigma}_{s}[t] & =S^{3}\left(s, \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \hat{\sigma}_{s}\left[t_{3}\right]\right) \\
& =S^{3}\left(f\left(s_{1}, s_{2}, s_{3}\right), \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \hat{\sigma}_{s}\left[t_{3}\right]\right) \\
& =S^{3}\left(f\left(s_{1}, x_{j}, s_{3}\right), \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \hat{\sigma}_{s}\left[t_{3}\right]\right) \quad \text { since } s_{2}=x_{j} \\
& =f\left(t_{4}, \hat{\sigma}_{s}\left[t_{j}\right], t_{5}\right) \quad \text { where } t_{4}, t_{5} \in W_{(3)}(X) \\
& =f\left(t_{4}, x_{2}, t_{5}\right) \quad \text { since } t_{j}=x_{2} .
\end{aligned}
$$

Next, we consider $\hat{\sigma}_{t}\left[\hat{\sigma}_{s}[t]\right]=\hat{\sigma}_{t}\left[f\left(t_{4}, x_{2}, t_{5}\right)\right]$. Since $\emptyset \neq \operatorname{var}(t) \cap X_{3}=\left\{x_{2}\right\}$, so $x_{2} \in \operatorname{var}(t)$ is substituted by the term x_{2} and $x_{m} \in \operatorname{var}(t)$ is untouched. Hence $\hat{\sigma}_{t}\left[\hat{\sigma}_{s}[t]\right]=t$. Therefore σ_{t} is regular.

Now, let $t_{j} \neq x_{2}$. Suppose that σ_{t} is regular, thus there exists $\sigma_{s} \in$ $\operatorname{Hyp}_{G}(3)$ such that $\hat{\sigma}_{t}\left[\hat{\sigma}_{s}[t]\right]=t$. We let $\hat{\sigma}_{s}[t]=f\left(u_{1}, u_{2}, u_{3}\right)$. Since $\emptyset \neq \operatorname{var}(t) \cap$ $X_{3}=\left\{x_{2}\right\}$. So $u_{2}=x_{2}$. But since $f\left(u_{1}, u_{2}, u_{3}\right)=S^{3}\left(s, \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \hat{\sigma}_{s}\left[t_{3}\right]\right)=$ $S^{3}\left(f\left(s_{1}, s_{2}, s_{3}\right), \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \hat{\sigma}_{s}\left[t_{3}\right]\right)$ and $s_{2}=x_{j}$. Hence $s_{2} \in \operatorname{var}(s)$ is substituted by the term $\hat{\sigma}\left[t_{j}\right] \neq \hat{\sigma}\left[x_{2}\right]=x_{2}$ which contradicts to $u_{2}=x_{2}$. Therefore σ_{t} is not regular.

Proposition 3.4. Let $t=f\left(t_{1}, t_{2}, t_{3}\right), s=f\left(s_{1}, s_{2}, s_{3}\right)$ and $\emptyset \neq \operatorname{var}(t) \cap X_{3}=$ $\left\{x_{3}\right\}$.
If $t_{j}=x_{3}$ and $s_{3}=x_{j}$ where $j \in\{1,2,3\}$, then σ_{t} is regular. Otherwise σ_{t} is not regular.

Proof. Consider $\left(\sigma_{t} \circ_{G} \sigma_{s} \circ_{G} \sigma_{t}\right)(f)=\hat{\sigma}_{t}\left[\hat{\sigma}_{s}[t]\right]$. Since

$$
\begin{aligned}
\hat{\sigma}_{s}[t] & =S^{3}\left(s, \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \hat{\sigma}_{s}\left[t_{3}\right]\right) \\
& =S^{3}\left(f\left(s_{1}, s_{2}, s_{3}\right), \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \hat{\sigma}_{s}\left[t_{3}\right]\right) \\
& =S^{3}\left(f\left(s_{1}, s_{2}, x_{j}\right), \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \hat{\sigma}_{s}\left[t_{3}\right]\right) \quad \text { since } s_{3}=x_{j} \\
& =f\left(t_{4}, t_{5}, \hat{\sigma}_{s}\left[t_{j}\right]\right) \quad \text { where } t_{4}, t_{5} \in W_{(3)}(X) \\
& =f\left(t_{4}, t_{5}, x_{3}\right) \quad \text { since } t_{j}=x_{3} .
\end{aligned}
$$

Next, we consider $\hat{\sigma}_{t}\left[\hat{\sigma}_{s}[t]\right]=\hat{\sigma}_{t}\left[f\left(t_{4}, t_{5}, x_{3}\right)\right]$. Since $\emptyset \neq \operatorname{var}(t) \cap X_{3}=\left\{x_{3}\right\}$, so $x_{3} \in \operatorname{var}(t)$ is substituted by the term x_{3} and $x_{m} \in \operatorname{var}(t)$ is untouched. Hence $\hat{\sigma}_{t}\left[\hat{\sigma}_{s}[t]\right]=t$. Therefore σ_{t} is regular.

Now, let $t_{j} \neq x_{3}$. Suppose that σ_{t} is regular, thus there exists $\sigma_{s} \in$ $\operatorname{Hyp}_{G}(3)$ such that $\hat{\sigma}_{t}\left[\hat{\sigma}_{s}[t]\right]=t$. We let $\hat{\sigma}_{s}[t]=f\left(u_{1}, u_{2}, u_{3}\right)$. Since $\emptyset \neq \operatorname{var}(t) \cap$ $X_{3}=\left\{x_{3}\right\}$. So $u_{3}=x_{3}$. But since $f\left(u_{1}, u_{2}, u_{3}\right)=S^{3}\left(s, \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \hat{\sigma}_{s}\left[t_{3}\right]\right)=$ $S^{3}\left(f\left(s_{1}, s_{2}, s_{3}\right), \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \hat{\sigma}_{s}\left[t_{3}\right]\right)$ and $s_{3}=x_{j}$. Hence $s_{3} \in \operatorname{var}(s)$ is substituted by the term $\hat{\sigma}\left[t_{j}\right] \neq \hat{\sigma}\left[x_{3}\right]=x_{3}$ which contradicts to $u_{3}=x_{3}$. Therefore σ_{t} is not regular.

Proposition 3.5. Let $t=f\left(t_{1}, t_{2}, t_{3}\right), s=f\left(s_{1}, s_{2}, s_{3}\right)$ and $\emptyset \neq \operatorname{var}(t) \cap X_{3}=$ $\left\{x_{1}, x_{2}\right\}$.
If $t_{j}=x_{1}, t_{k}=x_{2}$ and $s_{1}=x_{j}, s_{2}=x_{k}$ where $j \neq k$ and $j, k \in\{1,2,3\}$, then σ_{t} is regular. Otherwise σ_{t} is not regular.

Proof. Consider $\left(\sigma_{t} \circ_{G} \sigma_{s} \circ_{G} \sigma_{t}\right)(f)=\hat{\sigma}_{t}\left[\hat{\sigma}_{s}[t]\right]$. Since

$$
\begin{aligned}
\hat{\sigma}_{s}[t] & =S^{3}\left(s, \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \hat{\sigma}_{s}\left[t_{3}\right]\right) \\
& =S^{3}\left(f\left(s_{1}, s_{2}, s_{3}\right), \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \hat{\sigma}_{s}\left[t_{3}\right]\right) \\
& =S^{3}\left(f\left(x_{j}, x_{k}, s_{3}\right), \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \hat{\sigma}_{s}\left[t_{3}\right]\right) \quad \text { since } s_{1}=x_{j}, s_{2}=x_{k} \\
& =f\left(\hat{\sigma}_{s}\left[t_{j}\right], \hat{\sigma}_{s}\left[t_{k}\right], t_{4}\right) \quad \text { where } t_{4} \in W_{(3)}(X) \\
& =f\left(x_{1}, x_{2}, t_{4}\right) \quad \text { since } t_{j}=x_{1}, t_{k}=x_{2}
\end{aligned}
$$

Next, we consider $\hat{\sigma}_{t}\left[\hat{\sigma}_{s}[t]\right]=\hat{\sigma}_{t}\left[f\left(x_{1}, x_{2}, t_{4}\right)\right]$. Since $\emptyset \neq \operatorname{var}(t) \cap X_{3}=\left\{x_{1}, x_{2}\right\}$, so $x_{1} \in \operatorname{var}(t)$ is substituted by the term $x_{1}, x_{2} \in \operatorname{var}(t)$ is substituted by the term x_{2} and $x_{m} \in \operatorname{var}(t)$ is untouched. Hence $\hat{\sigma}_{t}\left[\hat{\sigma}_{s}[t]\right]=t$. Therefore σ_{t} is regular.

Now, let $t_{j} \neq x_{1}$ or $t_{k} \neq x_{2}$. Suppose that σ_{t} is regular, thus there exists $\sigma_{s} \in \operatorname{Hyp}_{G}(3)$ such that $\hat{\sigma}_{t}\left[\hat{\sigma}_{s}[t]\right]=t$. We let $\hat{\sigma}_{s}[t]=f\left(u_{1}, u_{2}, u_{3}\right)$. Since $\emptyset \neq \operatorname{var}(t) \cap X_{3}=\left\{x_{1}, x_{2}\right\}$. So $u_{1}=x_{1}$ and $u_{2}=x_{2}$. But since $f\left(u_{1}, u_{2}, u_{3}\right)=$ $S^{3}\left(s, \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \hat{\sigma}_{s}\left[t_{3}\right]\right)=S^{3}\left(f\left(s_{1}, s_{2}, s_{3}\right), \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \hat{\sigma}_{s}\left[t_{3}\right]\right)$ and $s_{1}=x_{j}, s_{2}=$ x_{k}. Hence $s_{1} \in \operatorname{var}(s)$ is substituted by the term $\hat{\sigma}\left[t_{j}\right] \neq \hat{\sigma}\left[x_{1}\right]=x_{1}$ which contradicts to $u_{1}=x_{1}$ or $s_{2} \in \operatorname{var}(s)$ is substituted by the term $\hat{\sigma}\left[t_{k}\right] \neq \hat{\sigma}\left[x_{2}\right]=x_{2}$ which contradicts to $u_{2}=x_{2}$. Therefore σ_{t} is not regular.

Proposition 3.6. Let $t=f\left(t_{1}, t_{2}, t_{3}\right), s=f\left(s_{1}, s_{2}, s_{3}\right)$ and $\emptyset \neq \operatorname{var}(t) \cap X_{3}=$ $\left\{x_{1}, x_{3}\right\}$.
If $t_{j}=x_{1}, t_{k}=x_{3}$ and $s_{1}=x_{j}, s_{3}=x_{k}$ where $j \neq k$ and $j, k \in\{1,2,3\}$, then σ_{t} is regular. Otherwise σ_{t} is not regular.

Proof. Consider $\left(\sigma_{t} \circ_{G} \sigma_{s} \circ_{G} \sigma_{t}\right)(f)=\hat{\sigma}_{t}\left[\hat{\sigma}_{s}[t]\right]$. Since

$$
\begin{aligned}
\hat{\sigma}_{s}[t] & =S^{3}\left(s, \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \hat{\sigma}_{s}\left[t_{3}\right]\right) \\
& =S^{3}\left(f\left(s_{1}, s_{2}, s_{3}\right), \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \hat{\sigma}_{s}\left[t_{3}\right]\right) \\
& =S^{3}\left(f\left(x_{j}, s_{2}, x_{k}\right), \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \hat{\sigma}_{s}\left[t_{3}\right]\right) \quad \text { since } s_{1}=x_{j}, s_{3}=x_{k} \\
& =f\left(\hat{\sigma}_{s}\left[t_{j}\right], t_{4}, \hat{\sigma}_{s}\left[t_{k}\right]\right) \quad \text { where } t_{4} \in W_{(3)}(X) \\
& =f\left(x_{1}, t_{4}, x_{3}\right) \quad \text { since } t_{j}=x_{1}, t_{k}=x_{3} .
\end{aligned}
$$

Next, we consider $\hat{\sigma}_{t}\left[\hat{\sigma}_{s}[t]\right]=\hat{\sigma}_{t}\left[f\left(x_{1}, t_{4}, x_{3}\right)\right]$. Since $\emptyset \neq \operatorname{var}(t) \cap X_{3}=\left\{x_{1}, x_{3}\right\}$, so $x_{1} \in \operatorname{var}(t)$ is substituted by the term $x_{1}, x_{3} \in \operatorname{var}(t)$ is substituted by the term x_{3} and $x_{m} \in \operatorname{var}(t)$ is untouched. Hence $\hat{\sigma}_{t}\left[\hat{\sigma}_{s}[t]\right]=t$. Therefore σ_{t} is regular.

Now, let $t_{j} \neq x_{1}$ or $t_{k} \neq x_{3}$. Suppose that σ_{t} is regular, thus there exists $\sigma_{s} \in \operatorname{Hyp}_{G}(3)$ such that $\hat{\sigma}_{t}\left[\hat{\sigma}_{s}[t]\right]=t$. We let $\hat{\sigma}_{s}[t]=f\left(u_{1}, u_{2}, u_{3}\right)$. Since $\emptyset \neq \operatorname{var}(t) \cap X_{3}=\left\{x_{1}, x_{3}\right\}$. So $u_{1}=x_{1}$ and $u_{3}=x_{3}$. But since $f\left(u_{1}, u_{2}, u_{3}\right)=$ $S^{3}\left(s, \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \hat{\sigma}_{s}\left[t_{3}\right]\right)=S^{3}\left(f\left(s_{1}, s_{2}, s_{3}\right), \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \hat{\sigma}_{s}\left[t_{3}\right]\right)$ and $s_{1}=x_{j}, s_{3}=$ x_{k}. Hence $s_{1} \in \operatorname{var}(s)$ is substituted by the term $\hat{\sigma}\left[t_{j}\right] \neq \hat{\sigma}\left[x_{1}\right]=x_{1}$ which contradicts to $u_{1}=x_{1}$ or $s_{3} \in \operatorname{var}(s)$ is substituted by the term $\hat{\sigma}\left[t_{k}\right] \neq \hat{\sigma}\left[x_{3}\right]=x_{3}$ which contradicts to $u_{3}=x_{3}$. Therefore σ_{t} is not regular.

Proposition 3.7. Let $t=f\left(t_{1}, t_{2}, t_{3}\right)$, $s=f\left(s_{1}, s_{2}, s_{3}\right)$ and $\emptyset \neq \operatorname{var}(t) \cap X_{3}=$ $\left\{x_{2}, x_{3}\right\}$.
If $t_{j}=x_{2}, t_{k}=x_{3}$ and $s_{2}=x_{j}, s_{3}=x_{k}$ where $j \neq k$ and $j, k \in\{1,2,3\}$, then σ_{t} is regular. Otherwise σ_{t} is not regular.

Proof. Consider $\left(\sigma_{t} \circ_{G} \sigma_{s} \circ_{G} \sigma_{t}\right)(f)=\hat{\sigma}_{t}\left[\hat{\sigma}_{s}[t]\right]$. Since

$$
\begin{aligned}
\hat{\sigma}_{s}[t] & =S^{3}\left(s, \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \hat{\sigma}_{s}\left[t_{3}\right]\right) \\
& =S^{3}\left(f\left(s_{1}, s_{2}, s_{3}\right), \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \hat{\sigma}_{s}\left[t_{3}\right]\right) \\
& =S^{3}\left(f\left(s_{1}, x_{j}, x_{k}\right), \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \hat{\sigma}_{s}\left[t_{3}\right]\right) \quad \text { since } s_{2}=x_{j}, s_{3}=x_{k} \\
& =f\left(t_{4}, \hat{\sigma}_{s}\left[t_{j}\right], \hat{\sigma}_{s}\left[t_{k}\right]\right) \quad \text { where } t_{4} \in W_{(3)}(X) \\
& =f\left(t_{4}, x_{2}, x_{3}\right) \quad \text { since } t_{j}=x_{2}, t_{k}=x_{3} .
\end{aligned}
$$

Next, we consider $\hat{\sigma}_{t}\left[\hat{\sigma}_{s}[t]\right]=\hat{\sigma}_{t}\left[f\left(t_{4}, x_{2}, x_{3}\right)\right]$. Since $\emptyset \neq \operatorname{var}(t) \cap X_{3}=\left\{x_{2}, x_{3}\right\}$, so $x_{2} \in \operatorname{var}(t)$ is substituted by the term $x_{2}, x_{3} \in \operatorname{var}(t)$ is substituted by the term x_{3} and $x_{m} \in \operatorname{var}(t)$ is untouched. Hence $\hat{\sigma}_{t}\left[\hat{\sigma}_{s}[t]\right]=t$. Therefore σ_{t} is regular.

Now, let $t_{j} \neq x_{2}$ or $t_{k} \neq x_{3}$. Suppose that σ_{t} is regular, thus there exists $\sigma_{s} \in \operatorname{Hyp}_{G}(3)$ such that $\hat{\sigma}_{t}\left[\hat{\sigma}_{s}[t]\right]=t$. We let $\hat{\sigma}_{s}[t]=f\left(u_{1}, u_{2}, u_{3}\right)$. Since $\emptyset \neq \operatorname{var}(t) \cap X_{3}=\left\{x_{2}, x_{3}\right\}$. So $u_{2}=x_{2}$ and $u_{3}=x_{3}$. But since $f\left(u_{1}, u_{2}, u_{3}\right)=$ $S^{3}\left(s, \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \hat{\sigma}_{s}\left[t_{3}\right]\right)=S^{3}\left(f\left(s_{1}, s_{2}, s_{3}\right), \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \hat{\sigma}_{s}\left[t_{3}\right]\right)$ and $s_{2}=x_{j}, s_{3}=$ x_{k}. Hence $s_{2} \in \operatorname{var}(s)$ is substituted by the term $\hat{\sigma}\left[t_{j}\right] \neq \hat{\sigma}\left[x_{2}\right]=x_{2}$ which contradicts to $u_{2}=x_{2}$ or $s_{3} \in \operatorname{var}(s)$ is substituted by the term $\hat{\sigma}\left[t_{k}\right] \neq \hat{\sigma}\left[x_{3}\right]=x_{3}$ which contradicts to $u_{3}=x_{3}$. Therefore σ_{t} is not regular.

Proposition 3.8. Let $t=f\left(t_{1}, t_{2}, t_{3}\right), s=f\left(s_{1}, s_{2}, s_{3}\right)$ and $\emptyset \neq \operatorname{var}(t) \cap X_{3}=$ $\left\{x_{1}, x_{2}, x_{3}\right\}$. If $t_{i}=x_{1}, t_{j}=x_{2}, t_{k}=x_{3}$ and $s_{1}=x_{i}, s_{2}=x_{j}, s_{3}=x_{k}$ where $i, j, k \in\{1,2,3\}$ and all are distinct, then σ_{t} is regular. Otherwise σ_{t} is not regular.

Proof. Consider $\left(\sigma_{t} \circ_{G} \sigma_{s} \circ_{G} \sigma_{t}\right)(f)=\hat{\sigma}_{t}\left[\hat{\sigma}_{s}[t]\right]$. Since

$$
\begin{aligned}
\hat{\sigma}_{s}[t] & =S^{3}\left(s, \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \hat{\sigma}_{s}\left[t_{3}\right]\right) \\
& =S^{3}\left(f\left(s_{1}, s_{2}, s_{3}\right), \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \hat{\sigma}_{s}\left[t_{3}\right]\right) \\
& =S^{3}\left(f\left(x_{i}, x_{j}, x_{k}\right), \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \hat{\sigma}_{s}\left[t_{3}\right]\right) \quad \text { since } s_{1}=x_{i}, s_{2}=x_{j}, s_{3}=x_{k} \\
& =f\left(\hat{\sigma}_{s}\left[t_{i}\right], \hat{\sigma}_{s}\left[t_{j}\right], \hat{\sigma}_{s}\left[t_{k}\right]\right) \\
& =f\left(x_{1}, x_{2}, x_{3}\right) \quad \text { since } t_{i}=x_{1}, t_{j}=x_{2}, t_{k}=x_{3} .
\end{aligned}
$$

Next, we consider $\hat{\sigma}_{t}\left[\hat{\sigma}_{s}[t]\right]=\hat{\sigma}_{t}\left[f\left(x_{1}, x_{2}, x_{3}\right)\right]$. Since $\emptyset \neq \operatorname{var}(t) \cap X_{3}=\left\{x_{1}, x_{2}, x_{3}\right\}$, so $x_{1} \in \operatorname{var}(t)$ is substituted by the term $x_{1}, x_{2} \in \operatorname{var}(t)$ is substituted by the term $x_{2}, x_{3} \in \operatorname{var}(t)$ is substituted by the term x_{3} and $x_{m} \in \operatorname{var}(t)$ is untouched. Hence $\hat{\sigma}_{t}\left[\hat{\sigma}_{s}[t]\right]=t$. Therefore σ_{t} is regular.

Now, let $t_{i} \neq x_{1}$ or $t_{j} \neq x_{2}$ or $t_{k} \neq x_{3}$. Suppose that σ_{t} is regular, thus there exists $\sigma_{s} \in \operatorname{Hyp}_{G}(3)$ such that $\hat{\sigma}_{t}\left[\hat{\sigma}_{s}[t]\right]=t$. We let $\hat{\sigma}_{s}[t]=f\left(u_{1}, u_{2}, u_{3}\right)$. Since $\emptyset \neq \operatorname{var}(t) \cap X_{3}=\left\{x_{1}, x_{2}, x_{3}\right\}$. So $u_{1}=x_{1}, u_{2}=x_{2}$ and $u_{3}=x_{3}$. But since $f\left(u_{1}, u_{2}, u_{3}\right)=S^{3}\left(s, \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \hat{\sigma}_{s}\left[t_{3}\right]\right)=S^{3}\left(f\left(s_{1}, s_{2}, s_{3}\right), \hat{\sigma}_{s}\left[t_{1}\right], \hat{\sigma}_{s}\left[t_{2}\right], \hat{\sigma}_{s}\left[t_{3}\right]\right)$ and $s_{1}=x_{i}, s_{2}=x_{j}, s_{3}=x_{k}$. Hence $s_{1} \in \operatorname{var}(s)$ is substituted by the term $\hat{\sigma}\left[t_{i}\right] \neq \hat{\sigma}\left[x_{1}\right]=x_{1}$ which contradicts to $u_{1}=x_{1}$ or $s_{2} \in \operatorname{var}(s)$ is substituted by the term $\hat{\sigma}\left[t_{j}\right] \neq \hat{\sigma}\left[x_{2}\right]=x_{2}$ which contradicts to $u_{2}=x_{2}$ or $s_{3} \in \operatorname{var}(s)$ is substituted by the term $\hat{\sigma}\left[t_{k}\right] \neq \hat{\sigma}\left[x_{3}\right]=x_{3}$ which contradicts to $u_{3}=x_{3}$. Therefore σ_{t} is not regular.

Acknowledgement(s) : This research was supported by the Graduate School and the Faculty of Science of Chiang Mai University Thailand.

References

[1] Howie, J.M., An Introduction to Semigroup Theory, Academic Press Inc., London, 1976.
[2] Leeratanavalee, S., Denecke, K., Generalized Hypersubstitutions and Strongly Solid Varieties, In General Algebra and Applications, Proc. of the "59 th Workshop on General Algebra", "15 th Conference for Young Algebraists Potsdam 2000", Shaker Verlag(2000), 135-145.
[3] Puninagool, W., Leeratanavalee, S., The Order of generalized Hypersubstitutions of type $\tau=(2)$, International Journal of Mathematics and Mathematics and Mathematical Sciences, Vol.2008, Article ID 263541, 8 pages, doi:10.1155/2008/263541.
[4] Puninagool, W., Leeratanavalee, S., All Regular Elements in $H_{y p}(2)$, preprint, 2010.
(Received 3 March 2010)

Sivaree Sudsanit
Department of Mathematics, Faculty of Science,
Chiang Mai University,
Chiang Mai 50200, Thailand.
e-mail : sivaree_sudsanit@hotmail.com

Sorasak Leeratanavalee
Department of Mathematics, Faculty of Science, Chiang Mai University,
Chiang Mai 50200, Thailand.
e-mail: scislrtt@chiangmai.ac.th

[^0]: ${ }^{1}$ Corresponding author

 Copyright (c) 2010 by the Mathematical Association of Thailand. All rights reserved.

