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1 Introduction

All idempotent elements and all regular elements of the set of all generalized
hypersubstitutions of type τ = (2) were studied by W. Puninagool and S. Leer-
atanavalee [3], [4]. In this paper we characterize idempotent and regular elememts
of the set of all generalized hypersubstitutions of type τ = (3).

A generalized hypersubstitution of type τ = (ni)i∈I is a mapping σ which
maps each ni-ary operation symbol of type τ to the set Wτ (X) of all terms of type
τ built up by operation symbols from {fi | i ∈ I} where fi is ni-ary and variables
from a countably infinite alphabet X := {x1, x2, x3, . . .} which does not necessarily
preserve the arity. We denote the set of all generalized hypersubstitutions of type
τ by HypG(τ). To define a binary operation on HypG(τ), we define at first the
concept of generalized superposition of terms Sm : Wτ (X)m+1 → Wτ (X) by the
following steps:

(i) If t = xj , 1 ≤ j ≤ m, then Sm(xj , t1, . . . , tm) := tj .

(ii) If t = xj , m < j ∈ IN, then Sm(xj , t1, . . . , tm) := xj .

(iii) If t = fi(s1, . . . , sni
), then

Sm(t, t1, . . . , tm) := fi(S
m(s1, t1, . . . , tm), . . . , Sm(sni

, t1, . . . , tm)).
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We extend a generalized hypersubstitution σ to a mapping σ̂ : Wτ (X) →
Wτ (X) inductively defined as follows:

(i) σ̂[x] := x ∈ X ,

(ii) σ̂[fi(t1, . . . , tni
)] := Sni(σ(fi), σ̂[t1], . . . , σ̂[tni

]), for any ni-ary operation
symbol fi supposed that σ̂[tj ], 1 ≤ j ≤ ni are already defined.

Then we define a binary operation ◦G on HypG(τ) by σ1 ◦G σ2 := σ̂1 ◦ σ2

where ◦ denotes the usual composition of mappings and σ1, σ2 ∈ HypG(τ). Let
σid be the hypersubstitution which maps each ni-ary operation symbol fi to the
term fi(x1, . . . , xni

). It turns out that HypG(τ) = (HypG(τ); ◦G, σid) is a monoid
and σid is the identity element.

Proposition 1.1. ([2]) For arbitrary terms t, t1, ..., tn ∈ Wτ (X) and for arbitrary
generalized hypersubstitutions σ, σ1, σ2 we have

(i) Sn(σ̂[t], σ̂[t1], ..., σ̂[tn]) = σ̂[Sn(t, t1, ..., tn)],

(ii) (σ̂1 ◦ σ2 )̂ = σ̂1 ◦ σ̂2.

Proposition 1.2. ([2]) HypG(τ) = (HypG(τ); ◦G, σid) is a monoid and the set
of all hypersubstitutions of type τ forms a submonoid of HypG(τ).

For more details on generalized hypersubstitutions see [2].

2 Idempotent elements in HypG(3)

In this section we characterize idempotent generalized hypersubstitutions of
type τ = (3). We have only one ternary operation symbol, say f . The generalized
hypersubstitution σ which maps f to the term t is denoted by σt. For any term
t ∈ W(3)(X), the set of all variables occurring in t is denoted by var(t). First, we
will recall the definition of an idempotent element.

Definition 2.1. ([1]) For any semigroup S, an element e ∈ S is called idempotent
if ee = e. In general, by E(S) we denote the set of all idempotent elements of S.

Proposition 2.2. An element σt ∈ HypG(3) is idempotent if and only if σ̂t[t] = t.

Proof. Assume that σt is idempotent, i.e. σ2
t = σt. Then

σ̂t[t] = σ̂t[σt(f)] = σ2
t (f) = σt(f) = t.

Conversely, let σ̂t[t] = t. We have (σt ◦G σt)(f) = σ̂t[σt(f)] = σ̂t[t] = t = σt(f).
Thus σ2

t = σt, i.e. σt is idempotent.

Proposition 2.3. For every xi ∈ X, σxi
and σid are idempotent.
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Proof. Since for every xi ∈ X , σ̂xi
[xi] = xi. By Proposition 2.2 we have σxi

is idempotent. σid is idempotent because it is a neutral element.
Note that for any t ∈ W(3)(X)\X and x1, x2, x3 /∈ var(t), σt is idempotent.

Because there has nothing to substitute in the term σ̂t[t]. Thus σ̂t[t] = t.

Theorem 2.4. Let τ = (3) be a type with a ternary operation symbol f . Let
t = f(t1, t2, t3) ∈ W(3)(X) and var(t)∩X3 6= ∅. Then σt is idempotent if and only
ti = xi for all xi ∈ var(t) ∩ X3.

Proof. Assume that σt is idempotent. Then

S3(f(t1, t2, t3), σ̂f(t1,t2,t3)[t1], σ̂f(t1,t2,t3)[t2], σ̂f(t1,t2,t3)[t3]) = σ2
f(t1,t2,t3)(f)

= σf(t1,t2,t3)(f)

= f(t1, t2, t3).

Suppose that there exists xi ∈ var(t) ∩ X3 such that ti 6= xi. If ti ∈ X , then
σ̂f(t1,t2,t3)[ti] = ti 6= xi. So

S3(f(t1, t2, t3), σ̂f(t1,t2,t3)[t1], σ̂f(t1,t2,t3)[t2], σ̂f(t1,t2,t3)[t3]) 6= f(t1, t2, t3)

and it is a contradiction. If ti /∈ X , then σ̂f(t1,t2,t3)[ti] /∈ X . We obtain

op(t) = op(S3(f(t1, t2, t3), σ̂f(t1,t2,t3)[t1], σ̂f(t1,t2,t3)[t2], σ̂f(t1,t2,t3)[t3])) > op(t)

where op(t) denotes the number of all operation symbols occurring in t. This is a
contradiction. For the converse direction, consider

σ̂t[t] = σ̂f(t1,t2,t3)[f(t1, t2, t3)]

= S3(σf(t1,t2,t3)(f), σ̂f(t1,t2,t3)[t1], σ̂f(t1,t2,t3)[t2], σ̂f(t1,t2,t3)[t3]).

Since var(t)∩X3 6= ∅ and ti = xi for all xi ∈ var(t)∩X3. Then after substitution
in the term t we get the term t again. Thus σt is idempotent.

Let i, j, k ∈ IN. For convenience, we denote:
E0 := {σt | t ∈ X} ∪ {σt | t ∈ W(3)(X) \ X and x1, x2, x3 /∈ var(t)},
E1 := {σf(x1,x2,x2), σf(xi,x3,x3), σf(x3,xj ,x3), σf(x2,x2,xk) | i 6= 2, j, k 6= 1},
E2 := {σf(x1,xj,xk) | j 6= 3, k 6= 2},
E3 := {σf(xi,x2,xk) | i > 3, k 6= 1},
E4 := {σf(xi,xj,xk) | i, j > 3, k ≥ 3},
E5 := {σf(x1,xj,t) | j /∈ {2, 3}, t /∈ X and x2, x3 /∈ var(t)} ∪ {σf(x1,x2,t) |

t /∈ X and x3 /∈ var(t)} ∪ {σf(xi,x2,t) | i /∈ {1, 3}, t /∈ X and x1, x3 /∈ var(t)},
E6 := {σf(x1,t,xk) | t /∈ X, x2, x3 /∈ var(t) and k /∈ {2, 3}} ∪ {σf(x1,t,x3) |

t /∈ X and x2 /∈ var(t)} ∪ {σf(xi,t,x3) | i /∈ {1, 2}, t /∈ X and x1, x2 /∈ var(t)},
E7 := {σf(t,x2,xk) | t /∈ X, x1, x3 /∈ var(t) and k /∈ {1, 3}} ∪ {σf(t,x2,x3) |

t /∈ X and x1 /∈ var(t)} ∪ {σf(t,xj,x3) | t /∈ X, x1, x2 /∈ var(t) and j /∈ {1, 2}},
E8 := {σf(x1,t1,t2) | t1, t2 /∈ X and x2, x3 /∈ var(t1)∪var(t2)}∪{σf(t1,x2,t2) |

t1, t2 /∈ X and x1, x3 /∈ var(t1) ∪ var(t2)} ∪ {σf(t1,t2,x3) | t1, t2 /∈ X and x1, x2 /∈
var(t1) ∪ var(t2)}.

By Theorem 2.4, we have

Corollary 2.5. E(HypG(3)) = E0 ∪ E1 ∪ E2 ∪ . . . ∪ E8.
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3 The Regular Elements in HypG(3)

In this section we will determine all regular elements of HypG(3). At first we
want to recall the definition of a regular element.

Definition 3.1. An element a of a semigroup S is called regular if there exists
x ∈ S such that axa = a. The semigroup S is called regular if all its elements are
regular.

It is clear that for all σxi
where i ∈ IN and xi ∈ X is regular and σid is

also regular. If var(t) ∩X3 = ∅ where X3 = {x1, x2, x3}, then σt ◦G σs ◦G σt = σt

where σs ∈ W(3)(X) and thus σt is regular. Then we consider only the case
var(t) ∩ X3 6= ∅.

Proposition 3.2. Let t = f(t1, t2, t3), s = f(s1, s2, s3) and ∅ 6= var(t) ∩ X3 =
{x1}.
If tj = x1 and s1 = xj where j ∈ {1, 2, 3}, then σt is regular. Otherwise σt is not
regular.

Proof. Consider (σt ◦G σs ◦G σt)(f) = σ̂t[σ̂s[t]]. Since

σ̂s[t] = S3(s, σ̂s[t1], σ̂s[t2], σ̂s[t3])

= S3(f(s1, s2, s3), σ̂s[t1], σ̂s[t2], σ̂s[t3])

= S3(f(xj , s2, s3), σ̂s[t1], σ̂s[t2], σ̂s[t3]) since s1 = xj

= f(σ̂s[tj ], t4, t5) where t4, t5 ∈ W(3)(X)

= f(x1, t4, t5) since tj = x1.

Next, we consider σ̂t[σ̂s[t]] = σ̂t[f(x1, t4, t5)]. Since ∅ 6= var(t) ∩ X3 = {x1}, so
x1 ∈ var(t) is substituted by the term x1 and xm ∈ var(t) is untouched. Hence
σ̂t[σ̂s[t]] = t. Therefore σt is regular.

Now, let tj 6= x1. Suppose that σt is regular, thus there exists σs ∈
HypG(3) such that σ̂t[σ̂s[t]] = t. We let σ̂s[t] = f(u1, u2, u3). Since ∅ 6= var(t) ∩
X3 = {x1}. So u1 = x1. But since f(u1, u2, u3) = S3(s, σ̂s[t1], σ̂s[t2], σ̂s[t3]) =
S3(f(s1, s2, s3), σ̂s[t1], σ̂s[t2], σ̂s[t3]) and s1 = xj . Hence s1 ∈ var(s) is substituted
by the term σ̂[tj ] 6= σ̂[x1] = x1 which contradicts to u1 = x1. Therefore σt is not
regular.

Proposition 3.3. Let t = f(t1, t2, t3), s = f(s1, s2, s3) and ∅ 6= var(t) ∩ X3 =
{x2}.
If tj = x2 and s2 = xj where j ∈ {1, 2, 3}, then σt is regular. Otherwise σt is not
regular.

Proof. Consider (σt ◦G σs ◦G σt)(f) = σ̂t[σ̂s[t]]. Since

σ̂s[t] = S3(s, σ̂s[t1], σ̂s[t2], σ̂s[t3])

= S3(f(s1, s2, s3), σ̂s[t1], σ̂s[t2], σ̂s[t3])

= S3(f(s1, xj , s3), σ̂s[t1], σ̂s[t2], σ̂s[t3]) since s2 = xj

= f(t4, σ̂s[tj ], t5) where t4, t5 ∈ W(3)(X)

= f(t4, x2, t5) since tj = x2.
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Next, we consider σ̂t[σ̂s[t]] = σ̂t[f(t4, x2, t5)]. Since ∅ 6= var(t) ∩ X3 = {x2}, so
x2 ∈ var(t) is substituted by the term x2 and xm ∈ var(t) is untouched. Hence
σ̂t[σ̂s[t]] = t. Therefore σt is regular.

Now, let tj 6= x2. Suppose that σt is regular, thus there exists σs ∈
HypG(3) such that σ̂t[σ̂s[t]] = t. We let σ̂s[t] = f(u1, u2, u3). Since ∅ 6= var(t) ∩
X3 = {x2}. So u2 = x2. But since f(u1, u2, u3) = S3(s, σ̂s[t1], σ̂s[t2], σ̂s[t3]) =
S3(f(s1, s2, s3), σ̂s[t1], σ̂s[t2], σ̂s[t3]) and s2 = xj . Hence s2 ∈ var(s) is substituted
by the term σ̂[tj ] 6= σ̂[x2] = x2 which contradicts to u2 = x2. Therefore σt is not
regular.

Proposition 3.4. Let t = f(t1, t2, t3), s = f(s1, s2, s3) and ∅ 6= var(t) ∩ X3 =
{x3}.
If tj = x3 and s3 = xj where j ∈ {1, 2, 3}, then σt is regular. Otherwise σt is not
regular.

Proof. Consider (σt ◦G σs ◦G σt)(f) = σ̂t[σ̂s[t]]. Since

σ̂s[t] = S3(s, σ̂s[t1], σ̂s[t2], σ̂s[t3])

= S3(f(s1, s2, s3), σ̂s[t1], σ̂s[t2], σ̂s[t3])

= S3(f(s1, s2, xj), σ̂s[t1], σ̂s[t2], σ̂s[t3]) since s3 = xj

= f(t4, t5, σ̂s[tj ]) where t4, t5 ∈ W(3)(X)

= f(t4, t5, x3) since tj = x3.

Next, we consider σ̂t[σ̂s[t]] = σ̂t[f(t4, t5, x3)]. Since ∅ 6= var(t) ∩ X3 = {x3}, so
x3 ∈ var(t) is substituted by the term x3 and xm ∈ var(t) is untouched. Hence
σ̂t[σ̂s[t]] = t. Therefore σt is regular.

Now, let tj 6= x3. Suppose that σt is regular, thus there exists σs ∈
HypG(3) such that σ̂t[σ̂s[t]] = t. We let σ̂s[t] = f(u1, u2, u3). Since ∅ 6= var(t) ∩
X3 = {x3}. So u3 = x3. But since f(u1, u2, u3) = S3(s, σ̂s[t1], σ̂s[t2], σ̂s[t3]) =
S3(f(s1, s2, s3), σ̂s[t1], σ̂s[t2], σ̂s[t3]) and s3 = xj . Hence s3 ∈ var(s) is substituted
by the term σ̂[tj ] 6= σ̂[x3] = x3 which contradicts to u3 = x3. Therefore σt is not
regular.

Proposition 3.5. Let t = f(t1, t2, t3), s = f(s1, s2, s3) and ∅ 6= var(t) ∩ X3 =
{x1, x2}.
If tj = x1, tk = x2 and s1 = xj , s2 = xk where j 6= k and j, k ∈ {1, 2, 3}, then σt

is regular. Otherwise σt is not regular.

Proof. Consider (σt ◦G σs ◦G σt)(f) = σ̂t[σ̂s[t]]. Since

σ̂s[t] = S3(s, σ̂s[t1], σ̂s[t2], σ̂s[t3])

= S3(f(s1, s2, s3), σ̂s[t1], σ̂s[t2], σ̂s[t3])

= S3(f(xj , xk, s3), σ̂s[t1], σ̂s[t2], σ̂s[t3]) since s1 = xj , s2 = xk

= f(σ̂s[tj ], σ̂s[tk], t4) where t4 ∈ W(3)(X)

= f(x1, x2, t4) since tj = x1, tk = x2.
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Next, we consider σ̂t[σ̂s[t]] = σ̂t[f(x1, x2, t4)]. Since ∅ 6= var(t)∩X3 = {x1, x2}, so
x1 ∈ var(t) is substituted by the term x1, x2 ∈ var(t) is substituted by the term
x2 and xm ∈ var(t) is untouched. Hence σ̂t[σ̂s[t]] = t. Therefore σt is regular.

Now, let tj 6= x1 or tk 6= x2. Suppose that σt is regular, thus there
exists σs ∈ HypG(3) such that σ̂t[σ̂s[t]] = t. We let σ̂s[t] = f(u1, u2, u3). Since
∅ 6= var(t) ∩ X3 = {x1, x2}. So u1 = x1 and u2 = x2. But since f(u1, u2, u3) =
S3(s, σ̂s[t1], σ̂s[t2], σ̂s[t3]) = S3(f(s1, s2, s3), σ̂s[t1], σ̂s[t2], σ̂s[t3]) and s1 = xj , s2 =
xk. Hence s1 ∈ var(s) is substituted by the term σ̂[tj ] 6= σ̂[x1] = x1 which
contradicts to u1 = x1 or s2 ∈ var(s) is substituted by the term σ̂[tk] 6= σ̂[x2] = x2

which contradicts to u2 = x2. Therefore σt is not regular.

Proposition 3.6. Let t = f(t1, t2, t3), s = f(s1, s2, s3) and ∅ 6= var(t) ∩ X3 =
{x1, x3}.
If tj = x1, tk = x3 and s1 = xj, s3 = xk where j 6= k and j, k ∈ {1, 2, 3}, then σt

is regular. Otherwise σt is not regular.

Proof. Consider (σt ◦G σs ◦G σt)(f) = σ̂t[σ̂s[t]]. Since

σ̂s[t] = S3(s, σ̂s[t1], σ̂s[t2], σ̂s[t3])

= S3(f(s1, s2, s3), σ̂s[t1], σ̂s[t2], σ̂s[t3])

= S3(f(xj , s2, xk), σ̂s[t1], σ̂s[t2], σ̂s[t3]) since s1 = xj , s3 = xk

= f(σ̂s[tj ], t4, σ̂s[tk]) where t4 ∈ W(3)(X)

= f(x1, t4, x3) since tj = x1, tk = x3.

Next, we consider σ̂t[σ̂s[t]] = σ̂t[f(x1, t4, x3)]. Since ∅ 6= var(t)∩X3 = {x1, x3}, so
x1 ∈ var(t) is substituted by the term x1, x3 ∈ var(t) is substituted by the term
x3 and xm ∈ var(t) is untouched. Hence σ̂t[σ̂s[t]] = t. Therefore σt is regular.

Now, let tj 6= x1 or tk 6= x3. Suppose that σt is regular, thus there
exists σs ∈ HypG(3) such that σ̂t[σ̂s[t]] = t. We let σ̂s[t] = f(u1, u2, u3). Since
∅ 6= var(t) ∩ X3 = {x1, x3}. So u1 = x1 and u3 = x3. But since f(u1, u2, u3) =
S3(s, σ̂s[t1], σ̂s[t2], σ̂s[t3]) = S3(f(s1, s2, s3), σ̂s[t1], σ̂s[t2], σ̂s[t3]) and s1 = xj , s3 =
xk. Hence s1 ∈ var(s) is substituted by the term σ̂[tj ] 6= σ̂[x1] = x1 which
contradicts to u1 = x1 or s3 ∈ var(s) is substituted by the term σ̂[tk] 6= σ̂[x3] = x3

which contradicts to u3 = x3. Therefore σt is not regular.

Proposition 3.7. Let t = f(t1, t2, t3), s = f(s1, s2, s3) and ∅ 6= var(t) ∩ X3 =
{x2, x3}.
If tj = x2, tk = x3 and s2 = xj, s3 = xk where j 6= k and j, k ∈ {1, 2, 3}, then σt

is regular. Otherwise σt is not regular.
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Proof. Consider (σt ◦G σs ◦G σt)(f) = σ̂t[σ̂s[t]]. Since

σ̂s[t] = S3(s, σ̂s[t1], σ̂s[t2], σ̂s[t3])

= S3(f(s1, s2, s3), σ̂s[t1], σ̂s[t2], σ̂s[t3])

= S3(f(s1, xj , xk), σ̂s[t1], σ̂s[t2], σ̂s[t3]) since s2 = xj , s3 = xk

= f(t4, σ̂s[tj ], σ̂s[tk]) where t4 ∈ W(3)(X)

= f(t4, x2, x3) since tj = x2, tk = x3.

Next, we consider σ̂t[σ̂s[t]] = σ̂t[f(t4, x2, x3)]. Since ∅ 6= var(t)∩X3 = {x2, x3}, so
x2 ∈ var(t) is substituted by the term x2, x3 ∈ var(t) is substituted by the term
x3 and xm ∈ var(t) is untouched. Hence σ̂t[σ̂s[t]] = t. Therefore σt is regular.

Now, let tj 6= x2 or tk 6= x3. Suppose that σt is regular, thus there
exists σs ∈ HypG(3) such that σ̂t[σ̂s[t]] = t. We let σ̂s[t] = f(u1, u2, u3). Since
∅ 6= var(t) ∩ X3 = {x2, x3}. So u2 = x2 and u3 = x3. But since f(u1, u2, u3) =
S3(s, σ̂s[t1], σ̂s[t2], σ̂s[t3]) = S3(f(s1, s2, s3), σ̂s[t1], σ̂s[t2], σ̂s[t3]) and s2 = xj , s3 =
xk. Hence s2 ∈ var(s) is substituted by the term σ̂[tj ] 6= σ̂[x2] = x2 which
contradicts to u2 = x2 or s3 ∈ var(s) is substituted by the term σ̂[tk] 6= σ̂[x3] = x3

which contradicts to u3 = x3. Therefore σt is not regular.

Proposition 3.8. Let t = f(t1, t2, t3), s = f(s1, s2, s3) and ∅ 6= var(t) ∩ X3 =
{x1, x2, x3}. If ti = x1, tj = x2, tk = x3 and s1 = xi, s2 = xj, s3 = xk where
i, j, k ∈ {1, 2, 3} and all are distinct, then σt is regular. Otherwise σt is not regular.

Proof. Consider (σt ◦G σs ◦G σt)(f) = σ̂t[σ̂s[t]]. Since

σ̂s[t] = S3(s, σ̂s[t1], σ̂s[t2], σ̂s[t3])

= S3(f(s1, s2, s3), σ̂s[t1], σ̂s[t2], σ̂s[t3])

= S3(f(xi, xj , xk), σ̂s[t1], σ̂s[t2], σ̂s[t3]) since s1 = xi, s2 = xj , s3 = xk

= f(σ̂s[ti], σ̂s[tj ], σ̂s[tk])

= f(x1, x2, x3) since ti = x1, tj = x2, tk = x3.

Next, we consider σ̂t[σ̂s[t]] = σ̂t[f(x1, x2, x3)]. Since ∅ 6= var(t)∩X3 = {x1, x2, x3},
so x1 ∈ var(t) is substituted by the term x1, x2 ∈ var(t) is substituted by the
term x2, x3 ∈ var(t) is substituted by the term x3 and xm ∈ var(t) is untouched.
Hence σ̂t[σ̂s[t]] = t. Therefore σt is regular.

Now, let ti 6= x1 or tj 6= x2 or tk 6= x3. Suppose that σt is regular, thus
there exists σs ∈ HypG(3) such that σ̂t[σ̂s[t]] = t. We let σ̂s[t] = f(u1, u2, u3).
Since ∅ 6= var(t) ∩X3 = {x1, x2, x3}. So u1 = x1, u2 = x2 and u3 = x3. But since
f(u1, u2, u3) = S3(s, σ̂s[t1], σ̂s[t2], σ̂s[t3]) = S3(f(s1, s2, s3), σ̂s[t1], σ̂s[t2], σ̂s[t3]) and
s1 = xi, s2 = xj , s3 = xk. Hence s1 ∈ var(s) is substituted by the term
σ̂[ti] 6= σ̂[x1] = x1 which contradicts to u1 = x1 or s2 ∈ var(s) is substituted
by the term σ̂[tj ] 6= σ̂[x2] = x2 which contradicts to u2 = x2 or s3 ∈ var(s) is sub-
stituted by the term σ̂[tk] 6= σ̂[x3] = x3 which contradicts to u3 = x3. Therefore
σt is not regular.
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