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1 Introduction

By w, we denote the space of all complex sequences. If x ∈ w, then we simply
write x = (xk) instead of x = (xk)

∞

k=0. Also, we shall use the conventions that
e = (1, 1, . . .) and e(n) is the sequence whose only non-zero term is 1 in the nth

place for each n ∈ N, where N = {0, 1, 2, . . .}.
Any vector subspace of w is called a sequence space. We shall write ℓ∞, c

and c0 for the sequence spaces of all bounded, convergent and null sequences,
respectively. Further, by ℓp (1 ≤ p < ∞), we denote the sequence space of all
p-absolutely convergent series, that is ℓp = {x = (xk) ∈ w :

∑∞

k=0 |xk|
p < ∞}

for 1 ≤ p < ∞. Moreover, we write bs, cs and cs0 for the sequence spaces of all
bounded, convergent and null series, respectively.

A sequence space X is called an FK space if it is a complete linear metric
space with continuous coordinates pn : X → C (n ∈ N), where C denotes the
complex field and pn(x) = xn for all x = (xk) ∈ X and every n ∈ N. A normed
FK space is called a BK space, that is, a BK space is a Banach sequence space
with continuous coordinates.
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The sequence spaces ℓ∞, c and c0 are BK spaces with the usual sup-norm
given by ‖x‖ℓ∞

= supk |xk|, where the supremum is taken over all k ∈ N. Also, the

space ℓp is a BK space with the usual ℓp-norm defined by ‖x‖ℓp
= (
∑∞

k=0 |xk|
p)1/p,

where 1 ≤ p < ∞.

A sequence (bn)
∞

n=0 in a normed space X is called a Schauder basis for X
if for every x ∈ X there is a unique sequence (αn)

∞

n=0 of scalars such that x =
∑∞

n=0 αnbn, i.e., limm→∞ ‖x −
∑m

n=0 αnbn‖ = 0.

The α-, β- and γ-duals of a sequence space X are respectively defined by

Xα =
{

a = (ak) ∈ w : ax = (akxk) ∈ ℓ1 for all x = (xk) ∈ X
}

,

Xβ =
{

a = (ak) ∈ w : ax = (akxk) ∈ cs for all x = (xk) ∈ X
}

and

Xγ =
{

a = (ak) ∈ w : ax = (akxk) ∈ bs for all x = (xk) ∈ X
}

.

If A is an infinite matrix with complex entries ank (n, k ∈ N), then we write
A = (ank) instead of A = (ank)

∞

n,k=0. Also, we write An for the sequence in the

nth row of A, that is An = (ank)
∞

k=0 for every n ∈ N. Further, if x = (xk) ∈ w
then we define the A-transform of x as the sequence Ax = (An(x))

∞

n=0, where

An(x) =

∞
∑

k=0

ankxk; (n ∈ N) (1.1)

provided the series on the right hand side of (1.1) converges for each n ∈ N.
Furthermore, the sequence x is said to be A-summable to a ∈ C if Ax converges
to a which is called the A-limit of x.

In addition, let X and Y be sequence spaces. Then, we say that A defines a
matrix mapping from X into Y if for every sequence x ∈ X the A-transform of x
exists and is in Y . Moreover, we write (X, Y ) for the class of all infinite matrices
that map X into Y . Thus A ∈ (X, Y ) if and only if An ∈ Xβ for all n ∈ N and
Ax ∈ Y for all x ∈ X .

For an arbitrary sequence space X , the matrix domain of an infinite matrix A
in X is defined by

XA = {x ∈ w : Ax ∈ X} (1.2)

which is a sequence space.

The approach constructing a new sequence space by means of the matrix
domain of a particular limitation method has recently been employed by several
authors, see for instance [1, 2, 3, 4, 8, 10, 12, 13] and [14].

In this paper, we introduce the notion of λ-convergent and bounded sequences.
Further, we define some related BK spaces and construct their bases. Moreover,
we establish some inclusion relations concerning with those spaces and determine
their α-, β- and γ-duals. Finally, we characterize some related matrix classes.
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2 Notion of λ-convergent and bounded sequences

Throughout this paper, let λ = (λk)∞k=0 be a strictly increasing sequence of
positive reals tending to infinity, that is

0 < λ0 < λ1 < · · · and λk → ∞ as k → ∞. (2.1)

We say that a sequence x = (xk) ∈ w is λ-convergent to the number l ∈ C,
called as the λ-limit of x, if Λn(x) → l as n → ∞, where

Λn(x) =
1

λn

n
∑

k=0

(λk − λk−1)xk; (n ∈ N). (2.2)

In particular, we say that x is a λ-null sequence if Λn(x) → 0 as n → ∞.
Further, we say that x is λ-bounded if supn |Λn(x)| < ∞.

Here and in the sequel, we shall use the convention that any term with a
negative subscript is equal to naught, e.g. λ−1 = 0 and x−1 = 0.

Now, it is well known [11] that if limn→∞ xn = a in the ordinary sense of
convergence, then

lim
n→∞

( 1

λn

n
∑

k=0

(λk − λk−1)|xk − a|
)

= 0.

This implies that

lim
n→∞

|Λn(x) − a| = lim
n→∞

∣

∣

∣

∣

∣

1

λn

n
∑

k=0

(λk − λk−1)(xk − a)

∣

∣

∣

∣

∣

= 0

which yields that limn→∞ Λn(x) = a and hence x is λ-convergent to a. We there-
fore deduce that the ordinary convergence implies the λ-convergence to the same
limit. This leads us to the following basic result:

Lemma 2.1. Every convergent sequence is λ-convergent to the same ordinary

limit.

We shall later show that the converse implication need not be true. Before
that, the following result is immediate by Lemma 2.1.

Lemma 2.2. If a λ-convergent sequence converges in the ordinary sense, then it

must converge to the same λ-limit.
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Now, let x = (xk) ∈ w and n ≥ 1. Then, by using (2.2), we derive that

xn − Λn(x) =
1

λn

n
∑

i=0

(λi − λi−1)(xn − xi)

=
1

λn

n−1
∑

i=0

(λi − λi−1)(xn − xi)

=
1

λn

n−1
∑

i=0

(λi − λi−1)

n
∑

k=i+1

(xk − xk−1)

=
1

λn

n
∑

k=1

(xk − xk−1)
k−1
∑

i=0

(λi − λi−1)

=
1

λn

n
∑

k=1

λk−1(xk − xk−1).

Therefore, we have for every x = (xk) ∈ w that

xn − Λn(x) = Sn(x); (n ∈ N), (2.3)

where the sequence S(x) = (Sn(x))
∞

n=0 is defined by

S0(x) = 0 and Sn(x) =
1

λn

n
∑

k=1

λk−1(xk − xk−1); (n ≥ 1). (2.4)

Now, the following result is obtained from Lemma 2.2 by using (2.3).

Lemma 2.3. A λ-convergent sequence x converges in the ordinary sense if and

only if S(x) ∈ c0.

Similarly, the following results are obvious.

Lemma 2.4. Every bounded sequence is λ-bounded.

Lemma 2.5. A λ-bounded sequence x is bounded in the ordinary sense if and only

if S(x) ∈ ℓ∞.

Now, we define the infinite matrix Λ = (λnk)
∞

n,k=0 by

λnk =







λk − λk−1

λn
; (0 ≤ k ≤ n),

0 ; (k > n)

for all n, k ∈ N. Then, the Λ-transform of a sequence x ∈ w is the sequence
Λ(x) = (Λn(x))

∞

n=0, where Λn(x) is given by (2.2) for every n ∈ N. Thus, the
sequence x is λ-convergent if and only if x is Λ-summable. Further, if x is λ-
convergent then the λ-limit of x is nothing but the Λ-limit of x.

Finally, it is obvious that the matrix Λ is a triangle, that is λnn 6= 0 and
λnk = 0 for k > n (n = 0, 1, 2 . . .). Also, it follows by Lemma 2.1 that the method
Λ is regular.
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Remark 2.6. We may note that if we put qk = λk − λk−1 for all k, then the
matrix Λ is the special case Qn → ∞ (n → ∞) of the matrix N̄q of weighted
means [8], where Qn =

∑n
k=0 qk = λn for all n. On the other hand, the matrix

Λ is reduced, in the special case λk = k + 1 (k ∈ N), to the matrix C1 of Cesàro
means [13, 14].

3 The spaces of λ-convergent and bounded se-

quences

In the present section, we introduce the sequence spaces ℓλ
∞, cλ and cλ

0 as the
sets of all λ-bounded, λ-convergent and λ-null sequences, respectively, that is

ℓλ
∞ =

{

x ∈ w : sup
n

|Λn(x)| < ∞
}

,

cλ =
{

x ∈ w : lim
n→∞

Λn(x) exists
}

and
cλ
0 =

{

x ∈ w : lim
n→∞

Λn(x) = 0
}

.

With the notation of (1.2), we can redefine the spaces ℓλ
∞, cλ and cλ

0 as the
matrix domains of the triangle Λ in the spaces ℓ∞, c and c0, respectively, that is

ℓλ
∞ = (ℓ∞)Λ, cλ = cΛ and cλ

0 = (c0)Λ. (3.1)

Now, we may begin with the following result which is essential in the text.

Theorem 3.1. The sequence spaces ℓλ
∞, cλ and cλ

0 are BK spaces with the same

norm given by

‖x‖ℓλ
∞

= ‖Λ(x)‖ℓ∞
= sup

n
|Λn(x)|. (3.2)

Proof. This result follows from [5, Lemma 2.1] by using (3.1). 2

Remark 3.2. It can easily be seen that the absolute property does not hold on
the spaces ℓλ

∞, cλ and cλ
0 , that is ‖x‖ℓλ

∞

6= ‖|x|‖ℓλ
∞

for at least one sequence x in

each of these spaces, where |x| = (|xk|). Thus, the spaces ℓλ
∞, cλ and cλ

0 are BK
spaces of non-absolute type.

Theorem 3.3. The sequence spaces ℓλ
∞, cλ and cλ

0 are norm isomorphic to the

spaces ℓ∞, c and c0, respectively, that is ℓλ
∞

∼= ℓ∞, cλ ∼= c and cλ
0
∼= c0.

Proof. Let X denote any of the spaces ℓ∞, c or c0 and Xλ be the respective
one of the spaces ℓλ

∞, cλ or cλ
0 . Since the matrix Λ is a triangle, it has a unique

inverse which is also a triangle [9, Proposition 1.1]. Therefore, the linear operator
LΛ : Xλ → X , defined by LΛ(x) = Λ(x) for all x ∈ Xλ, is bijective and is norm
preserving by (3.2) of Theorem 3.1. Hence Xλ ∼= X . 2

Finally, we conclude this section with the following consequence of Theorems
3.1 and 3.3.
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Corollary 3.4. Define the sequence e
(n)
λ ∈ cλ

0 for every fixed n ∈ N by

(

e
(n)
λ

)

k
=















(−1)k−n λn

λk − λk−1
; (n ≤ k ≤ n + 1),

(k ∈ N).

0 ; (otherwise)

Then, we have

(a) The sequence (e
(0)
λ , e

(1)
λ , . . .) is a Schauder basis for the space cλ

0 and every

x ∈ cλ
0 has a unique representation x =

∑∞

n=0 Λn(x) e
(n)
λ .

(b) The sequence (e, e
(0)
λ , e

(1)
λ , . . .) is a Schauder basis for the space cλ and every

x ∈ cλ has a unique representation x = le +
∑∞

n=0(Λn(x) − l)e
(n)
λ , where l =

limn→∞ Λn(x).

Proof. This result is immediate by [9, Corollary 2.3], since Λ(e) = e and Λ
(

e
(n)
λ

)

=

e(n) for all n. 2

Remark 3.5. It is obvious by Remark 2.6 that the spaces ℓλ
∞, cλ and cλ

0 are the
special case q = ∆λ of the spaces (N̄ , q)∞, (N̄ , q) and (N̄ , q)0 of weighted means
[8], that is ℓλ

∞ = (N̄ , ∆λ)∞, cλ = (N̄ , ∆λ) and cλ
0 = (N̄ , ∆λ)0. On the other hand,

the spaces ℓλ
∞, cλ and cλ

0 are reduced in the special case λk = k +1 (k ∈ N) to the
Cesàro sequence spaces X∞, c̃ and c̃0 of non-absolute type [13, 14], respectively.

4 Some inclusion relations

In this section, we establish some inclusion relations concerning with the spaces
cλ
0 , cλ and ℓλ

∞, and we may begin with the following basic result:

Theorem 4.1. The inclusions cλ
0 ⊂ cλ ⊂ ℓλ

∞ strictly hold.

Proof. It is clear that the inclusions cλ
0 ⊂ cλ ⊂ ℓλ

∞ hold. Further, since the
inclusion c0 ⊂ c is strict, it follows by Lemma 2.1 that the inclusion cλ

0 ⊂ cλ is

also strict. Moreover, consider the sequence x = (xk) defined by xk = (−1)
k
(λk +

λk−1)/(λk − λk−1) for all k ∈ N. Then, we have for every n ∈ N that

Λn(x) =
1

λn

n
∑

k=0

(−1)
k
(λk + λk−1) = (−1)

n
.

This shows that Λ(x) ∈ ℓ∞\c. Thus, the sequence x is in ℓλ
∞ but not in cλ.

Hence, the inclusion cλ ⊂ ℓλ
∞ strictly holds. This completes the proof. 2

Now, the following result is immediate by the regularity of the matrix Λ and
by Lemma 2.3.
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Lemma 4.2. The inclusions c0 ⊂ cλ
0 and c ⊂ cλ hold. Furthermore, the equal-

ities hold if and only if S(x) ∈ c0 for every sequence x in the spaces cλ
0 and cλ,

respectively.

Proof. The first part is obvious by Lemma 2.1. Thus, we turn to the second part.
For this, suppose firstly that the equality cλ

0 = c0 holds. Then, we have for every
x ∈ cλ

0 that x ∈ c0 and hence S(x) ∈ c0 by Lemma 2.3.
Conversely, let x ∈ cλ

0 . Then, we have by the hypothesis that S(x) ∈ c0. Thus,
it follows, by Lemma 2.3 and then Lemma 2.2, that x ∈ c0. This shows that the
inclusion cλ

0 ⊂ c0 holds. Hence, by combining the inclusions cλ
0 ⊂ c0 and c0 ⊂ cλ

0 ,
we get the equality cλ

0 = c0.
Similarly, one can show that the equality cλ = c holds if and only if S(x) ∈ c0

for every x ∈ cλ. This concludes the proof. 2

Moreover, the following result can be proved similarly by means of Lemmas
2.4 and 2.5.

Lemma 4.3. The inclusion ℓ∞ ⊂ ℓλ
∞ holds. Furthermore, the equality ℓλ

∞ = ℓ∞
holds if and only if S(x) ∈ ℓ∞ for every x ∈ ℓλ

∞.

Now, it is obvious by Lemma 4.2 that c0 ⊂ cλ
0 ∩ c. Conversely, it follows by

Lemma 2.2 that cλ
0 ∩ c ⊂ c0. This yields the following result:

Theorem 4.4. The equality cλ
0 ∩ c = c0 holds.

It is worth mentioning that the equality cλ ∩ ℓ∞ = c need not be held. For
example, let λk = k + 1 and xk = (−1)

k
for all k. Then x ∈ cλ ∩ ℓ∞ while x 6∈ c.

Now, let x = (xk) ∈ w and n ≥ 1. Then, by bearing in mind the relations
(2.3) and (2.4), we derive that

Sn(x) =
1

λn

n
∑

k=1

λk−1(xk − xk−1)

=
1

λn

[

n
∑

k=1

λk−1xk −

n
∑

k=1

λk−1xk−1

]

=
1

λn

[

n
∑

k=0

λk−1xk −

n−1
∑

k=0

λkxk

]

=
1

λn

[

λn−1xn −

n−1
∑

k=0

(λk − λk−1)xk

]

=
λn−1

λn

[

xn − Λn−1(x)
]

=
λn−1

λn

[

Sn(x) + Λn(x) − Λn−1(x)
]

.
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Hence, we have for every x ∈ w that

Sn(x) =
λn−1

λn − λn−1

[

Λn(x) − Λn−1(x)
]

; (n ∈ N). (4.1)

On the other hand, by taking into account the definition of the sequence λ given
by (2.1), we have λk+1/λk > 1 for all k ∈ N. Thus, there are only two distinct
cases of the sequence λ, either lim infk→∞ λk+1/λk > 1 or lim infk→∞ λk+1/λk = 1.
Obviously, the first case holds if and only if lim infk→∞(λk+1−λk)/λk+1 > 0 which
is equivalent to say that the sequence (λk/(λk − λk−1))

∞

k=0 is a bounded sequence.
Similarly, the second case holds if and only if the above sequence is unbounded.
Therefore, we have the following lemma:

Lemma 4.5. For any sequence λ = (λk)
∞

k=0 satisfying (2.1), we have

(a)
( λk

λk − λk−1

)∞

k=0
/∈ ℓ∞ if and only if lim inf

k→∞

λk+1

λk
= 1.

(b)
( λk

λk − λk−1

)∞

k=0
∈ ℓ∞ if and only if lim inf

k→∞

λk+1

λk
> 1.

It is clear that Lemma 4.5 still holds if the sequence (λk/(λk − λk−1))
∞

k=0 is
replaced by (λk/(λk+1 − λk))

∞

k=0.
Now, we are going to prove the following result which gives the necessary

and sufficient condition for the matrix Λ to be stronger than convergence and
boundedness both, i.e., for the inclusions c0 ⊂ cλ

0 , c ⊂ cλ and ℓ∞ ⊂ ℓλ
∞ to be

strict.

Theorem 4.6. The inclusions c0 ⊂ cλ
0 , c ⊂ cλ and ℓ∞ ⊂ ℓλ

∞ strictly hold if and

only if lim infn→∞ λn+1/λn = 1.

Proof. Suppose that the inclusion ℓ∞ ⊂ ℓλ
∞ is strict. Then, Lemma 4.3 implies

the existence of a sequence x ∈ ℓλ
∞ such that S(x) = (Sn(x))∞n=0 6∈ ℓ∞. Since

x ∈ ℓλ
∞, we have Λ(x) = (Λn(x))

∞

n=0 ∈ ℓ∞ and hence (Λn(x) − Λn−1(x))
∞

n=0 ∈ ℓ∞.
Therefore, we deduce from (4.1) that (λn−1/(λn − λn−1))

∞

n=0 6∈ ℓ∞ and hence
(λn/(λn − λn−1))

∞

n=0 6∈ ℓ∞. This leads us with Lemma 4.5 (a) to the consequence
that lim infn→∞ λn+1/λn = 1. Similarly, by using Lemma 4.2 instead of Lemma
4.3, it can be shown that if the inclusions c0 ⊂ cλ

0 and c ⊂ cλ are strict, then
lim infn→∞ λn+1/λn = 1. This proves the necessity of the condition.

To prove the sufficiency, suppose that lim infn→∞ λn+1/λn = 1. Then, we
have by Lemma 4.5 (a) that (λn/(λn − λn−1))

∞

n=0 6∈ ℓ∞. Let us now define the

sequence x = (xk) by xk = (−1)
k
λk/(λk −λk−1) for all k. Then, we have for every

n ∈ N that

|Λn(x)| =
1

λn

∣

∣

∣

∣

∣

n
∑

k=0

(−1)
k
λk

∣

∣

∣

∣

∣

≤
1

λn

n
∑

k=0

(λk − λk−1) = 1

which shows that Λ(x) ∈ ℓ∞. Thus, the sequence x is in ℓλ
∞ but not in ℓ∞.

Therefore, by combining this with the fact that the inclusion ℓ∞ ⊂ ℓλ
∞ always

holds by Lemma 4.3, we conclude that this inclusion is strict.
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Similarly, if lim infk→∞ λk+1/λk = 1 then we deduce from Lemma 4.5 (a) that
lim infk→∞(λk − λk−1)/λk = 0. Thus, there is a subsequence (λkr

)
∞

r=0 of the
sequence λ = (λk)

∞

k=0 such that

lim
r→∞

(λkr
− λkr−1

λkr

)

= 0. (4.2)

Obviously, our subsequence can be chosen such that kr+1 − kr ≥ 2 for all
r ∈ N.

Now, let us define the sequence y = (yk)
∞

k=0 by

yk =















1 ; (k = kr),

−
(λk−1 − λk−2

λk − λk−1

)

; (k = kr + 1), (r ∈ N)

0 ; (otherwise)

(4.3)

for all k ∈ N. Then y 6∈ c. On the other hand, we have for every n ∈ N that

Λn(y) =















λn − λn−1

λn
; (n = kr),

(r ∈ N).

0 ; (n 6= kr)

This and (4.2) together imply that Λ(y) ∈ c0 and hence y ∈ cλ
0 . Therefore,

the sequence y is in the both spaces cλ
0 and cλ but not in any one of the spaces

c0 or c. Hence, by combining this with Lemma 4.2, we deduce that the inclusions
c0 ⊂ cλ

0 and c ⊂ cλ are strict. This concludes the proof. 2

Now, as a consequence of Theorem 4.6, we have the following result which
gives the necessary and sufficient condition for the matrix Λ to be equivalent to
convergence and boundedness both.

Corollary 4.7. The equalities cλ
0 = c0, cλ = c and ℓλ

∞ = ℓ∞ hold if and only if

lim infn→∞ λn+1/λn > 1.

Proof. The necessity is immediate by Theorem 4.6. For, if the equalities hold then
the inclusions in Theorem 4.6 cannot be strict and hence lim infn→∞ λn+1/λn 6= 1
which implies that lim infn→∞ λn+1/λn > 1.

Conversely, suppose that lim infn→∞ λn+1/λn > 1. Then, it follows by part (b)
of Lemma 4.5 that (λn/(λn − λn−1))

∞

n=0 ∈ ℓ∞ and hence (λn−1/(λn − λn−1))
∞

n=0 ∈
ℓ∞.

Now, let x ∈ cλ be given. Then, we have Λ(x) = (Λn(x))
∞

n=0 ∈ c and hence
(Λn(x) − Λn−1(x))∞n=0 ∈ c0. Thus, we obtain by (4.1) that (Sn(x))∞n=0 ∈ c0.
This shows that S(x) ∈ c0 for every x ∈ cλ and hence for every x ∈ cλ

0 . Con-
sequently, we deduce by Lemma 4.2 that the equalities cλ

0 = c0 and cλ = c
hold. Similarly, by using Lemma 4.3 instead of Lemma 4.2, one can shows that if
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lim infn→∞ λn+1/λn > 1, then the equality ℓλ
∞ = ℓ∞ holds. This completes the

proof. 2

Finally, we conclude this section with the following results concerning with the
spaces cλ

0 and cλ.

Lemma 4.8. The following statements are true:

(a) Although the spaces cλ
0 and c overlap, the space cλ

0 does not include the space

c.

(b) Although the spaces cλ and ℓ∞ overlap, the space cλ does not include the space

ℓ∞.

Proof. Part (a) is immediate by Theorem 4.4. To prove (b), it is obvious by
Lemma 4.2 that c ⊂ cλ ∩ ℓ∞, that is, the spaces cλ and ℓ∞ overlap. Furthermore,
due to the Steinhaus Theorem [6] (essentially saying that any regular matrix cannot
sum all bounded sequences), the regularity of the matrix Λ implies the existence
of a sequence x ∈ ℓ∞ which is not Λ-summable, i.e. Λ(x) 6∈ c. Thus, such a
sequence x is in ℓ∞ but not in cλ. Hence, the inclusion ℓ∞ ⊂ cλ does not hold.
This concludes the proof. 2

Theorem 4.9. If lim infn→∞ λn+1/λn = 1, then the following hold:

(a) Neither of the spaces cλ
0 and c includes the other.

(b) Neither of the spaces cλ
0 and ℓ∞ includes the other.

(c) Neither of the spaces cλ and ℓ∞ includes the other.

Proof. For (a), it has been shown in Lemma 4.8 (a) that the inclusion c ⊂ cλ
0 does

not hold. Further, if lim infn→∞ λn+1/λn = 1 then the converse inclusion is also
not held. For example, the sequence y defined by (4.3), in the proof of Theorem
4.6, belongs to the set cλ

0\c. Hence, part (a) follows.

To prove (b), we deduce from Lemma 4.8 that the inclusion ℓ∞ ⊂ cλ
0 does not

hold. Moreover, we are going to show that the converse inclusion does not hold if
lim infn→∞ λn+1/λn = 1. For this, suppose that lim infn→∞ λn+1/λn = 1. Then,
as we have seen in the proof of Theorem 4.6, there is a subsequence (λkr

)
∞

r=0 of
the sequence λ = (λk)∞k=0 such that (4.2) holds and kr+1 − kr ≥ 2 for all r ∈ N.

Now, let 0 < α < 1 and define the sequence x = (xk)
∞

k=0 by

xk =























( λk

λk − λk−1

)α

; (k = kr),

−
(λk−1 − λk−2

λk − λk−1

)

xk−1 ; (k = kr + 1), (r ∈ N)

0 ; (otherwise)

for all k ∈ N. Then, it follows by (4.2) that x 6∈ ℓ∞. On the other hand, the
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straightforward computations yield that

n
∑

k=0

(λk − λk−1)xk =















(λn − λn−1)
( λn

λn − λn−1

)α

; (n = kr),

(r ∈ N)

0 ; (n 6= kr)

holds for every n ∈ N, and hence

Λn(x) =















(λn − λn−1

λn

)1−α

; (n = kr),

(r ∈ N).

0 ; (n 6= kr)

This, together with (4.2), implies that Λ(x) ∈ c0. Thus, the sequence x is in
cλ
0 but not in ℓ∞. Consequently, the inclusion cλ

0 ⊂ ℓ∞ fails.

Finally, part (c) is immediate by combining part (b) and Lemma 4.8 (b). 2

Remark 4.10. The results of this section may extend to the spaces Z(u, v; c0),
Z(u, v; c) and Z(u, v; ℓ∞) of generalized weighted means [10] with some conditions
on the sequences u and v.

5 The α-, β- and γ-duals of the spaces cλ
0 , cλ and

ℓλ
∞

In the present section, we determine the α-, β- and γ-duals of the sequence
spaces cλ

0 , cλ and ℓλ
∞.

Throughout, let F denote the collection of all nonempty and finite subsets of
N = {0, 1, 2, . . .}. Then, the following known results [15] are fundamental for our
investigation.

Lemma 5.1. We have (c0, ℓ1) = (c, ℓ1) = (ℓ∞, ℓ1). Further A ∈ (c0, ℓ1) if and

only if

sup
K∈F

(

∞
∑

n=0

∣

∣

∣

∣

∣

∑

k∈K

ank

∣

∣

∣

∣

∣

)

< ∞.

Lemma 5.2. We have (c0, ℓ∞) = (c, ℓ∞) = (ℓ∞, ℓ∞). Furthermore A ∈ (ℓ∞, ℓ∞)
if and only if

sup
n

(

∞
∑

k=0

|ank|

)

< ∞.

Moreover, we shall assume throughout that the sequences x = (xk) and y =
(yk) are connected by the relation y = Λ(x), that is y is the Λ-transform of x.
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Then, the sequence x is in any of the spaces cλ
0 , cλ or ℓλ

∞ if and only if y is in the
respective one of the spaces c0, c or ℓ∞. In addition, one can easily derive that

xk =
k
∑

j=k−1

(−1)k−j λj

λk − λk−1
yj ; (k ∈ N). (5.1)

Now, we may begin the following result which determines the α-dual of the
spaces cλ

0 , cλ and ℓλ
∞.

Theorem 5.3. The α-dual of the spaces cλ
0 , cλ and ℓλ

∞ is the set

aλ
1 =

{

a = (an) ∈ w :

∞
∑

n=0

λn

λn − λn−1
|an| < ∞

}

.

Proof. For any fixed sequence a = (an) ∈ w, we define the matrix B = (bnk)
∞

n,k=0

by

bnk =







(−1)
n−k λk

λn − λn−1
an ; (n − 1 ≤ k ≤ n),

0 ; (k < n − 1 or k > n)

for all n, k ∈ N. Also, for every x ∈ w we put y = Λ(x). Then, it follows by (5.1)
that

anxn =

n
∑

k=n−1

(−1)
n−k λk

λn − λn−1
anyk = Bn(y); (n ∈ N). (5.2)

Thus, we observe by (5.2) that ax = (anxn) ∈ ℓ1 whenever x ∈ cλ
0 if and only

if By ∈ ℓ1 whenever y ∈ c0, that is a ∈ (cλ
0 )

α
if and only if B ∈ (c0, ℓ1). Therefore,

it follows by Lemma 5.1, with B instead of A, that a ∈ (cλ
0 )

α
if and only if

sup
K∈F

(

∞
∑

n=0

∣

∣

∣

∣

∣

∑

k∈K

bnk

∣

∣

∣

∣

∣

)

< ∞. (5.3)

On the other hand, let n ∈ N be given. Then, we have for any K ∈ F that

∣

∣

∣

∣

∣

∑

k∈K

bnk

∣

∣

∣

∣

∣

=







































0 ; (n − 1 6∈ K and n 6∈ K),

λn−1

λn − λn−1
|an| ; (n − 1 ∈ K and n 6∈ K),

λn

λn − λn−1
|an| ; (n − 1 6∈ K and n ∈ K),

|an| ; (n − 1 ∈ K and n ∈ K).

Hence, we deduce that (5.3) holds if and only if

∞
∑

n=0

λn

λn − λn−1
|an| < ∞
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which shows that (cλ
0 )

α
= aλ

1 . Finally, we have by Lemma 5.1 that (c0, ℓ1) =
(c, ℓ1) = (ℓ∞, ℓ1). Thus, it can similarly be shown that (cλ)

α
= (ℓλ

∞)
α

= aλ
1 . This

completes the proof. 2

Remark 5.4. Let µ = (µn)
∞

n=0 be defined by µn = (λn − λn−1)/λn for all n.

Then, we have by Theorem 5.3 that (cλ
0 )

α
= (cλ)

α
= (ℓλ

∞)
α

= ℓ1
µ, where ℓ1

µ

denotes the space of de Malafosse [7] which is defined as the set of all sequences
x = (xn) ∈ w such that x/µ = (xn/µn) ∈ ℓ1. On the other hand, we may note
by Lemma 4.5 (b) that if lim infn→∞ λn+1/λn > 1, then there is M > 1 such that
1 ≤ λn/(λn −λn−1) ≤ M for all n. In this special case, we obtain by Theorem 5.3
that (cλ

0 )
α

= (cλ)
α

= (ℓλ
∞)

α
= ℓ1 which is compatible with the fact that cλ

0 = c0,
cλ = c and ℓλ

∞ = ℓ∞ by Corollary 4.7.

Now, let x, y ∈ w be connected by the relation y = Λ(x). Then, by using (5.1),
we can easily derive that

n
∑

k=0

akxk =

n−1
∑

k=0

∆̄
( ak

λk − λk−1

)

λkyk +
λn

λn − λn−1
anyn; (n ∈ N), (5.4)

where
∆̄
( ak

λk − λk−1

)

=
ak

λk − λk−1
−

ak+1

λk+1 − λk
; (k ∈ N).

This leads us to the following result:

Theorem 5.5. Define the sets aλ
2 , aλ

3 , aλ
4 and aλ

5 as follows:

aλ
2 =

{

a = (ak) ∈ w :
∞
∑

k=0

∣

∣

∣
∆̄
( ak

λk − λk−1

)

λk

∣

∣

∣
< ∞

}

,

aλ
3 =

{

a = (ak) ∈ w : sup
k

∣

∣

∣

λk

λk − λk−1
ak

∣

∣

∣
< ∞

}

,

aλ
4 =

{

a = (ak) ∈ w : lim
k→∞

( λk

λk − λk−1
ak

)

exists
}

and

aλ
5 =

{

a = (ak) ∈ w : lim
k→∞

( λk

λk − λk−1
ak

)

= 0
}

.

Then, we have (cλ
0 )

β
= aλ

2 ∩ aλ
3 , (cλ)

β
= aλ

2 ∩ aλ
4 and (ℓλ

∞)
β

= aλ
2 ∩ aλ

5 .

Proof. This result is an immediate consequence of [10, Theorem 2]. 2

Remark 5.6. Let us consider the special case x = y = e of the equality (5.4).

Then, it follows by Theorem 5.5 that the inclusions (cλ
0 )

β
⊂ bs, (cλ)

β
⊂ cs and

(ℓλ
∞)

β
⊂ cs hold.

Finally, we conclude this section with the following result concerning with the
γ-dual of the spaces cλ

0 , cλ and ℓλ
∞.

Theorem 5.7. The γ-dual of the spaces cλ
0 , cλ and ℓλ

∞ is the set aλ
2 ∩ aλ

3 .

Proof. This result can be obtained from Lemma 5.2 by using (5.4). 2
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6 Certain matrix mappings on the spaces cλ
0 , cλ

and ℓλ
∞

In this final section, we state some results which characterize various
matrix mappings on the spaces cλ

0 , cλ and ℓλ
∞ and between them. The most

of these results are immediate by those of Malkowsky and Rakočević [8] and
some of them are the impoved versions.

For an infinite matrix A = (ank), we shall write for brevity that

ãnk =
( ank

λk − λk−1

−
an,k+1

λk+1 − λk

)

λk

for all n, k ∈ N. Further, let x, y ∈ w be connected by the relation y = Λ(x).
Then, we have by (5.4) that

m
∑

k=0

ankxk =

m−1
∑

k=0

ãnkyk +
λm

λm − λm−1

anmym; (n,m ∈ N). (6.1)

In particular, let x ∈ cλ and An = (ank)
∞

k=0
∈ (cλ)

β
for all n ∈ N. Then,

we obtain, by passing to the limits in (6.1) as m → ∞ and using Theorem
5.5, that

∞
∑

k=0

ankxk =

∞
∑

k=0

ãnkyk + lan

=

∞
∑

k=0

ãnk(yk − l) + l
(

∞
∑

k=0

ãnk + an

)

which can be written as follows

∞
∑

k=0

ankxk =

∞
∑

k=0

ãnk(yk − l) + l
(

∞
∑

k=0

ank

)

; (n ∈ N), (6.2)

where l = limk→∞ yk and an = limk→∞(λkank/(λk − λk−1)) for all n ∈ N.
Now, let us consider the following conditions:

sup
n

(

∞
∑

k=0

|ãnk|
)

< ∞, (6.3)

( λk

λk − λk−1

ank

)∞

k=0
∈ c0 for every n ∈ N, (6.4)
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( λk

λk − λk−1

ank

)∞

k=0
∈ c for every n ∈ N, (6.5)

( λk

λk − λk−1

ank

)∞

k=0
∈ ℓ∞ for every n ∈ N, (6.6)

sup
n

∣

∣

∣

∞
∑

k=0

ank

∣

∣

∣
< ∞, (6.7)

lim
n→∞

(

∞
∑

k=0

ank

)

= a, (6.8)

lim
n→∞

(

∞
∑

k=0

ank

)

= 0, (6.9)

∞
∑

n=0

∣

∣

∣

∞
∑

k=0

ank

∣

∣

∣
< ∞, (6.10)

∞
∑

n=0

∣

∣

∣

∞
∑

k=0

ank

∣

∣

∣

p

< ∞; (1 < p < ∞), (6.11)

lim
n→∞

ãnk = ãk for every k ∈ N, (6.12)

lim
n→∞

(

∞
∑

k=0

|ãnk − ãk|
)

= 0, (6.13)

lim
n→∞

(

∞
∑

k=0

|ãnk|
)

= 0, (6.14)

lim
n→∞

ãnk = 0 for every k ∈ N, (6.15)

sup
N∈F

(

∞
∑

k=0

∣

∣

∣

∑

n∈N

ãnk

∣

∣

∣

)

< ∞, (6.16)

sup
K∈F

(

∞
∑

n=0

∣

∣

∣

∑

k∈K

ãnk

∣

∣

∣

p)

< ∞; (1 < p < ∞), (6.17)

∞
∑

k=0

|ãnk| converges for every n ∈ N. (6.18)

Then, by combining Theorem 5.5 with the results of Stieglitz and Tietz
[15], we immediately deduce the following results by using (6.1) and (6.2).
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Theorem 6.1. We have

(a) A ∈ (ℓλ
∞, ℓ∞) if and only if (6.3) and (6.4) hold.

(b) A ∈ (cλ, ℓ∞) if and only if (6.3), (6.5) and (6.7) hold.

(c) A ∈ (cλ
0 , ℓ∞) if and only if (6.3) and (6.6) hold.

Theorem 6.2. We have

(a) A ∈ (ℓλ
∞, c) if and only if (6.3), (6.4), (6.12) and (6.13) hold. Further,

if A ∈ (ℓλ
∞, c) then we have for every x ∈ ℓλ

∞ that

lim
n→∞

An(x) =

∞
∑

k=0

ãkΛk(x). (6.19)

(b) A ∈ (cλ, c) if and only if (6.3), (6.5), (6.8) and (6.12) hold. Further,

if A ∈ (cλ, c) then we have for every x ∈ cλ that

lim
n→∞

An(x) =
∞
∑

k=0

ãk(Λk(x) − l) + la,

where l = limk→∞ Λk(x).

(c) A ∈ (cλ
0 , c) if and only if (6.3), (6.6) and (6.12) hold. Furthermore, if

A ∈ (cλ
0 , c) then (6.19) holds for every x ∈ cλ

0 .

Theorem 6.3. We have

(a) A ∈ (ℓλ
∞, c0) if and only if (6.4) and (6.14) hold.

(b) A ∈ (cλ, c0) if and only if (6.3), (6.5), (6.9) and (6.15) hold.

(c) A ∈ (cλ
0 , c0) if and only if (6.3), (6.6) and (6.15) hold.

Theorem 6.4. We have

(a) A ∈ (ℓλ
∞, ℓ1) if and only if (6.4) and (6.16) hold.

(b) A ∈ (cλ, ℓ1) if and only if (6.5), (6.10) and (6.16) hold.

(c) A ∈ (cλ
0 , ℓ1) if and only if (6.6) and (6.16) hold.

Theorem 6.5. Let 1 < p < ∞. Then, we have

(a) A ∈ (ℓλ
∞, ℓp) if and only if (6.4), (6.17) and (6.18) hold.

(b) A ∈ (cλ, ℓp) if and only if (6.5), (6.11), (6.17) and (6.18) hold.

(c) A ∈ (cλ
0 , ℓp) if and only if (6.6), (6.17) and (6.18) hold.
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Finally, we conclude our work with the following corollaries which are
immediate by [8, Proposition 3.3].

Corollary 6.6. Let λ′ = (λ′
k) be a strictly increasing sequence of positive

reals tending to infinity, A = (ank) an infinite matrix and define the matrix

B = (bnk) by

bnk =
1

λ′
n

n
∑

j=0

(λ′
j − λ′

j−1)ajk; (n, k ∈ N).

Then, the necessary and sufficient conditions for the matrix A to be-

long to any of the classes (ℓλ
∞, ℓλ′

∞), (cλ, ℓλ′

∞), (cλ
0 , ℓλ′

∞), (ℓλ
∞, cλ′

), (cλ, cλ′

),
(cλ

0 , cλ′

), (ℓλ
∞, cλ′

0 ), (cλ, cλ′

0 ) or (cλ
0 , cλ′

0 ) are obtained from the respective one

in Theorems 6.1, 6.2 or 6.3 by replacing the entries of the matrix A by those

of the matrix B.

Corollary 6.7. Let A = (ank) be an infinite matrix and define the matrix

B = (bnk) by

bnk =

n
∑

j=0

ajk; (n, k ∈ N).

Then, the necessary and sufficient conditions for the matrix A to belong

to any of the classes (ℓλ
∞, bs), (cλ, bs), (cλ

0 , bs), (ℓλ
∞, cs), (cλ, cs), (cλ

0 , cs),
(ℓλ

∞, cs0), (cλ, cs0) or (cλ
0 , cs0) are obtained from the respective one in The-

orems 6.1, 6.2 or 6.3 by replacing the entries of the matrix A by those of

the matrix B.

Corollary 6.8. Let 0 < r < 1, A = (ank) an infinite matrix and define the

matrix B = (bnk) by

bnk =
n
∑

j=0

(

n

j

)

(1 − r)n−jrjajk; (n, k ∈ N).

Then, the necessary and sufficient conditions for the matrix A to belong

to any of the classes (ℓλ
∞, er

p), (cλ, er
p), (cλ

0 , er
p), (ℓλ

∞, er
c), (cλ, er

c), (cλ
0 , er

c),

(ℓλ
∞, er

0), (cλ, er
0) or (cλ

0 , er
0) are obtained from the respective ones in Theo-

rems 6.1– 6.5 by replacing the entries of the matrix A by those of the matrix

B, where 1 ≤ p ≤ ∞ and er
0, er

c and er
p denote the Euler sequence spaces

which have been studied by Altay and Başar [1] and by Altay, Başar and

Mursaleen [2, 12].
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Remark 6.9. By following the same technique used in Corollaries 6.6, 6.7
and 6.8, we can deduce the characterization of matrix operators that map
any of the spaces cλ

0 , cλ and ℓλ
∞ into the sequence spaces defined in [3, 4, 13]

and [14].
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