Thai Journal of Mathematics Volume 8 (2010) Number 2 : 311–329

www.math.science.cmu.ac.th/thaijournal Online ISSN 1686-0209

On the Spaces of λ -Convergent and Bounded Sequences

M. Mursaleen¹ and A.K. Noman

Abstract : In the present paper, we introduce the notion of λ -convergent and bounded sequences. Further, we define some related BK spaces and construct their bases. Moreover, we establish some inclusion relations concerning with those spaces and determine their α -, β - and γ -duals. Finally, we characterize some related matrix classes.

Keywords : Sequence spaces; BK spaces; Schauder basis; α -, β - and γ -duals; Matrix mappings.

2000 Mathematics Subject Classification : 40C05, 40H05, 46A45.

1 Introduction

By w, we denote the space of all complex sequences. If $x \in w$, then we simply write $x = (x_k)$ instead of $x = (x_k)_{k=0}^{\infty}$. Also, we shall use the conventions that $e = (1, 1, \ldots)$ and $e^{(n)}$ is the sequence whose only non-zero term is 1 in the n^{th} place for each $n \in \mathbb{N}$, where $\mathbb{N} = \{0, 1, 2, \ldots\}$.

Any vector subspace of w is called a *sequence space*. We shall write ℓ_{∞} , c and c_0 for the sequence spaces of all bounded, convergent and null sequences, respectively. Further, by ℓ_p $(1 \le p < \infty)$, we denote the sequence space of all p-absolutely convergent series, that is $\ell_p = \{x = (x_k) \in w : \sum_{k=0}^{\infty} |x_k|^p < \infty\}$ for $1 \le p < \infty$. Moreover, we write bs, cs and cs_0 for the sequence spaces of all bounded, convergent and null series, respectively.

A sequence space X is called an FK space if it is a complete linear metric space with continuous coordinates $p_n : X \to \mathbb{C}$ $(n \in \mathbb{N})$, where \mathbb{C} denotes the complex field and $p_n(x) = x_n$ for all $x = (x_k) \in X$ and every $n \in \mathbb{N}$. A normed FK space is called a BK space, that is, a BK space is a Banach sequence space with continuous coordinates.

¹ Corresponding author

Copyright \bigodot 2010 by the Mathematical Association of Thailand. All rights reserved.

The sequence spaces ℓ_{∞} , c and c_0 are BK spaces with the usual sup-norm given by $\|x\|_{\ell_{\infty}} = \sup_k |x_k|$, where the supremum is taken over all $k \in \mathbb{N}$. Also, the space ℓ_p is a BK space with the usual ℓ_p -norm defined by $\|x\|_{\ell_p} = (\sum_{k=0}^{\infty} |x_k|^p)^{1/p}$, where $1 \leq p < \infty$.

A sequence $(b_n)_{n=0}^{\infty}$ in a normed space X is called a *Schauder basis* for X if for every $x \in X$ there is a unique sequence $(\alpha_n)_{n=0}^{\infty}$ of scalars such that $x = \sum_{n=0}^{\infty} \alpha_n b_n$, i.e., $\lim_{m\to\infty} ||x - \sum_{n=0}^{m} \alpha_n b_n|| = 0$.

The α -, β - and γ -duals of a sequence space X are respectively defined by

$$X^{\alpha} = \{ a = (a_k) \in w : \ ax = (a_k x_k) \in \ell_1 \ \text{for all} \ x = (x_k) \in X \},\$$
$$X^{\beta} = \{ a = (a_k) \in w : \ ax = (a_k x_k) \in cs \ \text{for all} \ x = (x_k) \in X \}$$

and

$$X^{\gamma} = \{a = (a_k) \in w : ax = (a_k x_k) \in bs \text{ for all } x = (x_k) \in X\}.$$

If A is an infinite matrix with complex entries a_{nk} $(n, k \in \mathbb{N})$, then we write $A = (a_{nk})$ instead of $A = (a_{nk})_{n,k=0}^{\infty}$. Also, we write A_n for the sequence in the n^{th} row of A, that is $A_n = (a_{nk})_{k=0}^{\infty}$ for every $n \in \mathbb{N}$. Further, if $x = (x_k) \in w$ then we define the A-transform of x as the sequence $Ax = (A_n(x))_{n=0}^{\infty}$, where

$$A_n(x) = \sum_{k=0}^{\infty} a_{nk} x_k; \quad (n \in \mathbb{N})$$
(1.1)

provided the series on the right hand side of (1.1) converges for each $n \in \mathbb{N}$. Furthermore, the sequence x is said to be A-summable to $a \in \mathbb{C}$ if Ax converges to a which is called the A-limit of x.

In addition, let X and Y be sequence spaces. Then, we say that A defines a *matrix mapping* from X into Y if for every sequence $x \in X$ the A-transform of x exists and is in Y. Moreover, we write (X, Y) for the class of all infinite matrices that map X into Y. Thus $A \in (X, Y)$ if and only if $A_n \in X^\beta$ for all $n \in \mathbb{N}$ and $Ax \in Y$ for all $x \in X$.

For an arbitrary sequence space X, the *matrix domain* of an infinite matrix A in X is defined by

$$X_A = \{ x \in w : \ Ax \in X \} \tag{1.2}$$

which is a sequence space.

The approach constructing a new sequence space by means of the matrix domain of a particular limitation method has recently been employed by several authors, see for instance [1, 2, 3, 4, 8, 10, 12, 13] and [14].

In this paper, we introduce the notion of λ -convergent and bounded sequences. Further, we define some related BK spaces and construct their bases. Moreover, we establish some inclusion relations concerning with those spaces and determine their α -, β - and γ -duals. Finally, we characterize some related matrix classes.

2 Notion of λ -convergent and bounded sequences

Throughout this paper, let $\lambda = (\lambda_k)_{k=0}^{\infty}$ be a strictly increasing sequence of positive reals tending to infinity, that is

$$0 < \lambda_0 < \lambda_1 < \cdots$$
 and $\lambda_k \to \infty$ as $k \to \infty$. (2.1)

We say that a sequence $x = (x_k) \in w$ is λ -convergent to the number $l \in \mathbb{C}$, called as the λ -limit of x, if $\Lambda_n(x) \to l$ as $n \to \infty$, where

$$\Lambda_n(x) = \frac{1}{\lambda_n} \sum_{k=0}^n (\lambda_k - \lambda_{k-1}) x_k; \quad (n \in \mathbb{N}).$$
(2.2)

In particular, we say that x is a λ -null sequence if $\Lambda_n(x) \to 0$ as $n \to \infty$. Further, we say that x is λ -bounded if $\sup_n |\Lambda_n(x)| < \infty$.

Here and in the sequel, we shall use the convention that any term with a negative subscript is equal to naught, e.g. $\lambda_{-1} = 0$ and $x_{-1} = 0$.

Now, it is well known [11] that if $\lim_{n\to\infty} x_n = a$ in the ordinary sense of convergence, then

$$\lim_{n \to \infty} \left(\frac{1}{\lambda_n} \sum_{k=0}^n (\lambda_k - \lambda_{k-1}) |x_k - a| \right) = 0$$

This implies that

$$\lim_{n \to \infty} |\Lambda_n(x) - a| = \lim_{n \to \infty} \left| \frac{1}{\lambda_n} \sum_{k=0}^n (\lambda_k - \lambda_{k-1}) (x_k - a) \right| = 0$$

which yields that $\lim_{n\to\infty} \Lambda_n(x) = a$ and hence x is λ -convergent to a. We therefore deduce that the ordinary convergence implies the λ -convergence to the same limit. This leads us to the following basic result:

Lemma 2.1. Every convergent sequence is λ -convergent to the same ordinary limit.

We shall later show that the converse implication need not be true. Before that, the following result is immediate by Lemma 2.1.

Lemma 2.2. If a λ -convergent sequence converges in the ordinary sense, then it must converge to the same λ -limit.

Now, let $x = (x_k) \in w$ and $n \ge 1$. Then, by using (2.2), we derive that

$$x_{n} - \Lambda_{n}(x) = \frac{1}{\lambda_{n}} \sum_{i=0}^{n} (\lambda_{i} - \lambda_{i-1})(x_{n} - x_{i})$$

$$= \frac{1}{\lambda_{n}} \sum_{i=0}^{n-1} (\lambda_{i} - \lambda_{i-1})(x_{n} - x_{i})$$

$$= \frac{1}{\lambda_{n}} \sum_{i=0}^{n-1} (\lambda_{i} - \lambda_{i-1}) \sum_{k=i+1}^{n} (x_{k} - x_{k-1})$$

$$= \frac{1}{\lambda_{n}} \sum_{k=1}^{n} (x_{k} - x_{k-1}) \sum_{i=0}^{k-1} (\lambda_{i} - \lambda_{i-1})$$

$$= \frac{1}{\lambda_{n}} \sum_{k=1}^{n} \lambda_{k-1} (x_{k} - x_{k-1}).$$

Therefore, we have for every $x = (x_k) \in w$ that

$$x_n - \Lambda_n(x) = S_n(x); \quad (n \in \mathbb{N}),$$
(2.3)

where the sequence $S(x) = (S_n(x))_{n=0}^{\infty}$ is defined by

$$S_0(x) = 0$$
 and $S_n(x) = \frac{1}{\lambda_n} \sum_{k=1}^n \lambda_{k-1} (x_k - x_{k-1}); \quad (n \ge 1).$ (2.4)

Now, the following result is obtained from Lemma 2.2 by using (2.3).

Lemma 2.3. A λ -convergent sequence x converges in the ordinary sense if and only if $S(x) \in c_0$.

Similarly, the following results are obvious.

Lemma 2.4. Every bounded sequence is λ -bounded.

Lemma 2.5. A λ -bounded sequence x is bounded in the ordinary sense if and only if $S(x) \in \ell_{\infty}$.

Now, we define the infinite matrix $\Lambda = (\lambda_{nk})_{n,k=0}^{\infty}$ by

$$\lambda_{nk} = \begin{cases} \frac{\lambda_k - \lambda_{k-1}}{\lambda_n} & ; \ (0 \le k \le n), \\ 0 & ; \ (k > n) \end{cases}$$

for all $n, k \in \mathbb{N}$. Then, the Λ -transform of a sequence $x \in w$ is the sequence $\Lambda(x) = (\Lambda_n(x))_{n=0}^{\infty}$, where $\Lambda_n(x)$ is given by (2.2) for every $n \in \mathbb{N}$. Thus, the sequence x is λ -convergent if and only if x is Λ -summable. Further, if x is λ -convergent then the λ -limit of x is nothing but the Λ -limit of x.

Finally, it is obvious that the matrix Λ is a triangle, that is $\lambda_{nn} \neq 0$ and $\lambda_{nk} = 0$ for k > n (n = 0, 1, 2...). Also, it follows by Lemma 2.1 that the method Λ is regular.

Remark 2.6. We may note that if we put $q_k = \lambda_k - \lambda_{k-1}$ for all k, then the matrix Λ is the special case $Q_n \to \infty$ $(n \to \infty)$ of the matrix \bar{N}_q of weighted means [8], where $Q_n = \sum_{k=0}^n q_k = \lambda_n$ for all n. On the other hand, the matrix Λ is reduced, in the special case $\lambda_k = k + 1$ $(k \in \mathbb{N})$, to the matrix C_1 of Cesàro means [13, 14].

3 The spaces of λ -convergent and bounded sequences

In the present section, we introduce the sequence spaces ℓ_{∞}^{λ} , c^{λ} and c_{0}^{λ} as the sets of all λ -bounded, λ -convergent and λ -null sequences, respectively, that is

$$\ell_{\infty}^{\lambda} = \left\{ x \in w : \sup_{n} |\Lambda_{n}(x)| < \infty \right\},\$$
$$c^{\lambda} = \left\{ x \in w : \lim_{n \to \infty} \Lambda_{n}(x) \text{ exists} \right\}$$

and

$$c_0^{\lambda} = \left\{ x \in w : \lim_{n \to \infty} \Lambda_n(x) = 0 \right\}.$$

With the notation of (1.2), we can redefine the spaces ℓ_{∞}^{λ} , c^{λ} and c_{0}^{λ} as the matrix domains of the triangle Λ in the spaces ℓ_{∞} , c and c_{0} , respectively, that is

$$\ell_{\infty}^{\lambda} = (\ell_{\infty})_{\Lambda}, \ c^{\lambda} = c_{\Lambda} \ \text{and} \ c_{0}^{\lambda} = (c_{0})_{\Lambda}.$$
 (3.1)

Now, we may begin with the following result which is essential in the text.

Theorem 3.1. The sequence spaces ℓ_{∞}^{λ} , c^{λ} and c_{0}^{λ} are BK spaces with the same norm given by

$$\|x\|_{\ell_{\infty}^{\lambda}} = \|\Lambda(x)\|_{\ell_{\infty}} = \sup_{n} |\Lambda_{n}(x)|.$$
(3.2)

Proof. This result follows from [5, Lemma 2.1] by using (3.1).

Remark 3.2. It can easily be seen that the absolute property does not hold on the spaces ℓ_{∞}^{λ} , c^{λ} and c_{0}^{λ} , that is $||x||_{\ell_{\infty}^{\lambda}} \neq |||x|||_{\ell_{\infty}^{\lambda}}$ for at least one sequence x in each of these spaces, where $|x| = (|x_k|)$. Thus, the spaces ℓ_{∞}^{λ} , c^{λ} and c_{0}^{λ} are BK spaces of non-absolute type.

Theorem 3.3. The sequence spaces ℓ_{∞}^{λ} , c^{λ} and c_{0}^{λ} are norm isomorphic to the spaces ℓ_{∞} , c and c_{0} , respectively, that is $\ell_{\infty}^{\lambda} \cong \ell_{\infty}$, $c^{\lambda} \cong c$ and $c_{0}^{\lambda} \cong c_{0}$.

Proof. Let X denote any of the spaces ℓ_{∞} , c or c_0 and X^{λ} be the respective one of the spaces ℓ_{∞}^{λ} , c^{λ} or c_0^{λ} . Since the matrix Λ is a triangle, it has a unique inverse which is also a triangle [9, Proposition 1.1]. Therefore, the linear operator $L_{\Lambda}: X^{\lambda} \to X$, defined by $L_{\Lambda}(x) = \Lambda(x)$ for all $x \in X^{\lambda}$, is bijective and is norm preserving by (3.2) of Theorem 3.1. Hence $X^{\lambda} \cong X$.

Finally, we conclude this section with the following consequence of Theorems 3.1 and 3.3.

Corollary 3.4. Define the sequence $e_{\lambda}^{(n)} \in c_0^{\lambda}$ for every fixed $n \in \mathbb{N}$ by

$$\left(e_{\lambda}^{(n)}\right)_{k} = \begin{cases} \left(-1\right)^{k-n} \frac{\lambda_{n}}{\lambda_{k} - \lambda_{k-1}} & ; \ (n \leq k \leq n+1), \\ \\ 0 & ; \ (\text{otherwise}) \end{cases}$$
 $(k \in \mathbb{N}).$

Then, we have

(a) The sequence $(e_{\lambda}^{(0)}, e_{\lambda}^{(1)}, \ldots)$ is a Schauder basis for the space c_0^{λ} and every $x \in c_0^{\lambda}$ has a unique representation $x = \sum_{n=0}^{\infty} \Lambda_n(x) e_{\lambda}^{(n)}$.

(b) The sequence $(e, e_{\lambda}^{(0)}, e_{\lambda}^{(1)}, \ldots)$ is a Schauder basis for the space c^{λ} and every $x \in c^{\lambda}$ has a unique representation $x = le + \sum_{n=0}^{\infty} (\Lambda_n(x) - l) e_{\lambda}^{(n)}$, where $l = \lim_{n \to \infty} \Lambda_n(x)$.

Proof. This result is immediate by [9, Corollary 2.3], since $\Lambda(e) = e$ and $\Lambda(e_{\lambda}^{(n)}) = e^{(n)}$ for all n.

Remark 3.5. It is obvious by Remark 2.6 that the spaces ℓ_{∞}^{λ} , c^{λ} and c_{0}^{λ} are the special case $q = \Delta \lambda$ of the spaces $(\bar{N}, q)_{\infty}$, (\bar{N}, q) and $(\bar{N}, q)_{0}$ of weighted means [8], that is $\ell_{\infty}^{\lambda} = (\bar{N}, \Delta \lambda)_{\infty}$, $c^{\lambda} = (\bar{N}, \Delta \lambda)$ and $c_{0}^{\lambda} = (\bar{N}, \Delta \lambda)_{0}$. On the other hand, the spaces ℓ_{∞}^{λ} , c^{λ} and c_{0}^{λ} are reduced in the special case $\lambda_{k} = k + 1$ ($k \in \mathbb{N}$) to the Cesàro sequence spaces X_{∞} , \tilde{c} and \tilde{c}_{0} of non-absolute type [13, 14], respectively.

4 Some inclusion relations

In this section, we establish some inclusion relations concerning with the spaces c_0^{λ} , c^{λ} and ℓ_{∞}^{λ} , and we may begin with the following basic result:

Theorem 4.1. The inclusions $c_0^{\lambda} \subset c^{\lambda} \subset \ell_{\infty}^{\lambda}$ strictly hold.

Proof. It is clear that the inclusions $c_0^{\lambda} \subset c^{\lambda} \subset \ell_{\infty}^{\lambda}$ hold. Further, since the inclusion $c_0 \subset c$ is strict, it follows by Lemma 2.1 that the inclusion $c_0^{\lambda} \subset c^{\lambda}$ is also strict. Moreover, consider the sequence $x = (x_k)$ defined by $x_k = (-1)^k (\lambda_k + \lambda_{k-1})/(\lambda_k - \lambda_{k-1})$ for all $k \in \mathbb{N}$. Then, we have for every $n \in \mathbb{N}$ that

$$\Lambda_n(x) = \frac{1}{\lambda_n} \sum_{k=0}^n (-1)^k (\lambda_k + \lambda_{k-1}) = (-1)^n.$$

This shows that $\Lambda(x) \in \ell_{\infty} \setminus c$. Thus, the sequence x is in ℓ_{∞}^{λ} but not in c^{λ} . Hence, the inclusion $c^{\lambda} \subset \ell_{\infty}^{\lambda}$ strictly holds. This completes the proof. \Box

Now, the following result is immediate by the regularity of the matrix Λ and by Lemma 2.3.

Lemma 4.2. The inclusions $c_0 \subset c_0^{\lambda}$ and $c \subset c^{\lambda}$ hold. Furthermore, the equalities hold if and only if $S(x) \in c_0$ for every sequence x in the spaces c_0^{λ} and c^{λ} , respectively.

Proof. The first part is obvious by Lemma 2.1. Thus, we turn to the second part. For this, suppose firstly that the equality $c_0^{\lambda} = c_0$ holds. Then, we have for every $x \in c_0^{\lambda}$ that $x \in c_0$ and hence $S(x) \in c_0$ by Lemma 2.3.

Conversely, let $x \in c_0^{\lambda}$. Then, we have by the hypothesis that $S(x) \in c_0$. Thus, it follows, by Lemma 2.3 and then Lemma 2.2, that $x \in c_0$. This shows that the inclusion $c_0^{\lambda} \subset c_0$ holds. Hence, by combining the inclusions $c_0^{\lambda} \subset c_0$ and $c_0 \subset c_0^{\lambda}$, we get the equality $c_0^{\lambda} = c_0$.

Similarly, one can show that the equality $c^{\lambda} = c$ holds if and only if $S(x) \in c_0$ for every $x \in c^{\lambda}$. This concludes the proof.

Moreover, the following result can be proved similarly by means of Lemmas 2.4 and 2.5.

Lemma 4.3. The inclusion $\ell_{\infty} \subset \ell_{\infty}^{\lambda}$ holds. Furthermore, the equality $\ell_{\infty}^{\lambda} = \ell_{\infty}$ holds if and only if $S(x) \in \ell_{\infty}$ for every $x \in \ell_{\infty}^{\lambda}$.

Now, it is obvious by Lemma 4.2 that $c_0 \subset c_0^{\lambda} \cap c$. Conversely, it follows by Lemma 2.2 that $c_0^{\lambda} \cap c \subset c_0$. This yields the following result:

Theorem 4.4. The equality $c_0^{\lambda} \cap c = c_0$ holds.

It is worth mentioning that the equality $c^{\lambda} \cap \ell_{\infty} = c$ need not be held. For example, let $\lambda_k = k + 1$ and $x_k = (-1)^k$ for all k. Then $x \in c^{\lambda} \cap \ell_{\infty}$ while $x \notin c$. Now, let $x = (x_k) \in w$ and $n \geq 1$. Then, by bearing in mind the relations

Now, let $x = (x_k) \in w$ and $n \ge 1$. Then, by bearing in mind the relations (2.3) and (2.4), we derive that

$$S_n(x) = \frac{1}{\lambda_n} \sum_{k=1}^n \lambda_{k-1} (x_k - x_{k-1})$$

$$= \frac{1}{\lambda_n} \Big[\sum_{k=1}^n \lambda_{k-1} x_k - \sum_{k=1}^n \lambda_{k-1} x_{k-1} \Big]$$

$$= \frac{1}{\lambda_n} \Big[\sum_{k=0}^n \lambda_{k-1} x_k - \sum_{k=0}^{n-1} \lambda_k x_k \Big]$$

$$= \frac{1}{\lambda_n} \Big[\lambda_{n-1} x_n - \sum_{k=0}^{n-1} (\lambda_k - \lambda_{k-1}) x_k \Big]$$

$$= \frac{\lambda_{n-1}}{\lambda_n} \Big[x_n - \Lambda_{n-1}(x) \Big]$$

$$= \frac{\lambda_{n-1}}{\lambda_n} \Big[S_n(x) + \Lambda_n(x) - \Lambda_{n-1}(x) \Big].$$

Hence, we have for every $x \in w$ that

$$S_n(x) = \frac{\lambda_{n-1}}{\lambda_n - \lambda_{n-1}} \left[\Lambda_n(x) - \Lambda_{n-1}(x) \right]; \quad (n \in \mathbb{N}).$$

$$(4.1)$$

On the other hand, by taking into account the definition of the sequence λ given by (2.1), we have $\lambda_{k+1}/\lambda_k > 1$ for all $k \in \mathbb{N}$. Thus, there are only two distinct cases of the sequence λ , either $\liminf_{k\to\infty} \lambda_{k+1}/\lambda_k > 1$ or $\liminf_{k\to\infty} \lambda_{k+1}/\lambda_k = 1$. Obviously, the first case holds if and only if $\liminf_{k\to\infty} (\lambda_{k+1} - \lambda_k)/\lambda_{k+1} > 0$ which is equivalent to say that the sequence $(\lambda_k/(\lambda_k - \lambda_{k-1}))_{k=0}^{\infty}$ is a bounded sequence. Similarly, the second case holds if and only if the above sequence is unbounded. Therefore, we have the following lemma:

Lemma 4.5. For any sequence $\lambda = (\lambda_k)_{k=0}^{\infty}$ satisfying (2.1), we have

(a) $\left(\frac{\lambda_k}{\lambda_k - \lambda_{k-1}}\right)_{k=0}^{\infty} \notin \ell_{\infty}$ if and only if $\liminf_{k \to \infty} \frac{\lambda_{k+1}}{\lambda_k} = 1$. (b) $\left(\frac{\lambda_k}{\lambda_k - \lambda_{k-1}}\right)_{k=0}^{\infty} \in \ell_{\infty}$ if and only if $\liminf_{k \to \infty} \frac{\lambda_{k+1}}{\lambda_k} > 1$.

It is clear that Lemma 4.5 still holds if the sequence $(\lambda_k/(\lambda_k - \lambda_{k-1}))_{k=0}^{\infty}$ is replaced by $(\lambda_k/(\lambda_{k+1} - \lambda_k))_{k=0}^{\infty}$.

Now, we are going to prove the following result which gives the necessary and sufficient condition for the matrix Λ to be stronger than convergence and boundedness both, i.e., for the inclusions $c_0 \subset c_0^{\lambda}$, $c \subset c^{\lambda}$ and $\ell_{\infty} \subset \ell_{\infty}^{\lambda}$ to be strict.

Theorem 4.6. The inclusions $c_0 \subset c_0^{\lambda}$, $c \subset c^{\lambda}$ and $\ell_{\infty} \subset \ell_{\infty}^{\lambda}$ strictly hold if and only if $\liminf_{n\to\infty} \lambda_{n+1}/\lambda_n = 1$.

Proof. Suppose that the inclusion $\ell_{\infty} \subset \ell_{\infty}^{\lambda}$ is strict. Then, Lemma 4.3 implies the existence of a sequence $x \in \ell_{\infty}^{\lambda}$ such that $S(x) = (S_n(x))_{n=0}^{\infty} \notin \ell_{\infty}$. Since $x \in \ell_{\infty}^{\lambda}$, we have $\Lambda(x) = (\Lambda_n(x))_{n=0}^{\infty} \in \ell_{\infty}$ and hence $(\Lambda_n(x) - \Lambda_{n-1}(x))_{n=0}^{\infty} \in \ell_{\infty}$. Therefore, we deduce from (4.1) that $(\lambda_{n-1}/(\lambda_n - \lambda_{n-1}))_{n=0}^{\infty} \notin \ell_{\infty}$ and hence $(\lambda_n/(\lambda_n - \lambda_{n-1}))_{n=0}^{\infty} \notin \ell_{\infty}$. This leads us with Lemma 4.5 (a) to the consequence that $\liminf_{n\to\infty} \lambda_{n+1}/\lambda_n = 1$. Similarly, by using Lemma 4.2 instead of Lemma 4.3, it can be shown that if the inclusions $c_0 \subset c_0^{\lambda}$ and $c \subset c^{\lambda}$ are strict, then $\liminf_{n\to\infty} \lambda_{n+1}/\lambda_n = 1$. This proves the necessity of the condition.

To prove the sufficiency, suppose that $\liminf_{n\to\infty} \lambda_{n+1}/\lambda_n = 1$. Then, we have by Lemma 4.5 (a) that $(\lambda_n/(\lambda_n - \lambda_{n-1}))_{n=0}^{\infty} \notin \ell_{\infty}$. Let us now define the sequence $x = (x_k)$ by $x_k = (-1)^k \lambda_k/(\lambda_k - \lambda_{k-1})$ for all k. Then, we have for every $n \in \mathbb{N}$ that

$$|\Lambda_n(x)| = \frac{1}{\lambda_n} \left| \sum_{k=0}^n (-1)^k \lambda_k \right| \le \frac{1}{\lambda_n} \sum_{k=0}^n (\lambda_k - \lambda_{k-1}) = 1$$

which shows that $\Lambda(x) \in \ell_{\infty}$. Thus, the sequence x is in ℓ_{∞}^{λ} but not in ℓ_{∞} . Therefore, by combining this with the fact that the inclusion $\ell_{\infty} \subset \ell_{\infty}^{\lambda}$ always holds by Lemma 4.3, we conclude that this inclusion is strict. Similarly, if $\liminf_{k\to\infty} \lambda_{k+1}/\lambda_k = 1$ then we deduce from Lemma 4.5 (a) that $\liminf_{k\to\infty} (\lambda_k - \lambda_{k-1})/\lambda_k = 0$. Thus, there is a subsequence $(\lambda_{k_r})_{r=0}^{\infty}$ of the sequence $\lambda = (\lambda_k)_{k=0}^{\infty}$ such that

$$\lim_{r \to \infty} \left(\frac{\lambda_{k_r} - \lambda_{k_r-1}}{\lambda_{k_r}} \right) = 0.$$
(4.2)

Obviously, our subsequence can be chosen such that $k_{r+1} - k_r \ge 2$ for all $r \in \mathbb{N}$.

Now, let us define the sequence $y = (y_k)_{k=0}^{\infty}$ by

$$y_{k} = \begin{cases} 1 & ; \ (k = k_{r}), \\ -\left(\frac{\lambda_{k-1} - \lambda_{k-2}}{\lambda_{k} - \lambda_{k-1}}\right) & ; \ (k = k_{r} + 1), \\ 0 & ; \ (\text{otherwise}) \end{cases}$$
(4.3)

for all $k \in \mathbb{N}$. Then $y \notin c$. On the other hand, we have for every $n \in \mathbb{N}$ that

$$\Lambda_n(y) = \begin{cases} \frac{\lambda_n - \lambda_{n-1}}{\lambda_n} & ; \ (n = k_r), \\ 0 & ; \ (n \neq k_r) \end{cases}$$
 $(r \in \mathbb{N}).$

This and (4.2) together imply that $\Lambda(y) \in c_0$ and hence $y \in c_0^{\lambda}$. Therefore, the sequence y is in the both spaces c_0^{λ} and c^{λ} but not in any one of the spaces c_0 or c. Hence, by combining this with Lemma 4.2, we deduce that the inclusions $c_0 \subset c_0^{\lambda}$ and $c \subset c^{\lambda}$ are strict. This concludes the proof. \Box

Now, as a consequence of Theorem 4.6, we have the following result which gives the necessary and sufficient condition for the matrix Λ to be equivalent to convergence and boundedness both.

Corollary 4.7. The equalities $c_0^{\lambda} = c_0$, $c^{\lambda} = c$ and $\ell_{\infty}^{\lambda} = \ell_{\infty}$ hold if and only if $\liminf_{n\to\infty} \lambda_{n+1}/\lambda_n > 1$.

Proof. The necessity is immediate by Theorem 4.6. For, if the equalities hold then the inclusions in Theorem 4.6 cannot be strict and hence $\liminf_{n\to\infty} \lambda_{n+1}/\lambda_n \neq 1$ which implies that $\liminf_{n\to\infty} \lambda_{n+1}/\lambda_n > 1$.

Conversely, suppose that $\liminf_{n\to\infty} \lambda_{n+1}/\lambda_n > 1$. Then, it follows by part (b) of Lemma 4.5 that $(\lambda_n/(\lambda_n - \lambda_{n-1}))_{n=0}^{\infty} \in \ell_{\infty}$ and hence $(\lambda_{n-1}/(\lambda_n - \lambda_{n-1}))_{n=0}^{\infty} \in \ell_{\infty}$.

Now, let $x \in c^{\lambda}$ be given. Then, we have $\Lambda(x) = (\Lambda_n(x))_{n=0}^{\infty} \in c$ and hence $(\Lambda_n(x) - \Lambda_{n-1}(x))_{n=0}^{\infty} \in c_0$. Thus, we obtain by (4.1) that $(S_n(x))_{n=0}^{\infty} \in c_0$. This shows that $S(x) \in c_0$ for every $x \in c^{\lambda}$ and hence for every $x \in c_0^{\lambda}$. Consequently, we deduce by Lemma 4.2 that the equalities $c_0^{\lambda} = c_0$ and $c^{\lambda} = c$ hold. Similarly, by using Lemma 4.3 instead of Lemma 4.2, one can shows that if

 $\liminf_{n\to\infty} \lambda_{n+1}/\lambda_n > 1$, then the equality $\ell_{\infty}^{\lambda} = \ell_{\infty}$ holds. This completes the proof.

Finally, we conclude this section with the following results concerning with the spaces c_0^{λ} and c^{λ} .

Lemma 4.8. The following statements are true:

(a) Although the spaces c_0^{λ} and c overlap, the space c_0^{λ} does not include the space c.

(b) Although the spaces c^{λ} and ℓ_{∞} overlap, the space c^{λ} does not include the space ℓ_{∞} .

Proof. Part (a) is immediate by Theorem 4.4. To prove (b), it is obvious by Lemma 4.2 that $c \subset c^{\lambda} \cap \ell_{\infty}$, that is, the spaces c^{λ} and ℓ_{∞} overlap. Furthermore, due to the Steinhaus Theorem [6] (essentially saying that any regular matrix cannot sum all bounded sequences), the regularity of the matrix Λ implies the existence of a sequence $x \in \ell_{\infty}$ which is not Λ -summable, i.e. $\Lambda(x) \notin c$. Thus, such a sequence x is in ℓ_{∞} but not in c^{λ} . Hence, the inclusion $\ell_{\infty} \subset c^{\lambda}$ does not hold. This concludes the proof.

Theorem 4.9. If $\liminf_{n\to\infty} \lambda_{n+1}/\lambda_n = 1$, then the following hold:

- (a) Neither of the spaces c_0^{λ} and c includes the other.
- (b) Neither of the spaces c_0^{λ} and ℓ_{∞} includes the other.
- (c) Neither of the spaces c^{λ} and ℓ_{∞} includes the other.

Proof. For (a), it has been shown in Lemma 4.8 (a) that the inclusion $c \subset c_0^{\lambda}$ does not hold. Further, if $\liminf_{n\to\infty} \lambda_{n+1}/\lambda_n = 1$ then the converse inclusion is also not held. For example, the sequence y defined by (4.3), in the proof of Theorem 4.6, belongs to the set c_0^{λ}/c . Hence, part (a) follows.

To prove (b), we deduce from Lemma 4.8 that the inclusion $\ell_{\infty} \subset c_0^{\lambda}$ does not hold. Moreover, we are going to show that the converse inclusion does not hold if $\liminf_{n\to\infty} \lambda_{n+1}/\lambda_n = 1$. For this, suppose that $\liminf_{n\to\infty} \lambda_{n+1}/\lambda_n = 1$. Then, as we have seen in the proof of Theorem 4.6, there is a subsequence $(\lambda_{k_r})_{r=0}^{\infty}$ of the sequence $\lambda = (\lambda_k)_{k=0}^{\infty}$ such that (4.2) holds and $k_{r+1} - k_r \geq 2$ for all $r \in \mathbb{N}$.

Now, let $0 < \alpha < 1$ and define the sequence $x = (x_k)_{k=0}^{\infty}$ by

$$x_{k} = \begin{cases} \left(\frac{\lambda_{k}}{\lambda_{k} - \lambda_{k-1}}\right)^{\alpha} & ; \ (k = k_{r}), \\ -\left(\frac{\lambda_{k-1} - \lambda_{k-2}}{\lambda_{k} - \lambda_{k-1}}\right) x_{k-1} & ; \ (k = k_{r} + 1), \\ 0 & ; \ (\text{otherwise}) \end{cases}$$

for all $k \in \mathbb{N}$. Then, it follows by (4.2) that $x \notin \ell_{\infty}$. On the other hand, the

straightforward computations yield that

$$\sum_{k=0}^{n} (\lambda_k - \lambda_{k-1}) x_k = \begin{cases} (\lambda_n - \lambda_{n-1}) \left(\frac{\lambda_n}{\lambda_n - \lambda_{n-1}}\right)^{\alpha} & ; (n = k_r), \\ 0 & ; (n \neq k_r) \end{cases}$$
 $(r \in \mathbb{N})$

holds for every $n \in \mathbb{N}$, and hence

$$\Lambda_n(x) = \begin{cases} \left(\frac{\lambda_n - \lambda_{n-1}}{\lambda_n}\right)^{1-\alpha} & ; \ (n = k_r), \\ 0 & ; \ (n \neq k_r) \end{cases} \quad (r \in \mathbb{N}).$$

This, together with (4.2), implies that $\Lambda(x) \in c_0$. Thus, the sequence x is in c_0^{λ} but not in ℓ_{∞} . Consequently, the inclusion $c_0^{\lambda} \subset \ell_{\infty}$ fails.

Finally, part (c) is immediate by combining part (b) and Lemma 4.8 (b). \Box

Remark 4.10. The results of this section may extend to the spaces $Z(u, v; c_0)$, Z(u, v; c) and $Z(u, v; \ell_{\infty})$ of generalized weighted means [10] with some conditions on the sequences u and v.

5 The α -, β - and γ -duals of the spaces c_0^{λ} , c^{λ} and ℓ_{∞}^{λ}

In the present section, we determine the α -, β - and γ -duals of the sequence spaces c_0^{λ} , c^{λ} and ℓ_{∞}^{λ} .

Throughout, let \mathcal{F} denote the collection of all nonempty and finite subsets of $\mathbb{N} = \{0, 1, 2, \ldots\}$. Then, the following known results [15] are fundamental for our investigation.

Lemma 5.1. We have $(c_0, \ell_1) = (c, \ell_1) = (\ell_{\infty}, \ell_1)$. Further $A \in (c_0, \ell_1)$ if and only if

$$\sup_{K\in\mathcal{F}}\left(\sum_{n=0}^{\infty}\left|\sum_{k\in K}a_{nk}\right|\right)<\infty.$$

Lemma 5.2. We have $(c_0, \ell_\infty) = (c, \ell_\infty) = (\ell_\infty, \ell_\infty)$. Furthermore $A \in (\ell_\infty, \ell_\infty)$ if and only if

$$\sup_{n} \left(\sum_{k=0}^{\infty} |a_{nk}| \right) < \infty$$

Moreover, we shall assume throughout that the sequences $x = (x_k)$ and $y = (y_k)$ are connected by the relation $y = \Lambda(x)$, that is y is the Λ -transform of x.

Then, the sequence x is in any of the spaces c_0^{λ} , c^{λ} or ℓ_{∞}^{λ} if and only if y is in the respective one of the spaces c_0 , c or ℓ_{∞} . In addition, one can easily derive that

$$x_k = \sum_{j=k-1}^k (-1)^{k-j} \frac{\lambda_j}{\lambda_k - \lambda_{k-1}} y_j; \quad (k \in \mathbb{N}).$$

$$(5.1)$$

Now, we may begin the following result which determines the α -dual of the spaces c_0^{λ} , c^{λ} and ℓ_{∞}^{λ} .

Theorem 5.3. The α -dual of the spaces c_0^{λ} , c^{λ} and ℓ_{∞}^{λ} is the set

$$a_1^{\lambda} = \left\{ a = (a_n) \in w : \sum_{n=0}^{\infty} \frac{\lambda_n}{\lambda_n - \lambda_{n-1}} |a_n| < \infty \right\}.$$

Proof. For any fixed sequence $a = (a_n) \in w$, we define the matrix $B = (b_{nk})_{n,k=0}^{\infty}$ by

$$b_{nk} = \begin{cases} (-1)^{n-k} \frac{\lambda_k}{\lambda_n - \lambda_{n-1}} a_n & ; \ (n-1 \le k \le n), \\ 0 & ; \ (k < n-1 \text{ or } k > n) \end{cases}$$

for all $n, k \in \mathbb{N}$. Also, for every $x \in w$ we put $y = \Lambda(x)$. Then, it follows by (5.1) that

$$a_n x_n = \sum_{k=n-1}^n (-1)^{n-k} \frac{\lambda_k}{\lambda_n - \lambda_{n-1}} a_n y_k = B_n(y); \quad (n \in \mathbb{N}).$$
 (5.2)

Thus, we observe by (5.2) that $ax = (a_n x_n) \in \ell_1$ whenever $x \in c_0^{\lambda}$ if and only if $By \in \ell_1$ whenever $y \in c_0$, that is $a \in (c_0^{\lambda})^{\alpha}$ if and only if $B \in (c_0, \ell_1)$. Therefore, it follows by Lemma 5.1, with B instead of A, that $a \in (c_0^{\lambda})^{\alpha}$ if and only if

$$\sup_{K\in\mathcal{F}} \left(\sum_{n=0}^{\infty} \left| \sum_{k\in K} b_{nk} \right| \right) < \infty.$$
(5.3)

On the other hand, let $n \in \mathbb{N}$ be given. Then, we have for any $K \in \mathcal{F}$ that

$$\sum_{k \in K} b_{nk} \bigg| = \begin{cases} 0 & ; \ (n-1 \not\in K \text{ and } n \not\in K), \\ \frac{\lambda_{n-1}}{\lambda_n - \lambda_{n-1}} |a_n| & ; \ (n-1 \in K \text{ and } n \not\in K), \\ \frac{\lambda_n}{\lambda_n - \lambda_{n-1}} |a_n| & ; \ (n-1 \not\in K \text{ and } n \in K), \\ |a_n| & ; \ (n-1 \in K \text{ and } n \in K). \end{cases}$$

Hence, we deduce that (5.3) holds if and only if

$$\sum_{n=0}^{\infty} \frac{\lambda_n}{\lambda_n - \lambda_{n-1}} |a_n| < \infty$$

which shows that $(c_0^{\lambda})^{\alpha} = a_1^{\lambda}$. Finally, we have by Lemma 5.1 that $(c_0, \ell_1) = (c, \ell_1) = (\ell_{\infty}, \ell_1)$. Thus, it can similarly be shown that $(c^{\lambda})^{\alpha} = (\ell_{\infty}^{\lambda})^{\alpha} = a_1^{\lambda}$. This completes the proof.

Remark 5.4. Let $\mu = (\mu_n)_{n=0}^{\infty}$ be defined by $\mu_n = (\lambda_n - \lambda_{n-1})/\lambda_n$ for all n. Then, we have by Theorem 5.3 that $(c_0^{\lambda})^{\alpha} = (c^{\lambda})^{\alpha} = (\ell_{\infty}^{\lambda})^{\alpha} = \ell_{\mu}^1$, where ℓ_{μ}^1 denotes the space of de Malafosse [7] which is defined as the set of all sequences $x = (x_n) \in w$ such that $x/\mu = (x_n/\mu_n) \in \ell_1$. On the other hand, we may note by Lemma 4.5 (b) that if $\liminf_{n\to\infty} \lambda_{n+1}/\lambda_n > 1$, then there is M > 1 such that $1 \leq \lambda_n/(\lambda_n - \lambda_{n-1}) \leq M$ for all n. In this special case, we obtain by Theorem 5.3 that $(c_0^{\lambda})^{\alpha} = (c^{\lambda})^{\alpha} = (\ell_{\infty}^{\lambda})^{\alpha} = \ell_1$ which is compatible with the fact that $c_0^{\lambda} = c_0$, $c^{\lambda} = c$ and $\ell_{\infty}^{\lambda} = \ell_{\infty}$ by Corollary 4.7.

Now, let $x, y \in w$ be connected by the relation $y = \Lambda(x)$. Then, by using (5.1), we can easily derive that

$$\sum_{k=0}^{n} a_k x_k = \sum_{k=0}^{n-1} \bar{\Delta} \left(\frac{a_k}{\lambda_k - \lambda_{k-1}} \right) \lambda_k y_k + \frac{\lambda_n}{\lambda_n - \lambda_{n-1}} a_n y_n; \quad (n \in \mathbb{N}), \tag{5.4}$$

where

$$\bar{\Delta}\left(\frac{a_k}{\lambda_k - \lambda_{k-1}}\right) = \frac{a_k}{\lambda_k - \lambda_{k-1}} - \frac{a_{k+1}}{\lambda_{k+1} - \lambda_k}; \quad (k \in \mathbb{N}).$$

This leads us to the following result:

Theorem 5.5. Define the sets a_2^{λ} , a_3^{λ} , a_4^{λ} and a_5^{λ} as follows:

$$a_{2}^{\lambda} = \left\{ a = (a_{k}) \in w : \sum_{k=0}^{\infty} \left| \bar{\Delta} \left(\frac{a_{k}}{\lambda_{k} - \lambda_{k-1}} \right) \lambda_{k} \right| < \infty \right\},\$$
$$a_{3}^{\lambda} = \left\{ a = (a_{k}) \in w : \sup_{k} \left| \frac{\lambda_{k}}{\lambda_{k} - \lambda_{k-1}} a_{k} \right| < \infty \right\},\$$
$$a_{4}^{\lambda} = \left\{ a = (a_{k}) \in w : \lim_{k \to \infty} \left(\frac{\lambda_{k}}{\lambda_{k} - \lambda_{k-1}} a_{k} \right) \text{ exists} \right\}$$

and

$$a_5^{\lambda} = \left\{ a = (a_k) \in w : \lim_{k \to \infty} \left(\frac{\lambda_k}{\lambda_k - \lambda_{k-1}} a_k \right) = 0 \right\}.$$

Then, we have $(c_0^{\lambda})^{\beta} = a_2^{\lambda} \cap a_3^{\lambda}$, $(c^{\lambda})^{\beta} = a_2^{\lambda} \cap a_4^{\lambda}$ and $(\ell_{\infty}^{\lambda})^{\beta} = a_2^{\lambda} \cap a_5^{\lambda}$.

Proof. This result is an immediate consequence of [10, Theorem 2].

Remark 5.6. Let us consider the special case x = y = e of the equality (5.4). Then, it follows by Theorem 5.5 that the inclusions $(c_0^{\lambda})^{\beta} \subset bs$, $(c^{\lambda})^{\beta} \subset cs$ and $(\ell_{\infty}^{\lambda})^{\beta} \subset cs$ hold.

Finally, we conclude this section with the following result concerning with the γ -dual of the spaces c_0^{λ} , c^{λ} and ℓ_{∞}^{λ} .

Theorem 5.7. The γ -dual of the spaces c_0^{λ} , c^{λ} and ℓ_{∞}^{λ} is the set $a_2^{\lambda} \cap a_3^{\lambda}$. **Proof.** This result can be obtained from Lemma 5.2 by using (5.4). \Box

6 Certain matrix mappings on the spaces c_0^{λ} , c^{λ} and ℓ_{∞}^{λ}

In this final section, we state some results which characterize various matrix mappings on the spaces c_0^{λ} , c^{λ} and ℓ_{∞}^{λ} and between them. The most of these results are immediate by those of Malkowsky and Rakočević [8] and some of them are the impoved versions.

For an infinite matrix $A = (a_{nk})$, we shall write for brevity that

$$\tilde{a}_{nk} = \left(\frac{a_{nk}}{\lambda_k - \lambda_{k-1}} - \frac{a_{n,k+1}}{\lambda_{k+1} - \lambda_k}\right)\lambda_k$$

for all $n, k \in \mathbb{N}$. Further, let $x, y \in w$ be connected by the relation $y = \Lambda(x)$. Then, we have by (5.4) that

$$\sum_{k=0}^{m} a_{nk} x_k = \sum_{k=0}^{m-1} \tilde{a}_{nk} y_k + \frac{\lambda_m}{\lambda_m - \lambda_{m-1}} a_{nm} y_m; \quad (n, m \in \mathbb{N}).$$
(6.1)

In particular, let $x \in c^{\lambda}$ and $A_n = (a_{nk})_{k=0}^{\infty} \in (c^{\lambda})^{\beta}$ for all $n \in \mathbb{N}$. Then, we obtain, by passing to the limits in (6.1) as $m \to \infty$ and using Theorem 5.5, that

$$\sum_{k=0}^{\infty} a_{nk} x_k = \sum_{k=0}^{\infty} \tilde{a}_{nk} y_k + la_n$$
$$= \sum_{k=0}^{\infty} \tilde{a}_{nk} (y_k - l) + l \left(\sum_{k=0}^{\infty} \tilde{a}_{nk} + a_n \right)$$

which can be written as follows

$$\sum_{k=0}^{\infty} a_{nk} x_k = \sum_{k=0}^{\infty} \tilde{a}_{nk} (y_k - l) + l \left(\sum_{k=0}^{\infty} a_{nk} \right); \quad (n \in \mathbb{N}), \tag{6.2}$$

where $l = \lim_{k \to \infty} y_k$ and $a_n = \lim_{k \to \infty} (\lambda_k a_{nk} / (\lambda_k - \lambda_{k-1}))$ for all $n \in \mathbb{N}$. Now, let us consider the following conditions:

$$\sup_{n} \left(\sum_{k=0}^{\infty} |\tilde{a}_{nk}| \right) < \infty, \tag{6.3}$$

$$\left(\frac{\lambda_k}{\lambda_k - \lambda_{k-1}} a_{nk}\right)_{k=0}^{\infty} \in c_0 \text{ for every } n \in \mathbb{N},$$
(6.4)

On the spaces of λ -convergent and bounded sequences

$$\left(\frac{\lambda_k}{\lambda_k - \lambda_{k-1}} a_{nk}\right)_{k=0}^{\infty} \in c \text{ for every } n \in \mathbb{N},$$
(6.5)

$$\left(\frac{\lambda_k}{\lambda_k - \lambda_{k-1}} a_{nk}\right)_{k=0}^{\infty} \in \ell_{\infty} \text{ for every } n \in \mathbb{N},$$
(6.6)

$$\sup_{n} \left| \sum_{k=0}^{\infty} a_{nk} \right| < \infty, \tag{6.7}$$

$$\lim_{n \to \infty} \left(\sum_{k=0}^{\infty} a_{nk} \right) = a, \tag{6.8}$$

$$\lim_{n \to \infty} \left(\sum_{k=0}^{\infty} a_{nk} \right) = 0, \tag{6.9}$$

$$\sum_{n=0}^{\infty} \left| \sum_{k=0}^{\infty} a_{nk} \right| < \infty, \tag{6.10}$$

$$\sum_{n=0}^{\infty} \left| \sum_{k=0}^{\infty} a_{nk} \right|^p < \infty; \quad (1 < p < \infty), \tag{6.11}$$

$$\lim_{n \to \infty} \tilde{a}_{nk} = \tilde{a}_k \text{ for every } k \in \mathbb{N},$$
(6.12)

$$\lim_{n \to \infty} \left(\sum_{k=0}^{\infty} |\tilde{a}_{nk} - \tilde{a}_k| \right) = 0, \tag{6.13}$$

$$\lim_{n \to \infty} \left(\sum_{k=0}^{\infty} |\tilde{a}_{nk}| \right) = 0, \tag{6.14}$$

$$\lim_{n \to \infty} \tilde{a}_{nk} = 0 \text{ for every } k \in \mathbb{N},$$
(6.15)

$$\sup_{N\in\mathcal{F}} \left(\sum_{k=0}^{\infty} \left| \sum_{n\in N} \tilde{a}_{nk} \right| \right) < \infty, \tag{6.16}$$

$$\sup_{K \in \mathcal{F}} \left(\sum_{n=0}^{\infty} \left| \sum_{k \in K} \tilde{a}_{nk} \right|^p \right) < \infty; \quad (1 < p < \infty), \tag{6.17}$$

$$\sum_{k=0}^{\infty} |\tilde{a}_{nk}| \text{ converges for every } n \in \mathbb{N}.$$
(6.18)

Then, by combining Theorem 5.5 with the results of Stieglitz and Tietz [15], we immediately deduce the following results by using (6.1) and (6.2).

Theorem 6.1. We have

(a) A ∈ (l^λ_∞, l_∞) if and only if (6.3) and (6.4) hold.
(b) A ∈ (c^λ, l_∞) if and only if (6.3), (6.5) and (6.7) hold.
(c) A ∈ (c^λ₀, l_∞) if and only if (6.3) and (6.6) hold.

Theorem 6.2. We have

(a) $A \in (\ell_{\infty}^{\lambda}, c)$ if and only if (6.3), (6.4), (6.12) and (6.13) hold. Further, if $A \in (\ell_{\infty}^{\lambda}, c)$ then we have for every $x \in \ell_{\infty}^{\lambda}$ that

$$\lim_{n \to \infty} A_n(x) = \sum_{k=0}^{\infty} \tilde{a}_k \Lambda_k(x).$$
(6.19)

(b) $A \in (c^{\lambda}, c)$ if and only if (6.3), (6.5), (6.8) and (6.12) hold. Further, if $A \in (c^{\lambda}, c)$ then we have for every $x \in c^{\lambda}$ that

$$\lim_{n \to \infty} A_n(x) = \sum_{k=0}^{\infty} \tilde{a}_k (\Lambda_k(x) - l) + la,$$

where $l = \lim_{k \to \infty} \Lambda_k(x)$.

(c) $A \in (c_0^{\lambda}, c)$ if and only if (6.3), (6.6) and (6.12) hold. Furthermore, if $A \in (c_0^{\lambda}, c)$ then (6.19) holds for every $x \in c_0^{\lambda}$.

Theorem 6.3. We have

(a) A ∈ (ℓ^λ_∞, c₀) if and only if (6.4) and (6.14) hold.
(b) A ∈ (c^λ, c₀) if and only if (6.3), (6.5), (6.9) and (6.15) hold.
(c) A ∈ (c^λ₀, c₀) if and only if (6.3), (6.6) and (6.15) hold.

Theorem 6.4. We have

(a) A ∈ (ℓ^λ_∞, ℓ₁) if and only if (6.4) and (6.16) hold.
(b) A ∈ (c^λ, ℓ₁) if and only if (6.5), (6.10) and (6.16) hold.
(c) A ∈ (c^λ₀, ℓ₁) if and only if (6.6) and (6.16) hold.

Theorem 6.5. Let 1 . Then, we have

(a) $A \in (\ell_{\infty}^{\lambda}, \ell_p)$ if and only if (6.4), (6.17) and (6.18) hold.

(b) $A \in (c^{\lambda}, \ell_p)$ if and only if (6.5), (6.11), (6.17) and (6.18) hold.

(c) $A \in (c_0^{\lambda}, \ell_p)$ if and only if (6.6), (6.17) and (6.18) hold.

Finally, we conclude our work with the following corollaries which are immediate by [8, Proposition 3.3].

Corollary 6.6. Let $\lambda' = (\lambda'_k)$ be a strictly increasing sequence of positive reals tending to infinity, $A = (a_{nk})$ an infinite matrix and define the matrix $B = (b_{nk})$ by

$$b_{nk} = \frac{1}{\lambda'_n} \sum_{j=0}^n (\lambda'_j - \lambda'_{j-1}) a_{jk}; \quad (n, k \in \mathbb{N}).$$

Then, the necessary and sufficient conditions for the matrix A to belong to any of the classes $(\ell_{\infty}^{\lambda}, \ell_{\infty}^{\lambda'}), (c^{\lambda}, \ell_{\infty}^{\lambda'}), (c_{0}^{\lambda}, \ell_{\infty}^{\lambda'}), (\ell_{\infty}^{\lambda}, c^{\lambda'}), (c^{\lambda}, c^{\lambda'}), (c^{\lambda'}), (c^{\lambda}, c^{\lambda'}), (c^{\lambda'}), (c^$

Corollary 6.7. Let $A = (a_{nk})$ be an infinite matrix and define the matrix $B = (b_{nk})$ by

$$b_{nk} = \sum_{j=0}^{n} a_{jk}; \quad (n, k \in \mathbb{N})$$

Then, the necessary and sufficient conditions for the matrix A to belong to any of the classes $(\ell_{\infty}^{\lambda}, bs)$, (c^{λ}, bs) , (c_{0}^{λ}, bs) , $(\ell_{\infty}^{\lambda}, cs)$, (c^{λ}, cs) , (c^{λ}, cs) , (c^{λ}, cs) , $(\ell_{\infty}^{\lambda}, cs_{0})$, (c^{λ}, cs_{0}) or $(c_{0}^{\lambda}, cs_{0})$ are obtained from the respective one in Theorems 6.1, 6.2 or 6.3 by replacing the entries of the matrix A by those of the matrix B.

Corollary 6.8. Let 0 < r < 1, $A = (a_{nk})$ an infinite matrix and define the matrix $B = (b_{nk})$ by

$$b_{nk} = \sum_{j=0}^{n} \binom{n}{j} (1-r)^{n-j} r^{j} a_{jk}; \quad (n,k \in \mathbb{N}).$$

Then, the necessary and sufficient conditions for the matrix A to belong to any of the classes $(\ell_{\infty}^{\lambda}, e_p^r)$, (c^{λ}, e_p^r) , $(c_{\infty}^{\lambda}, e_p^r)$, $(\ell_{\infty}^{\lambda}, e_c^r)$, (c^{λ}, e_c^r) , (c_{0}^{λ}, e_c^r) , $(\ell_{\infty}^{\lambda}, e_0^r)$, (c^{λ}, e_0^r) or (c_0^{λ}, e_0^r) are obtained from the respective ones in Theorems 6.1–6.5 by replacing the entries of the matrix A by those of the matrix B, where $1 \leq p \leq \infty$ and e_0^r , e_c^r and e_p^r denote the Euler sequence spaces which have been studied by Altay and Başar [1] and by Altay, Başar and Mursaleen [2, 12]. **Remark 6.9.** By following the same technique used in Corollaries 6.6, 6.7 and 6.8, we can deduce the characterization of matrix operators that map any of the spaces c_0^{λ} , c^{λ} and ℓ_{∞}^{λ} into the sequence spaces defined in [3, 4, 13] and [14].

References

- B. Altay and F. Başar, Some Euler sequence spaces of non-absolute type, Ukrainian Math. J., 57(1) (2005) 1–17.
- [2] B. Altay, F. Başar and M. Mursaleen, On the Euler sequence spaces which include the spaces ℓ_p and ℓ_∞ I, Information Sci., **176**(10) (2006) 1450–1462.
- [3] C. Aydın and F. Başar, On the new sequence spaces which include the spaces c_0 and c, Hokkaido Math. J., **33**(2) (2004) 383–398.
- [4] C. Aydın and F. Başar, Some new sequence spaces which include the spaces ℓ_p and ℓ_∞, Demonstratio Math., 38(3) (2005) 641–656.
- [5] I. Djolović and E. Malkowsky, A note on compact operators on matrix domains, J. Math. Anal. Appl., 340(1) (2008) 291–303.
- [6] I. J. Maddox, *Elements of Functional Analysis*, The University Press, 1st ed., Cambridge, 1970.
- [7] B. de Malafosse, The Banach algebra $\mathcal{B}(X)$, where X is a BK space and applications, Mat. Vesnik, **57** (2005) 41–60.
- [8] E. Malkowsky and V. Rakočević, Measure of noncompactness of linear operators between spaces of sequences that are (N,q) summable or bounded, Czechoslovak Math. J., 51(3) (2001) 505–522.
- [9] E. Malkowsky and V. Rakočević, On matrix domains of triangles, Appl. Math. Comput., 189(2) (2007) 1146–1163.
- [10] E. Malkowsky and E. Savaş, Matrix transformations between sequence spaces of generalized weighted means, Appl. Math. Comput., 147(2) (2004) 333–345.
- [11] F. Móricz, On Λ-strong convergence of numerical sequences and Fourier series, Acta Math. Hung., 54(3–4) (1989) 319–327.

- [12] M. Mursaleen, F. Başar and B. Altay, On the Euler sequence spaces which include the spaces ℓ_p and ℓ_{∞} II, Nonlinear Analysis (TMA), **65**(3) (2006) 707–717.
- [13] P.-N. Ng and P.-Y. Lee, Cesàro sequence spaces of non-absolute type, Comment. Math. Prace Mat., 20(2) (1978) 429–433.
- M. Şengönül and F. Başar, Some new Cesàro sequence spaces of nonabsolute type which include the spaces c₀ and c, Soochow J. Math., **31**(1) (2005) 107–119.
- [15] M. Stieglitz and H. Tietz, Matrixtransformationen von folgenräumen eine ergebnisübersicht, Math. Z., 154 (1977) 1–16.

(Received xx xxxx xxxx)

M. Mursaleen Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India. e-mail:mursaleenm@gmail.com

Abdullah K. Noman Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India. e-mail : akanoman@gmail.com