

www.math.science.cmu.ac.th/thaijournal Online ISSN 1686-0209

# Quasi Almost Convergence in a Normed Space for Double Sequences

#### V.A. Khan

**Abstract**: Let  $x = (x_{i,j})$  be a double sequence. We prove that a sequence  $(x_{i,j}) \in T$ , (where T is the real vector space of all bounded sequences in a real normed space X) is quasi almost convergent to  $s \in X$  if and only if

$$\left\| \frac{1}{pq} \sum_{i=np}^{(n+1)p-1} \sum_{j=mq}^{(m+1)q-1} x_{i,j} - s \right\|_{X} \to 0 \text{ as } p, q \to \infty,$$

uniformly in  $n, m (= 0, 1, 2, \dots)$ . In this paper we extend the results of Dimitrije Hajduković [Mathematica Moravica, 6(2002), 65-70] for double sequence spaces.

Keywords : Functionals, Banach limits, Almost convergence, Double sequences, Quasi almost convergence, C-summable sequences.2000 Mathematics Subject Classification : 46A26

### 1 Introduction

The idea of almost convergence for single sequence space was introduced by Lorentz [4] and for double sequences by Moricz and Rhoades [5]. A double sequence  $x = (x_{i,j})$  of real numbers is said to be almost convergent to a limit s if

$$\lim_{p,q \to \infty} \sup_{n,m \ge 0} \left| \frac{1}{pq} \sum_{i=n}^{n+p-1} \sum_{j=m}^{n+q-1} x_{i,j} - s \right| = 0.$$

In [1] was shown the existence of the functionals of the kind of Banach limits defined on the real vector space T of all bounded sequences in a real normed space X. In [2] by these functionals was defined the almost convergence of a sequence

Copyright  $\bigodot$  2010 by the Mathematical Association of Thailand. All rights reserved.

 $(x_i) \in T$  and shown that  $(x_i)$  almost converges to  $s \in X$  if

$$\left\| \frac{1}{p} \sum_{i=0}^{p-1} x_{k+1} - s \right\|_X \to 0 \quad as \quad p \to \infty,$$

$$(1.1)$$

uniformly in  $k (= 0, 1, 2, \cdots)$ .

Let us define a family of functionals q (of the kind of Banach limits) defined on the space T by

$$q(x) = q(x_{i,j})$$
  
=  $\lim_{p,q\to\infty} \left\{ \sup_{m,n} \frac{1}{pq} \left\| \sum_{i=np}^{(n+1)p-1} \sum_{j=mq}^{(m+1)q-1} x_{i,j} \right\|_X \right\} \quad (x_{i,j}) = x \in T, (1.2)$ 

where the supremum is taken over all  $n, m (= 0, 1, 2, \cdots)$ .

The functional q clearly is real valued and it satisfies the conditions

$$q(x) \ge 0, q(ax) = |a|q(x), q(x+y) \le q(x) + q(y) \quad (a \in R; x, y \in T);$$

that is q is a symmetric convex functional on the space T.

**Lemma .** Let X be a real linear space and  $q:X\to I\!\!R$  a functional such that the following assertions are valid

$$|L(x_{ij})| \le q(x_{i,j}) \quad ((x_{i,j}) \in T).$$
(1.3)

$$q(x) \ge 0, q(ax) = |a|q(x), q(x+y) \le q(x) + q(y) \quad (a \in R; x, y \in T).$$

Then, for each  $x_0 \in X$ , there exists a linear functional L on T such that

$$|L(x)| \le q(x), \quad L(x_0) = q(x_0) \text{ for all } x \in T.$$

Denoting now by  $\Pi$  the family of functionals satisfying the above conditions, then for each  $s\in T$  we have

$$L(x_{i,j} - s) = 0 \text{ if } q(x_{i,j} - s) = 0 \quad (\forall \ L \in \Pi \ , (x_{i,j}) \in T).$$
(1.4)

We define the following definition

**Definition.** A sequence  $(x_{i,j}) \in T$  is quasi almost convergent to  $s \in X$  or quasi *F*-summable to *s* is its quasi almost limit we will write

$$(Q-F) - \lim_{ij \to \infty} x_{i,j} = s$$

if

$$L(x_{i,j} - s) = 0 \quad \text{for all} \quad L \in \Pi.$$

$$(1.5)$$

In this paper, we extend the results of Dimitrije Hajduković [3] for double sequence spaces.

294

## 2 Main Results

**Theorem 1.** A sequence  $(x_{ij}) \in T$  quasi almost converges to  $s \in X$  if and only if

$$\left\| \frac{1}{pq} \sum_{i=np}^{(n+1)p-1} \sum_{j=mq}^{(m+1)q-1} x_{i,j} - s \right\|_{X} \to 0 \quad as \quad p, q \to \infty,$$
(2.1)

uniformly in  $n, m (= 0, 1, 2, \cdots)$ .

**Proof.** Let  $(x_{ij}) \in T$ . Then  $(Q - F) - \lim_{ij \to \infty} x_{ij} = s$ . By (1.2), (1.4) and (1.5) we have

$$\lim_{p,q \to \infty} \left\{ \sup_{m,n>0} \frac{1}{pq} \left\| \left| \sum_{i=np}^{(n+1)p-1} \sum_{j=mq}^{(m+1)q-1} (x_{i,j} - s) \right| \right|_X \right\} = 0.$$

Then for any  $\epsilon > 0$  there exists an integer  $p_0, q_0 > 0$  such that for all p, q > 0 and  $n \ (p > p_0, \ q > q_0, \ n = 0, 1, 2, \cdots)$ , we have

$$\frac{1}{pq} \left\| \left| \sum_{i=np}^{(n+1)p-1} \sum_{j=mq}^{(m+1)q-1} (x_{i,j}-s) \right| \right|_X < \epsilon.$$

Since  $\epsilon > 0$  is arbitrary we have

$$\left\| \frac{1}{pq} \sum_{i=np}^{(n+1)p-1} \sum_{j=mq}^{(m+1)q-1} x_{i,j} - s \right\|_{X} \to 0 \ as \ p,q \to \infty,$$

uniformly in n, m so the condition (2.1) is necessary.

(

Conversely, suppose that (2.1) be true. This implies that

$$\left\{\sup_{m,n>0}\frac{1}{pq}\left\|\left|\sum_{i=np}^{(n+1)p-1}\sum_{j=mq}^{(m+1)q-1}x_{i,j}-s\right|\right\|_{X}\right\}\to 0 \ as \ p,q\to\infty$$

or

$$q(x_{ij} - s) = \lim_{p,q \to \infty} \left\{ \sup_{m,n>0} \frac{1}{pq} \left\| \sum_{i=np}^{(n+1)p-1} \sum_{j=mq}^{(m+1)q-1} x_{i,j} - s \right\|_X \right\} = 0.$$

Hence, by (1.4), we have

$$L(x_{i,j}-s) = 0, \quad for \ all \ \ L \in \Pi$$

which implies that

$$Q-F) - \lim_{ij \to \infty} x_{i,j} = s.$$

The proof is now completed.

**Remark.** By definition , that a sequence  $(x_{ij}), x_{ij} \in X$  is C-summable to  $s \in X$  if and only if

$$\left\| \frac{1}{pq} \sum_{i=0}^{p-1} \sum_{j=0}^{q-1} x_{i,j} - s \right\|_{X} \to 0 \quad as \quad p, q \to \infty$$

$$(2.2)$$

**Theorem 2.** If a sequence  $(x_{ij}) \in T$  almost converges to  $s \in X$ , then it quasi almost converges to s.

**Proof.** Suppose a sequence  $(x_{ij}) \in T$  almost converges to  $s \in X$ . Then by the definition of almost convergence for double sequences, for any  $\epsilon > 0$  there exists an integer  $p_0 > 0$  and  $q_0 > 0$  such that

$$\left\| \frac{1}{pq} \sum_{i=0}^{p-1} \sum_{j=0}^{q-1} x_{k+i,l+j} - s \right\|_{X} < \epsilon \qquad (k,l=0,1,2,3,\cdots).$$

Hence for k = np and l = mq we have

$$\left\| \frac{1}{pq} \sum_{i=0}^{p-1} \sum_{j=0}^{q-1} (x_{np+i,mq+j} - s) \right\|_{X}$$
$$= \left\| \frac{1}{pq} \sum_{i=np}^{((n+1)p-1} \sum_{j=mq}^{(m+1)q-1} x_{i,j} - s \right\|_{X} < \epsilon.$$

Since  $\epsilon > 0$  is arbitrary we have

$$\left|\left|\frac{1}{pq}\sum_{i=np}^{((n+1)p-1}\sum_{j=mq}^{(m+1)q-1}x_{i,j}-s\right|\right|_X \to 0 \quad as \ p,q \to \infty$$

uniformly in m, n which implies that  $(x_{i,j}) \in T$  quasi almost converges to s.

**Theorem 3.** If a sequence  $(x_{i,j}) \in T$  quasi almost converges to  $s \in X$ , then it is C- summable to s.

**Proof.** Suppose that  $(x_{i,j}) \in T$  quasi almost converges to  $s \in X$ . Then (2.1) is true which for n = 0 and m = 0 implies (2.2), so  $(x_{i,j})$  is C- summable to s.

Acknowledgement(s) : The author would like to record their gratitude to the reviewer for his careful reading and making some useful corrections which improved the presentation of the paper.

### References

 Hajduković D., The functionals of the kind of Banach limits, publications de L'Institut Mathematique, T.19(33), 1975.

296

- [2] Hajduković D., Almost convergence of vector sequences, Matematički Vesnik, 12 (27), 1975, 245-249.
- [3] Hajduković D., Quasi Almost convergence in a normed space, Mathematica Moravica 6, (2002), 65-70.
- [4] Lorentz,G.G., A contribution to the theory of divergent sequences, Acta Math. 80(1984), 167-190.
- [5] Moricz, F. and Rhoades, B.E., Almost convergence of double sequences and strong regularity of summability matrices, Math. Proc. Cambridge Philos Soc. 104 (1988), 283-294.

(Received 27 February 2009)

Vakeel A. Khan Department of Mathematic, A.M.U. Aligarh (INDIA) E-mail: vakhan@math.com