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Quasi Almost Convergence in a Normed

Space for Double Sequences

V.A. Khan

Abstract : Let x = (xi,j) be a double sequence. We prove that a sequence
(xi,j) ∈ T , (where T is the real vector space of all bounded sequences in a real
normed space X ) is quasi almost convergent to s ∈ X if and only if
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→ 0 as p, q → ∞,

uniformly in n, m(= 0, 1, 2, · · · ). In this paper we extend the results of Dimitrije
Hajduković [Mathematica Moravica, 6(2002), 65-70] for double sequence spaces.

Keywords : Functionals, Banach limits, Almost convergence, Double sequences,
Quasi almost convergence, C-summable sequences.

2000 Mathematics Subject Classification : 46A26

1 Introduction

The idea of almost convergence for single sequence space was introduced by
Lorentz [4] and for double sequences by Moricz and Rhoades [5]. A double sequence
x = (xi,j) of real numbers is said to be almost convergent to a limit s if

lim
p,q→∞

sup
n,m≥0

|
1

pq

n+p−1
∑

i=n

n+q−1
∑

j=m

xi,j − s| = 0.

In [1] was shown the existence of the functionals of the kind of Banach limits
defined on the real vector space T of all bounded sequences in a real normed space
X . In [2] by these functionals was defined the almost convergence of a sequence
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(xi) ∈ T and shown that (xi) almost converges to s ∈ X if
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X

→ 0 as p → ∞, (1.1)

uniformly in k(= 0, 1, 2, · · · ).
Let us define a family of functionals q (of the kind of Banach limits) defined

on the space T by

q(x) = q(xi,j)

= ¯lim
p,q→∞
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(xi,j) = x ∈ T, (1.2)

where the supremum is taken over all n, m(= 0, 1, 2, · · · ).
The functional q clearly is real valued and it satisfies the conditions

q(x) ≥ 0, q(ax) = |a|q(x), q(x + y) ≤ q(x) + q(y) (a ∈ R; x, y ∈ T );

that is q is a symmetric convex functional on the space T .
Lemma . Let X be a real linear space and q : X → IR a functional such that

the following assertions are valid

|L(xij)| ≤ q(xi,j) ((xi,j) ∈ T ). (1.3)

q(x) ≥ 0, q(ax) = |a|q(x), q(x + y) ≤ q(x) + q(y) (a ∈ R; x, y ∈ T ).

Then, for each x0 ∈ X , there exists a linear functional L on T such that

|L(x)| ≤ q(x), L(x0) = q(x0) for all x ∈ T.

Denoting now by Π the family of functionals satisfying the above conditions, then
for each s ∈ T we have

L(xi,j − s) = 0 if q(xi,j − s) = 0 (∀ L ∈ Π , (xi,j) ∈ T ). (1.4)

We define the following definition
Definition. A sequence (xi,j) ∈ T is quasi almost convergent to s ∈ X or

quasi F -summable to s is its quasi almost limit we will write

(Q − F ) − lim
ij→∞

xi,j = s

if

L(xi,j − s) = 0 for all L ∈ Π. (1.5)

In this paper, we extend the results of Dimitrije Hajduković [3] for double
sequence spaces.
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2 Main Results

Theorem 1. A sequence (xij) ∈ T quasi almost converges to s ∈ X if and
only if
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X

→ 0 as p, q → ∞, (2.1)

uniformly in n, m(= 0, 1, 2, · · · ).
Proof. Let (xij) ∈ T . Then (Q−F )− lim

ij→∞
xij = s. By (1.2), (1.4) and (1.5)

we have
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Then for any ǫ > 0 there exists an integer p0, q0 > 0 such that for all p, q > 0 and
n (p > p0, q > q0, n = 0, 1, 2, · · · ) , we have
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Since ǫ > 0 is arbitrary we have
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→ 0 as p, q → ∞,

uniformly in n, m so the condition (2.1) is necessary.
Conversely , suppose that (2.1) be true. This implies that
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Hence , by (1.4), we have

L(xi,j − s) = 0, for all L ∈ Π

which implies that
(Q − F ) − lim

ij→∞
xi,j = s.

The proof is now completed.
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Remark. By definition , that a sequence (xij), xij ∈ X is C-summable to
s ∈ X if and only if
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Theorem 2. If a sequence (xij) ∈ T almost converges to s ∈ X , then it quasi
almost converges to s.

Proof. Suppose a sequence (xij) ∈ T almost converges to s ∈ X . Then by the
definition of almost convergence for double sequences, for any ǫ > 0 there exists
an integer p0 > 0 and q0 > 0 such that
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uniformly in m, n which implies that (xi,j) ∈ T quasi almost converges to s.
Theorem 3. If a sequence (xi,j) ∈ T quasi almost converges to s ∈ X , then

it is C- summable to s.
Proof. Suppose that (xi,j) ∈ T quasi almost converges to s ∈ X . Then (2.1)

is true which for n = 0 and m = 0 implies (2.2), so (xi,j) is C- summable to s.
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12 (27), 1975, 245-249.
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