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1. Introduction

Fixed point theory is the one of the most powerful tools of mathematics. Fixed point
techniques are applied extensively in various areas such as image processing, engineer-
ing, physics, computer science, economics, telecommunication, and other sciences. Fixed
point theory focuses on two important problems which are existence and approximation
problems.

Throughout this paper, let H be a real Hilbert space which inner product and the
associated norm are denoted by 〈·, ·〉 and ‖ · ‖, respectively. Let C be a nonempty closed
convex subset of H and {xn} be a sequence in H, we denote the strong convergence and
the weak convergence of {xn} to x ∈ H by xn → x and xn ⇀ x, respectively.

A mapping T : C → C is said to be a contraction if there exists a constant k ∈ [0, 1)
such that

‖T (x)− T (y)‖ ≤ k‖x− y‖, ∀x, y ∈ C.
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If k = 1 in above inequality, T is called nonexpansive.
There are various iteration methods for finding a fixed point of nonexpansives and

other nonlinear mappings. A classical iteration process introduced in 1953 by Mann [1]
was as Mann iteration process and it was defined by

xn+1 = αnxn + (1− αn)Txn,∀n ≥ 1, (1.1)

where {αn} is a real sequence in [0, 1] and the initial value of x1 ∈ H is arbitrarily chosen.
However, convergence of {xn} is in general not strong. Later, Halpern [2] introduced the
method defined as follows:

xn+1 = αnx0 + (1− αn)Txn,∀n ≥ 1, (1.2)

where {αn} ⊂ [0, 1] and x0, x1 ∈ C. Under some conditions on {αn}, he obtained a strong
convergence theorem of (1.2).

In 1974, Ishikawa [3] modified the Mann iteration, called the Ishikawa iteration process,
given by{

yn = (1− αn)xn + αnTxn,
xn+1 = (1− βn)xn + βnTyn,∀n ≥ 1,

(1.3)

where {αn}, {βn} ⊂ [0, 1] and the initial value x1 ∈ H.
In 2000, Moufafi [4] introduced a well-known viscosity approximation method for a

nonexpansive mapping as follows: for the initial value of x1 ∈ H,

xn+1 = αnf(xn) + (1− αn)Txn,∀n ≥ 1, (1.4)

where {αn} ⊂ [0, 1] and f is a contraction mapping. Under some suitable conditions, he
proved that {xn} generated by (1.4) converges strongly to a fixed point of T , when T is
a nonexpansive mapping.

In [5], Agarwal et al. extended Ishikawa iteration, called S-iteration process, by the
following method:{

yn = (1− αn)xn + αnTxn,
xn+1 = (1− βn)Txn + βnTyn,∀n ≥ 1,

(1.5)

where {αn}, {βn} ⊂ [0, 1] and the initial value of x1. They showed that the convergence
behavior of S-iteration is progressive than the iterations of Mann and Ishikawa.

Now, let {Tn} be a family of nonexpansive mappings of C into itself. Over the past two
decades, many authors have presented fixed point iteration process for finding a common
fixed point of {Tn}.

To find a common fixed point of a countable family of nonexpansive mapping, Aoyama
et al. [6] introduced a Halpern type iterative sequence, defined as follows: for the initial
value of x1,

xn+1 = αnx+ (1− αn)Tnxn,∀n ≥ 1, (1.6)

where {αn} ⊂ [0, 1] and x ∈ C is arbitrary.
After that, Takahashi [7] presented the following iteration process:

xn+1 = αnf(xn) + (1− αn)Tnxn,∀n ≥ 1, (1.7)

where {αn} ⊂ [0, 1] and f is a contraction mapping. Under some condition on {αn}, he
obtained a strong convergence theorem of (1.7).
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In 2010, Klin-eam and Suantai [8] presented and studied the following algorithm: for
x1 ∈ C, {

yn = αnf(xn) + (1− βn)Tnxn,
xn+1 = (1− βn)yn + βnTnyn,∀n ≥ 1,

(1.8)

where {αn} ⊂ [0, 1] and f is a contraction mapping. Moreover, under some suitable
condition, they proved that {xn} generated by (1.8) converges strongly to a common
fixed point of {Tn}.

To speed up the convergence behavior of the iteration processes, Polyak [9] presented
an inertial technique to improve the convergence behavior of the method. Thence, inertial
technique was used widely to accelerate the convergence behavior of the studied methods.

In 2009, Beck and Teboulle [10] introduced a fast iterative shrinkage-thresholding al-
gorithm (FISTA), defined as follows: for the initial points x1 = y0 ∈ Rn and t1 = 1,


yn = Txn,

tn+1 =
1+
√

1+4t2n
2 ,

θn = tn−1
tn+1

,

xn+1 = yn + θn(yn − yn−1),∀n ≥ 1,

(1.9)

where T = proxλg(I − λ∇f) for λ > 0.
Let {Tn} and T be families of nonexpansive mappings of H into itself such that ∅ 6=

F (T ) ⊂
⋂∞
n=1 F (Tn), where F (T ) is the set of all common fixed points of T . We say

that {Tn} satisfies NST- condition(I) with T if for each bounded sequence {xn} such that
limn→∞ ‖xn − Tnxn‖ = 0, it follows

lim
n→∞

‖xn − Txn‖ = 0 for all T ∈ T .

In particular, if T consists of one mapping T , i.e., T = {T}, then {Tn} is said to satisfy
NST- condition(I) with T .

In 2020, Puangpee and Suantai [11] introduced a new accelerated viscosity algorithm
(NAVA), defined as follows: for the initial value of x0, x1 ∈ H, yn = xn + θn(xn − xn−1),

zn = (1− σn)yn + σnTnyn,
xn+1 = αnf(xn) + βnTnyn + γnTnzn,∀n ≥ 1,

(1.10)

where {σn}, {αn}, {βn} and {γn} ⊂ (0, 1). Under some control conditions, they obtained
a strong convergence theorem of (1.10).

Motivated by these works mentioned above we aim to construct a new accelerated al-
gorithm for finding a common fixed point of a countable family of nonexpansive mappings
and prove its convergence theorem. We also aim to apply our obtained results for solving
some convex minimization problems.

In this paper, we are interested in the following bi-level optimization problem. The
outer level given by the following constrained minimization problem,

min
x∈X∗

ω(x), (MNP) (1.11)

where ω is a strongly convex and differntiable function while X∗ is the set of the mini-
mizers of the inner level problem, which is the classical convex composite model, given
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by

min
x∈Rn
{ϕ(x) := f(x) + g(x)} (P) (1.12)

where f is convex and continuously differentiable function and g is proper, lower semi-
continuous and convex function from Rn to (−∞,∞]. There exists some direct methods
for solving the (MNP) problem.

In 2005, Solodov [12] proposed an explicit and more tractable proximal point method
for solving problem (MNP). Since then, various proximal point algorithm have been de-
veloped to solve the problem under different type of framework. Another direct approach
to solve problem (MNP) is the Hybrid Steepest Descent Method (HSDM) present in [13]
by Yamada et al.

In 2014, Beck and Sabach [14] proposed a new direct first order method for solving
problem (MNP), called the Minimal Norm Gradient (MNG), for which the authors proved

an O(1/
√
k) rate convergence result, in the term of the inner objective function value.

Motivated by the result in [14], Sabach and Shtern [15] proposed the new method,
called Sequential Averaging Method (SAM), developed in [16]. It was employed in [15]
for solving the problem in a more general setting. The proposed method was proved to
have the rate of convergence of O(1/k) in term of the function f . It is called the Bi-Level
Gradient Sequential Averaging Method (BiG-SAM) defined as follows:

yn = proxγg(xn−1 − γ∇f(xn−1)),
zn = xn−1 − s∇ω(xn−1),
xn = αnzn + (1− αn)yn, n ≥ 1,

(1.13)

with x0 ∈ Rn, γ ∈ (0, 1/Lf ], s ∈ (0, 2/(Lω + σ)] and {αn}n∈N ∈ (0, 1], where Lf and Lω
are the Lipschitz gradient of f and ω, respectively.

Later, Shehu et al. [17] introduced an inertial extrapolation step to BiG-SAM, called
inertial Bi-Level Gradient Sequential Averaging Method (iBiG-SAM) defined as follows:

θ̄n =

{
min{ n−1

n+α−1 ,
εn

‖xn−xn−1‖} if xn 6= xn−1,
n−1

n+α−1 otherwise,

yn = xn + θn(xn − xn−1),
sn = proxγg(yn − γ∇f(yn)),
zn = yn − s∇h(yn),

xn+1 = αnzn + (1− αn)sn, n ≥ 1.

(1.14)

with x0, x1 ∈ Rn, α ≥ 3, γ ∈ (0, 2
Lf

) and s ∈ (0, 2
Lh+σ

] and 0 ≤ θn ≤ θ̄n , where {αn} and

{εn} satisfy the conditions in Assumption A.
Assumption A. Suppose {αn}∞n=1 is a sequence in (0, 1) and {εn}∞n=1 is a positive

sequence satisfying the following conditions:

(a) limn→∞ αn = 0 and
∑∞
n=1 αn =∞.

(b) εn = o(αn), i.e. limn→∞(εn/αn) = 0 (e.g. εn = 1/(n+ 1)2, α−n = 1/(n+ 1)).

Motivated and inspired by the research going on in this direction, we are interest to
propose a novel algorithm for convex bi-level optimization problems in Hilbert spaces.
Then prove a strong convergence result of the proposed algorithms under some suitable
control conditions. As an application, we apply our algorithms to solving data classifica-
tion problems.

The organization of this paper is as follows: In Section 2, we provide some basic
definitions and useful lemmas. The main results of this paper are given in Section 3, in this
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section, we introduced a new accelerated algorithm for solving convex bi-level optimization
problem and then prove a strong convergence of the proposed algorithm. And also apply
our main result to solving data classification problems in Section 4. Finally, in Section 5,
is the summary of our work.

2. Preliminaries

In this section, we recall some important definitions, lemmas and propositions which
are useful to prove our main results.

Definition 2.1. A mapping T : C → C is said to be

1. Lipschitzian if there exists τ ≥ 0 such that

‖Tx− Ty‖ ≤ τ‖x− y‖, ∀x, y ∈ C,
2. contraction if T is Lipschitzian with the coefficient τ ∈ [0, 1),
3. nonexpansive if T is Lipschitzian with the coefficient τ = 1.
It is well-known that if T is nonexpansive, then F (T ) is closed and convex.

Definition 2.2. Let C be a nonempty subset of H and x ∈ H. If there exists a point
x∗ ∈ C such that

‖x∗ − x‖ ≤ ‖y − x‖, ∀y ∈ C,
then x∗ is called a metric projection of x on C, denoted by PCx. If PCx exists and is
unique for all x, then the function PC of H onto C is called the metric projection.

Proposition 2.3 ([18]). Let C be a nonempty convex subset of H and let x ∈ H,x∗ ∈ C.
Then,

x∗ = PCx⇔ 〈x− x∗, y − x∗〉 ≤ 0, ∀y ∈ C.

Let {Tn} and T be families of nonexpansive mappings of H into itself such that ∅ 6=
F (T ) ⊂

⋂∞
n=1 F (Tn), where F (T ) is the set of all common fixed points of T . We say

that {Tn} satisfies NST- condition(I) with T if for each bounded sequence {xn} such that
limn→∞ ‖xn − Tnxn‖ = 0, it follows

lim
n→∞

‖xn − Txn‖ = 0 for all T ∈ T .

In particular, if T concists of one mapping T , i.e., T = {T}, then {Tn} is said to satisfy
NST- condition(I) with T .

Definition 2.4. Let g : Rn → R is proper convex and lower semi-continuous function
λ > 0. The proximitor of λg at v, denoted by proxλg(v), is defined by

proxλg(v) = arg min
x

{
g(x) + ‖x−v‖2

2λ

}
, v ∈ Rn.

Let f, g : H → (−∞,+∞] be proper convex and lower semi-continuous and λ > 0.
Suppose f is differentiable. The operator T := proxλg(I−λ∇f) is known as the forward-
backward operator of f and g with respect to λ.

The following lemmas and propositions are essential tools for proving the main results.

Lemma 2.5 ([18],[20]). Let H be a real Hilbert space. For x, y ∈ H and any arbitrary
real number λ ∈ [0, 1], the following results hold:

i. ‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2;
ii. ‖x± y‖2 = ‖x‖2 ± 2〈x, y〉+ ‖y‖2,∀x, y ∈ H;
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iii. ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉.

The identity in Lemma 2.5 (i) implies that the following equality holds:

‖αx+βy+γz‖2 = α‖x‖2+β‖y‖2+γ‖z‖2−αβ‖x−y‖2−βγ‖y−z‖2−αγ‖x−z‖2,
(2.1)

for all x, y, z ∈ H and α, β, γ ∈ [0, 1] with α+ β + γ = 1.

Lemma 2.6 ([19]). Let g : H → R ∪ {∞} be proper convex and lower semi-continuous
function, and f : H → R be convex differentiable with gradient ∇f being L-Lipschitz
constant for some L > 0. If {Tn} is the forward-backward operator of f and g with
respect to cn ∈ (0, 2/L) such that cn converges to c, then {Tn} satisfies NST-condition(I)
with T , where T is the forward-backward operator of f and g with respect to c ∈ (0, 2/L).

Let A : H → 2H be a maximal monotone operator and λ > 0. The resolvent JAλ of A
is defined by

JAλ := (I + λA)−1.

Proposition 2.7 ([19]). Let H be a real Hilbert space. Let A : H → 2H be a maximally
monotone operator and B : H → H an L-Lipschitz operator, where L > 0. Let Tn =
JAλn

(I−λnB), where 0 < λn <
2
L for all n ≥ 1 and let T = JAλ (I−λB), where 0 < λ < 2

L

with λn → λ. Then {Tn} satisfies the NST-condition(I) with T .

Lemma 2.8 ([11]). Let {Tn} be a family of nonexpansive mappings of H into itself and
T : H → H a nonexpansive mapping with ∅ 6= F (T ) ⊂

⋂∞
n=1 F (Tn). One always has, if

{Tn} satisfies NST-condition(I) with T , then {Tt} also satisfies NST-condition(I) with T ,
for any subsequences {t} of positive integers.

Proposition 2.9 ([15]). Let ω : Rn → R is strongly convex with parameter σ > 0 and
let ω is a continuously differentiable function such that ∇ω is Lipschitz continuous with
constant Lω. Then, the mapping defined by Ss = I−s∇ω, where I is the identity operator,
is a contraction for all s ≤ 2/(Lω + σ), that is

‖x− s∇ω(x)− (y − s∇ω(y))‖ ≤
√

1− 2sσLω

σ+Lω
‖x− y‖,∀x, y ∈ Rn.

Lemma 2.10 ([21]). Let H be a real Hilbert space and T : H → H a nonexpansive
mapping with F (T ) 6= ∅. Then the mapping I − T is demiclosed at zero, i.e, for any
sequences {xn} in H such that xn ⇀ x ∈ H and ‖xn − Txn‖ → 0 imply x ∈ F (T ).

Lemma 2.11 ([22],[23]). Let {sn}, {ξn} be sequences of nonnegative real numbers, {δn}
a sequence in [0, 1] and {tn} a sequence of real numbers such that

sn+1 ≤ (1− δn)sn + δntn + ξn,

for all n ∈ N. If the following conditions hold:

1.
∑∞
n=1 δn =∞;

2.
∑∞
n=1 ξn <∞;

3. lim supn→∞ tn ≤ 0.

Then limn→∞ sn = 0.

Lemma 2.12 ([24]). Let {Θn} be a sequence of real numbers that dose not decrease
at infinity in the sense that there exists a subsequence {Θni

} of {Θn} which satisfies
Θni

< Θni+1 for all i ∈ N. Define the sequence {τ(n)}n≥n0
of integers as follows:
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τ(n) := max{k ≤ n : Θk < Θk+1},
where n0 ∈ N such that {k ≤ n0 : Θk < Θk+1} 6= ∅. Then the following hold:

1. τ(n0) ≤ τ(n0 + 1) ≤ · · · and τ(n)→∞;
2. Θτ(n) ≤ Θτ(n)+1 and Θn ≤ Θτ(n)+1 for all n ≥ n0.

3. Main Results

In this section, we provide a novel accelerated common fixed point algorithm using the
inertial technique together with the viscosity approxiamtion method for finding a common
fixed point of a family of nonexpansive mappings in Hilbert space. Secondly, under some
conditions, we prove its strong convergence theorem.

As follows, we provide a novel accelerated algorithm, Algorithm 1, for approximating
a solution of a common fixed point problem.

Throughout this section, let {Tn} be a family of nonexpansive mappings on H into
itself. Let f be a k-contraction mapping on H with k ∈ (0, 1) and let {ηn} ⊂ (0,∞) and
{αn}, {βn}, {γn} ⊂ (0, 1).

Algorithm 1

Initialize : Take x0, x1 ∈ H. Let {µn} ⊂ (0,∞).
For n ≥ 1 :
Set

θn =

{
min{µn, ηnαn

‖xn−xn−1‖} if xn 6= xn−1;

µn otherwise.

Compute
yn = xn + θn(xn − xn−1),

zn = γnf(yn) + (1− γn)Tnyn,

xn+1 = (1− αn − βn)yn + αnTnzn + βnTnyn.

Next, we prove the strong convergence theorem of the sequence generated by Algorithm
1.

Theorem 3.1. Let T : H → H be a nonexpansive mapping with F (T ) 6= ∅ and f :
H → H be a contraction mapping with the constant k ∈ (0, 1). Assume that ∅ 6= F (T ) ⊂⋂∞
n=1 F (Tn) and {Tn} satisfies NST-condition(I) with T . Let {xn} be a sequence generated

by Algorithm 1 such that the following additional conditions hold:

1. limn→∞ ηn = 0,
2. limn→∞ γn = 0 and

∑∞
n=1 γn =∞,

3. 0 < a < αn for some a ∈ R,
4. 0 < b < βn < αn + βn < c < 1 for some b, c ∈ R,

then the sequence {xn} converges strongly to u ∈ F (T ) where u = PF (T )f(u).

Proof. Let u ∈ F (T ) such that u = PF (T )f(u). First of all, we show that {xn} is bounded.
By the definition of yn and zn, we have

‖yn − u‖ = ‖xn + θn(xn − xn−1)− u‖
≤ ‖xn − u‖+ θn‖xn − xn−1‖,∀n ≥ 1

(3.1)
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and

‖zn − u‖ = ‖γnf(yn) + (1− γn)Tnyn − u‖
= ‖γn(f(yn)− u) + (1− γn)(Tnyn − u)‖
≤ γn‖f(yn)− u‖+ (1− γn)‖Tnyn − u‖
≤ γn‖f(yn)− u‖+ γn‖f(u)− u‖+ (1− γn)‖yn − u‖
≤ γnk‖yn − u‖+ γn‖f(u)− u‖+ (1− γn)‖yn − u‖
= (1− (1− k)γn)‖yn − u‖+ γn‖f(u)− u‖
≤ ‖yn − u‖+ γn‖f(u)− u‖,∀n ≥ 1.

(3.2)

From (3.1) and (3.2), we also have

‖xn+1 − u‖ = ‖αnTnzn + βnTnyn + (1− αn − βn)yn − u‖
= ‖αn(Tnzn − u) + βn(Tnyn − u) + (1− αn − βn)(yn − u)‖
≤ αn‖Tnzn − u‖+ βn‖Tnyn − u‖+ (1− αn − βn)‖yn − u‖
≤ αn‖zn − u‖+ βn‖yn − u‖+ (1− αn − βn)‖yn − u‖
= αn‖zn − u‖+ (1− αn)‖yn − u‖
≤ αn((1−(1−k)γn)‖yn − u‖+γn‖f(u)− u‖)+(1− αn)‖yn − u‖
= (1− (1− k)αnγn)‖yn − u‖+ αnγn‖f(u)− u‖
≤ (1−(1−k)αnγn)(‖xn−u‖+θn‖xn − xn−1‖)+αnγn‖f(u)− u‖
= (1− (1− k)αnγn)‖xn − u‖

+(1− (1− k)αnγn)θn‖xn − xn−1‖+ αnγn‖f(u)− u‖
= (1− (1− k)αnγn)‖xn − u‖

+(1−k)αnγn[ (1−(1−k)αnγn)
(1−k)γn · θnαn

‖xn−xn−1‖+ ‖f(u)−u‖1−k ].

(3.3)

According to the definition of θn and the assumption (1), we have

θn
αn
‖xn − xn−1‖ → 0 as n→∞.

Then there exists a positive constant M1 > 0 such that

θn
αn
‖xn − xn−1‖ ≤M1, ∀n ≥ 1.

From (3.3), we obtain

‖xn+1 − u‖ ≤ (1− (1− k)αnγn)‖xn − u‖
+(1− k)αnγn[ τ

(1−k) ·
θn
αn
‖xn − xn−1‖+ ‖f(u)−u‖

1−k ]

≤ (1− (1− k)αnγn)‖xn − u‖+ (1− k)αnγn[ τM1+‖f(u)−u‖
(1−k) ]

≤ max
{
‖xn − u‖, τM1+‖f(u)−u‖

(1−k)

}
...

≤ max
{
‖x1 − u‖, τM1+‖f(u)−u‖

(1−k)

}
,∀n ≥ 1

where τ = sup
{

(1−(1−k)αnγn)
γn

}
. This implies {xn} is bounded and so are {yn}, {zn},

{f(xn)} and {Tnyn}.
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On the other hand, we have

‖yn − u‖2 = ‖xn + θn(xn − xn−1)− u‖2
= ‖(xn − u) + θn(xn − xn−1)‖2
= ‖xn − u‖2 + 2θn〈xn − u, xn − xn−1〉+ θ2n‖xn − xn−1‖2
≤ ‖xn − u‖2 + 2θn‖xn − u‖ · ‖xn − xn−1‖+ θ2n‖xn − xn−1‖2.

(3.4)
By Lemma 2.5 (3) and the inequality (3.4), we have

‖xn+1 − u‖2 = ‖αnTnzn + βnTnyn + (1− αn − βn)yn − u‖2
= ‖αn(Tnzn − u) + βn(Tnyn − u) + (1− αn − βn)(yn − u)‖2
≤ αn‖Tnzn − u‖2 + βn‖Tnyn − u‖2 + (1− αn − βn)‖yn − u‖2
≤ αn‖zn − u‖2 + βn‖yn − u‖2 + (1− αn − βn)‖yn − u‖2
= αn‖zn − u‖2 + (1− αn)‖yn − u‖
= αn‖γnf(yn) + (1− γn)Tnyn − u‖2 + (1− αn)‖yn − u‖2
= αn‖γn(f(yn)− f(u)) + (1− γn)(Tnyn − u) + γn(f(u)− u)‖2

+(1− αn)‖yn − u‖2
≤ αn‖γn(f(yn)− f(u)) + (1− γn)(Tnyn − u)‖2

+2αnγn〈f(u)− u, zn − u〉+ (1− αn)‖yn − u‖2
≤ αnγn‖f(yn)− f(u)‖2 + αn(1− γn)‖Tnyn − u‖2

+2αnγn〈f(u)− u, zn − u〉+ (1− αn)‖yn − u‖2
≤ αnγnk‖yn − u‖2 + αn(1− γn)‖yn − u‖2 + (1− αn)‖yn − u‖2

+2αnγn〈f(u)− u, zn − u〉
= (1− (1− k)αnγn)‖yn − u‖2 + 2αnγn〈f(u)− u, zn − u〉
≤ (1− (1− k)αnγn)‖xn − u‖2

+(1− (1− k)αnγn)[2θn‖xn − u‖·‖xn − xn−1‖+ θ2n‖xn − xn−1‖2]
+2αnγn〈f(u)− u, zn − u〉

= (1− (1− k)αnγn)‖xn − u‖2
+(1− (1− k)αnγn)[θn‖xn − xn−1‖(2‖xn − u‖+ θn‖xn − xn−1‖)]
+2αnγn〈f(u)− u, zn − u〉

(3.5)
Since

θn‖xn − xn−1‖ = αn · θnαn
‖xn − xn−1‖ → 0 as n→∞,

there exists a positive constant M2 > 0 such that

θn‖xn − xn−1‖ ≤M2, ∀n ≥ 1.

From the inequality (3.5), we derive that for all n ≥ 1,

‖xn+1 − u‖2 ≤ (1− (1− k)αnγn)‖xn − u‖2
+3M3(1−(1−k)αnγn)θn‖xn−xn−1‖+2αnγn〈f(u)− u, zn − u〉

= (1− (1− k)αnγn)‖xn − u‖2

+(1− k)αnγn

[
3M3(1−(1−k)αnγn)

(1−k)γn · θnαn
‖xn − xn−1‖

+ 2
1−k 〈f(u)− u, zn − u〉

]
≤ (1− (1− k)αnγn)‖xn − u‖2

+(1−k)αnγn[ 3M3τ
(1−k) ·

θn
αn
‖xn−xn−1‖+ 2

1−k 〈f(u)− u, zn − u〉],
(3.6)
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where M3 = max{supn ‖xn − u‖,M2}. From above inequality, we set

sn := ‖xn − u‖2, δn := αnγn(1− k)

and

tn := 3M3τ
(1−k) ·

θn
αn
‖xn − xn−1‖+ 2

1−k 〈f(u)− u, zn − u〉, ∀n ≥ 1.

So, we obtain

sn+1 ≤ (1− δn)sn + δntn, (3.7)

for all n ≥ 1.

Now, we consider two cases for the proof as follows:

Case 1. Suppose that there exists a natural number n0 such that the sequence {‖xn−
u‖}n≥n0

is nonincreasing. Hence {‖xn − u‖} converges due to it is bounded from below
by 0. Using the assumption (2) and (3), we get that

∑∞
n=1 δn =∞. We next claim that

lim sup
n→∞

〈f(u)− u, zn − u〉 ≤ 0.

By the inequality (3.2), we have

‖zn − u‖2 − ‖yn − u‖2 = (‖yn − u‖+ γn‖f(u)− u‖)2 − ‖yn − u‖2
= ‖yn − u‖2 + 2γn‖yn − u‖ · ‖f(u)− u‖

+γ2n‖f(u)− u‖ − ‖yn − u‖2
= 2γn‖yn − u‖·‖f(u)− u‖+ γ2n‖f(u)− u‖2.

(3.8)

Coming back to the definition of xn+1, by Lemma 2.5 (1), (3.4) and (3.8), one has that

‖xn+1 − u‖2 = ‖αnTnzn + βnTnyn + (1− αn − βn)yn − u‖2
= ‖αn(Tnzn − u) + βn(Tnyn − u) + (1− αn − βn)(yn − u)‖2
≤ αn‖Tnzn − u‖2 + βn‖Tnyn − u‖2 + (1− αn − βn)‖yn − u‖2
−βn(1− αn − βn)‖yn − Tnyn‖2
≤ αn‖zn − u‖2 + βn‖yn − u‖2 + (1− αn − βn)‖yn − u‖2
−βn(1− αn − βn)‖yn − Tnyn‖2

= αn‖zn − u‖2+(1− αn)‖yn − u‖2−βn(1− αn − βn)‖yn−Tnyn‖2
≤ αn[‖zn − u‖2 − ‖yn − u‖2]

+‖xn − u‖2 + 2θn‖xn − u‖ · ‖xn − xn−1‖+ θ2n‖xn − xn−1‖2
−βn(1− αn − βn)‖yn − Tnyn‖2
≤ 2αnγn‖yn − u‖ · ‖f(u)− u‖+ αnγ

2
n‖f(u)− u‖2

+‖xn − u‖2 + 2θn‖xn − u‖ · ‖xn − xn−1‖+ θ2n‖xn − xn−1‖2
−βn(1− αn − βn)‖yn − Tnyn‖2.

(3.9)

It implies that for all n ≥ 1,

βn(1− αn − βn)‖yn−Tnyn‖2 ≤ 2αnγn‖yn−u‖·‖f(u)− u‖+αnγ2n‖f(u)− u‖2
+‖xn − u‖2 − ‖xn+1 − u‖2
+θn‖xn−xn−1‖(2‖xn − u‖+θn‖xn − xn−1‖).

(3.10)
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It follows from assumption (2), (4) and the converges of the sequence {‖xn − u‖} and
θn‖xn − xn−1‖ → 0 that

‖yn − Tnyn‖ → 0 as n→∞. (3.11)

According to {Tn} satisfies NST-condition(I) with T , we obtain

‖yn − Tyn‖ → 0 as n→∞. (3.12)

By definition of yn and zn, we have

‖yn − zn‖ = ‖yn − γnf(yn)− (1− γn)Tnyn‖
= ‖γn(f(yn)− yn) + (1− γn)(Tnyn − yn)‖
≤ γn‖f(yn)− yn‖+ (1− γn)‖Tnyn − yn‖.

(3.13)

This implies by (3.11) and assumption (2) that

‖yn − zn‖ → 0 as n→∞. (3.14)

By definition of xn+1, we have

‖xn+1 − yn‖ ≤ ‖xn+1 − Tnyn‖+ ‖Tnyn − yn‖
= ‖αnTnzn + βnTnyn + (1− αn − βn)yn − Tnyn‖+ ‖Tnyn − yn‖
= ‖αn(Tnzn−Tnyn)+βn(Tnyn−Tnyn)+(1−αn−βn)(Tnyn−yn)‖

+‖Tnyn − yn‖
≤ αn‖Tnzn − Tnyn‖+ (1− αn − βn)‖Tnyn − yn‖+ ‖Tnyn − yn‖
≤ αn‖zn − yn‖+ (2− αn − βn)‖Tnyn − yn‖,

(3.15)

which implies

‖xn+1 − yn‖ → 0 as n→∞. (3.16)

By definition of yn, we obtain

‖yn − xn‖ = θn‖xn − xn−1‖ → 0 as n→∞. (3.17)

Hence

‖xn+1 − xn‖ ≤ ‖xn+1 − yn‖+ ‖yn − xn‖ → 0 as n→∞. (3.18)

Let

v = lim sup
n→∞

〈f(u)− u, zn − u〉. (3.19)

So, there exists a subsequence {znk
} of {zn} such that

v = lim
k→∞

〈f(u)− u, znk
− u〉.

Since {znk
} is bounded, there exists a subsequnce {zn′k} of {znk

} such that
zn′k ⇀ w ∈ H. Without loss of generality, we may assume that znk

⇀ w ∈ H and

v = lim
k→∞

〈f(u)− u, znk
− u〉.
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Since ‖yn − zn‖ → 0, we get ynk
⇀ w. It implies by Lemma 2.10 that w ∈ F (T ).

Moreover, using u = PF (T )f(u) and Proposition 2.3, we obtain

v = lim
k→∞

〈f(u)− u, znk
− u〉 = 〈f(u)− u,w − u〉 ≤ 0. (3.20)

Then

v = lim sup
n→∞

〈f(u)− u, zn − u〉 ≤ 0. (3.21)

It implies from (3.21) with the fact of θn
αn
‖xn − xn−1‖ → 0 that lim supn→∞ tn ≤ 0.

So, from (3.7) and using Lemma 2.11, we obtain that xn → u.

Case 2. Suppose that sequence {‖xn − u‖}n≥n0 is not monotonically nonincreasing
sequence for all n0. We set

Φn := ‖xn − u‖2.

So, there exists a subsequence {Φnj
} of {Φn} such that Φnj

< Φnj+1 for all j ∈ N. In
this case, we define τ : {n : n ≥ n0}, by

τ(n) := max{k ∈ N : k ≤ n,Φk < Φk+1}.

By Lemma 2.12, we have that Φτ(n) ≤ Φτ(n)+1 for all n ≥ n0. That is

‖xτ(n) − u‖ ≤ ‖xτ(n)+1 − u‖, ∀n ≥ n0.

As in Case 1, we can conclude that for all n ≥ n0,
βτ(n)(1− ατ(n) − βτ(n))‖yτ(n) − Tτ(n)yτ(n)‖2

≤ 2ατ(n)γτ(n)‖yτ(n) − u‖ · ‖f(u)− u‖
+ατ(n)γ

2
τ(n)‖f(u)− u‖2

+‖xτ(n) − u‖2 − ‖xτ(n)+1 − u‖2
+θn‖xτ(n) − xτ(n)−1‖(2θτ(n)‖xτ(n) − u‖+ θτ(n)‖xτ(n) − xτ(n)−1‖)

≤ 2ατ(n)γτ(n)‖yτ(n) − u‖ · ‖f(u)− u‖
+ατ(n)γ

2
τ(n)‖f(u)− u‖2

+θn‖xτ(n) − xτ(n)−1‖(2θτ(n)‖xτ(n) − u‖+ θτ(n)‖xτ(n) − xτ(n)−1‖),

which implies

‖yτ(n) − Tτ(n)yτ(n)‖ → 0 as n→∞. (3.22)

Similarly to the proof in Case 1, we have

‖yτ(n) − zτ(n)‖ → 0, (3.23)

‖xτ(n)+1 − yτ(n)‖ → 0, (3.24)

and

‖yτ(n) − xτ(n)‖ → 0, (3.25)

as n→∞ and hence

‖xτ(n)+1 − xτ(n)‖ → 0 as n→∞. (3.26)

We next show that lim sup
n→∞

〈f(u)− u, zτ(n) − u〉 ≤ 0. Put
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v = lim sup
n→∞

〈f(u)− u, zτ(n) − u〉.

Without loss of generality, there exists a subsequence {zτ(t)} of {zτ(n)} such that
{zτ(t)}⇀ w ∈ H and

v = lim
t→∞
〈f(u)− u, zτ(t) − u〉.

By Lemma 2.8, one has {Tτ(t)} satisfies NST-condition(I) with T , so according to the
inequality (3.22), ‖yτ(t) − Tτ(t)yτ(t)‖ → 0 as t→∞, we obtain that

‖yτ(n) − Tyτ(n)‖ → 0 as n→∞. (3.27)

Since ‖yτ(t) − zτ(t)‖ → 0, we get yτ(t) ⇀ w which implies, by Lemma 2.10, that
w ∈ F (T ). Further using u = PF (T )f(u) and Proposition 2.3, we get

v = lim
t→∞
〈f(u)− u, zτ(t) − u〉 = 〈f(u)− u,w − u〉 ≤ 0 (3.28)

Then

v = lim sup
n→∞

〈f(u)− u, zτ(n) − u〉 ≤ 0 (3.29)

Since Φτ(n) ≤ Φτ(n)+1 and (1− k)ατ(n)γτ(n) > 0, as the proof in Case 1, we have for
all n ≥ n0

‖xτ(n)−u‖2 ≤
3M3τ

(1− k)
·
θτ(n)

ατ(n)
‖xτ(n)−xτ(n)−1‖+

2

1− k
〈f(u)−u, zτ(n)−u〉 (3.30)

It follows by the fact that θτ(n)
ατ(n)

‖xτ(n)− xτ(n)−1‖ → 0 and (3.29) that

lim sup
n→∞

‖xτ(n) − u‖2 ≤ 0,

and hence ‖xτ(n) − u‖ → 0 as n→∞.
This implies by (3.26) that ‖xτ(n)+1 − u‖ → 0 as n→∞. By Lemma 2.12, we get

‖xn − u‖ ≤ ‖xτ(n)+1 − u‖ → 0 as n→∞

Hence xn → u. The proof is complete.

We consider the following bi-level convex minimization problem:

min
x∈X∗

ω(x), (3.31)

where X∗ is the optimal solution set of problem (3.32). For the objective function ω of
problem (3.31) we make the following assumption. Let Ω be the set of all solutions of
(3.31)

Assumption 1.

C1. ω : Rm → R is strongly convex with parameter σ > 0,
C2. ω is a continuously differentiable function such that and ∇ω is Lipschitz con-

tinuous with constant Lω.
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For the problem

X∗ = arg min
x∈Rm

(f(x) + g(x)) (3.32)

we assume:

Assumption 2.

A1. f : Rm → R is convex and continuously differentiable,
A2. ∇f is Lipschitz continuous with constant Lf ,
A3. g : Rm → (−∞,∞] is proper, lower semicontinuous, and convex.

Next, we introduce an algorithm for solving problem (3.31)
We obtain the following result as a consequence of Theorem 3.1

Algorithm 2 :

Input : cn ∈ (0, 2/Lf ), s ∈ (0, 2/(Lω + σ)).
Initialize : Take x0, x1 ∈ Rm. Let {µn} ⊂ (0,∞).
For n ≥ 1 :
Compute

yn = xn + θn(xn − xn−1),

zn = γn(I − s∇ω)(yn) + (1− γn) proxcng(I − cn∇f)yn,

xn+1 = (1− αn − βn)yn + αn proxcng(I − cn∇f)zn + βn proxcng(I − cn∇f)yn.

Theorem 3.2. Let ω : Rm→R be a function satisfying the Assumption 1. Let f : Rm→R
and g : Rm → (−∞,∞] be a function satisfying the Assumption 2. Let {cn} be a sequence
of positive real numbers in (0, 2/Lf ) and let c ∈ (0, 2/Lf ) such that cn → c as n → ∞.
A sequence {xn} generated by Algorithm 2 with the same conditions as in Theorem 3.1
converges strongly to u ∈ Ω.

Proof. Put Tn = proxcng(I− cn∇f), n ∈ N, and T = proxcg(I− c∇f). By Proposition 2.6
we know that {Tn} satisfies the NST condition(I) with T . We also know that {Tn} and
T are nonexpansive mappings. It follows directly from Theorem 3.1 that {xn} converges
to u ∈ F (T ) = arg min

x∈Rm

(f(x) + g(x)). We also have that f = I − s∇ω is contraction with

parameter k =
√

1− 2sσLω

σ+Lω
, whenever s ∈ (0, 2/(Lω+σ)). It remains to show that u ∈ Ω.

By using u = PF (T )f(u) and Proposition 2.3, we obtain

u = PF (T )f(u) ⇔ 〈f(u)− u, z − u〉 ≤ 0, ∀z ∈ F (T )
⇔ 〈u− s∇ω(u)− u, z − u〉 ≤ 0, ∀z ∈ F (T )
⇔ 〈−s∇ω(u), z − u〉 ≤ 0, ∀z ∈ F (T )
⇔ 〈s∇ω(u), z − u〉 ≥ 0, ∀z ∈ F (T )
⇔ 〈∇ω(u), z − u〉 ≥ 0, ∀z ∈ F (T ) = X∗ = arg min

x∈Rm

(f(x) + g(x))

Hence, u is the optimal solution for the problem (3.31)
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4. Application

In this section, we apply our algorithms, BiG-SAM and iBiG-SAM to solve some
classification problems based on the method proposed by Huang et al [25], which is called
extreme learning machine (ELM). It is formulated as follows:

Let {(xj , tj) : xj ∈ Rn, tj ∈ Rm), j = 1, 2, . . . , N} be a training set with N distinct
samples where xj is an input and tj is a target. A simple mathematical model for the
output of ELM for a single-layer feedforward neuron network (SLFNs) with M hidden
nodes and activation function G are mathematically modeled as

oj =
M∑
i=1

ηiG(〈wi, xj〉+ bi), j = 1, . . . , N,

where wi is the weight connecting the i-th hidden node and the input node, ηi is the
weight connecting the i-th hidden node and the output node, and bi is the bias.

Let H be a matrix given by the following:

H =

 G(〈w1, x1〉+ b1) · · · G(〈wM , x1〉+ bM )
...

. . .
...

G(〈w1, xN 〉+ b1) · · · G(〈wM , xN 〉+ bM )


N×M

.

This matrix H is known as the hidden-layer output matrix.
The target of standard SLFNs is to approximate these N sample with zero means that

N∑
j=1

|oj − tj | = 0, i.e., there exists ηi, wi and bi such that

tj =
M∑
i=1

ηiG(〈wi, xj〉+ bi), j = 1, . . . , N.

From N equations above, we can formulate a simple equation as

Hx = T,

where x = [ηT1 , · · · , ηTM ]T ,T = [tT1 , · · · , tTN ]T .
The main objective of a standard SLFNs is estimate ηi, wi and bi for solving (1.12)

while ELM aim to calculate only x = [ηT1 , · · · , ηTM ]T with randomly wi and bi. If there is
a pseudo-inverse H+ of H, the solution of Hx = T is x = H+T. If the solution is not
exact, we can find the solution that is closest in the least squares sense, i.e.,

Minimize: ‖Hx−T‖22. (4.1)

In machine learning, fitness of model is very important for accuracy on training sets.
Overfitting model cannot be used to predict unknown data. In order to avoid overfitting,
we use most popular technique which is called the least absolute shrinkage and selection
operator (LASSO). It can be formulated as follows:

Minimize: ‖Hx−T‖22 + λ‖x‖1, (4.2)

where ‖ · ‖1 is l1-norm defined by ‖x‖1 =
n∑
i=1

|xi| and λ > 0 is a regularization parameter.

If we set f(x) := ‖Hx−T‖22 and g(x) := λ‖x‖1, then the problem (4.2) is reduced to the
problem (3.32) as follows:

min
x
{‖Hx−T‖22 + λ‖x‖1} := min

x
{f(x) + g(x)}.

We know that ∇f(x) = 2HT (Hx−T) and Lipschitz constant of ∇f is
Lf = λmax(H∗H), where H∗ is the conjugate transpose of H.
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Hence, we can use our algorithm as a learning algorithm to find the optimal weight x
and solve classification problems.

We consider two datasets:

1. Iris dataset : This dataset contains 3 classes of 50 instances where each class
refer to a type of iris plant. The purpose is to divide each type of iris plant (iris
setosa, iris versicolour and iris virginica) from sepal and petal length.

2. Heart disease dataset : This dataset contains 303 samples, each of which
has 13 attributes which refers to the presence of heart disease in the patient. The
predicted attribute is purpose to classify the data into 2 classes.

3. Breast cancer dataset : This dataset contains 699 samples, each of which
has 10 attributes which refers to the presence of breast cancer in the patient. The
predicted attribute is purpose to classify the data into 2 classes.

4. Wine dataset : This dataset is the results of a chemical analysis of wines
grown in the same region in Italy but derived from three different cultivars. This
dataset contains 178 sample, each of which has 13 attributes. In this dataset, we
classify 3 classes of data.

Data preparation technique : k−fold Cross-validation (k = 10)

Bi-level minimization problem

• Outer : minω(x)

• Inner : min ‖Hx−T‖22 + λ‖x‖1
⇒ ∇f(x) = 2HT (Hx−T)

⇒ Lf = λmax(H∗H), the maximum eigenvalue of H∗H.

• Quadratic function : ω(x) = 1
2x

TAx,

where [x]n×1 is a column vector, A is a symmetric positive definite n× n matrix
such that A = UTU where U is an upper triangular matrix with positive elements
on the main diagonal.

In this case, we have ∇ω(x) = 1
2 (A + AT )x = Ax.

• Lipschitz constant : Lω = ‖A‖,

‖∇ω(x)−∇ω(x)‖ = ‖Ax−Ay‖ ≤ ‖A‖·‖x− y‖.

• Strongly convex with constant ρ = λmin(A), the minimum eigenvalue of
A.

In case of A = In×n, we can reduce the outer level to ω(x) = 1
2‖x‖

2
2 with Lω = 1, ρ = 1.

Algorithms :

1. Our Algorithm (Algorithm 3)

2. BiG-SAM (Algorithm 4)

3. iBiG-SAM (Algorithm 5)
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Algorithm 3

Input. x0, x1 ∈ Rm, µn, ηn ∈ (0,∞), cn ∈ (0, 2
L ), s ∈ (0, 2

Lh+σ
] and αn, βn, γn ∈ (0, 1)

for n ∈ N,

θn =

{
min{µn, ηnαn

‖xn−xn−1‖} if xn 6= xn−1;

µn otherwise.

Compute
yn = xn + θn(xn − xn−1),
zn = γn(I − s∇ω)(yn) + (1− γn) proxcng(I − cn∇f)yn,

xn+1 = (1− αn − βn)yn + αn proxcng(I − cn∇f)zn + βn proxcng(I − cn∇f)yn.

Algorithm 4 BiG-SAM

Input. x0 ∈ Rm, αn ∈ (0, 1), γ ∈ (0, 1
Lf

] and s ∈ (0, 2
Lω+σ ), for n ∈ N.

Compute{
yn = proxγg(xn − γ∇f(xn)),

xn+1 = αn(xn − s∇ω(xk)) + (1− αn)yn.

Algorithm 5 iBiG-SAM

Input. x0, x1 ∈ Rm, αn ∈ (0, 1), γ ∈ (0, 2
Lf

) and s ∈ (0, 2
Lh+σ

], for n ∈ N.

Choose θn ∈ [0, θ̄n] with θ̄n defined by

θ̄n :=

{
min{ n−1

n+α−1 ,
εn

‖xn−xn−1‖} if xn 6= xn−1,
n−1

n+α−1 otherwise.

Compute
yn = xn + θn(xn − xn−1),

sn = proxγg(yn − γ∇f(yn)),

zn = yn − s∇h(yn),

xn+1 = αnzn + (1− αn)sn.

Parameters Case (a) Case (b) Case (c) Case (d) Case (e) Case (f)

αn 0.1 + 1
33n

0.5 + 1
33n

0.5 + 1
33n

0.5 + 1
33n

0.5 + 1
33n

0.5 + 1
33n

βn 0.2 + 1
33n

0.2 + 1
33n

0.9− αn 0.9− αn 0.9− αn 0.9− αn

γn
1

33n
1

33n
1

33n
1

33n
1

33n
1

33n

cn
2

3Lf

2
3Lf

2
3Lf

1
Lf

1
Lf

1
Lf

ηn
33·1020

n
33·1020

n
33·1020

n
33·1020

n
33·1020

n
33·1020

n

µn 0.5 0.5 0.5 0.5 0.09 0.9
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Begin with the first experiment, we study convergence behavior of our algorithm,
Algorithm 3 by considering the above six different cases.

It is clear that these control parameters satisfy all condition of Theorem 3.1. In this
experiment, we take s = 0.01, that is (I − s∇ω)x = 0.99x. The performance of each case
is shown by the terms of average accuracy as seen in table 1.

Table 1. The performance of each case with 10-fold cv. on Breast cancer
dataset at x1, x5, x10, x25, x50, x100, x250, x500.

No.

(n)

Case (a) Case (b) Case (c) Case (d) Case (e) Case (f)
acc.tr acc.te acc.tr acc.te acc.tr acc.te acc.tr acc.te acc.tr acc.te acc.tr acc.te

1 65.52 65.52 65.52 65.52 65.52 65.52 65.52 65.52 65.52 65.52 65.52 65.52

5 74.07 72.40 76.81 75.83 80.46 78.69 88.67 89.70 80.00 78.26 93.61 92.98
10 71.42 69.68 91.80 91.41 92.96 92.14 94.91 94.27 91.99 91.70 95.47 96.41
25 90.45 90.84 95.57 95.12 95.72 95.55 95.99 96.27 95.53 94.84 96.53 96.84

50 94.87 94.27 96.01 96.56 96.09 96.56 96.31 96.56 96.03 96.56 96.58 96.84
100 95.82 95.84 96.44 96.56 96.49 96.56 96.61 96.56 96.41 96.56 96.55 96.84
250 96.31 96.70 96.61 96.56 96.63 96.70 96.61 96.84 96.61 96.56 96.61 96.99

500 96.58 96.56 96.65 96.84 96.65 96.84 96.60 96.84 96.65 96.84 96.71 96.99

The result of table 1 indicates that when µn is close to 1, the performance of the
algorithm is better than those of smaller µn.

From table 1, we select the most advantageous option of each parameter for each
algorithm to achieve the highest level of performance as follows:

• Regularization parameter : λ = 0.00001

• Hidden nodes : HidN = 30

• n = 1000, s = 0.01 and α = 3

Algorithm 3 :

θn =

{
min{0.9, ηnαn

‖xn−xn−1‖} if xn 6= xn−1;

0.9 otherwise.

αn = 0.5 + 1
33n , βn = 0.9− αn, γn = 1

33n , cn = 1
Lf

and ηn = 33·1020
n .

Algorithm 4 and 5 (BiG-SAM and iBiG-SAM) :

γ = 1
Lf
, αn = 1

n .

We compare the performance of each algorithm at the 1000th iteration on difference 4
datasets and obtain the following results, as seen in table 2, table 3, table 4 and table 5.

Our experiments show that Algorithm 3 provides a higher accuracy than the others.
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Table 2. The performance of each algorithm at 1000th iteration with
10-fold cv. on Iris dataset.

Algorithm 3 Algorithm 4 Algorithm 5

acc. train acc.test acc. train acc.test acc. train acc.test

Fold 1 89.63 100.00 83.70 93.33 83.70 100.00

Fold 2 89.63 100.00 83.70 80.00 88.15 80.00
Fold 3 94.81 93.33 83.70 73.33 87.41 80.00
Fold 4 88.89 86.67 85.93 80.00 85.93 80.00

Fold 5 91.85 86.67 83.70 86.67 87.41 80.00
Fold 6 94.81 80.00 85.19 86.67 87.41 66.67

Fold 7 92.59 86.67 83.70 80.00 86.67 86.67
Fold 8 94.81 93.33 85.19 86.67 88.15 86.67
Fold 9 94.07 93.33 82.96 93.33 86.67 93.33

Fold 10 88.89 93.33 82.96 86.67 85.19 93.33

Average acc. 92.00 91.33 84.07 84.67 86.67 84.67

Table 3. The performance of each algorithm at 1000th iteration with
10-fold cv. on Heart disease dataset.

Algorithm 3 Algorithm 4 Algorithm 5

acc. train acc.test acc. train acc.test acc. train acc.test

Fold 1 84.25 93.33 82.42 90.00 84.25 93.33

Fold 2 84.93 80.65 81.62 83.87 84.56 80.65
Fold 3 85.29 77.42 83.09 80.65 85.29 77.42
Fold 4 84.93 87.10 83.82 87.10 84.56 87.10

Fold 5 84.62 86.67 81.68 90.00 84.62 86.67
Fold 6 84.98 83.33 82.78 80.00 85.35 83.33
Fold 7 86.45 83.33 82.05 86.67 84.98 83.33

Fold 8 85.71 73.33 84.62 70.00 85.71 73.33
Fold 9 86.08 80.00 82.78 70.00 85.35 80.00
Fold 10 86.08 83.33 83.15 83.33 86.08 83.33

Average acc. 85.33 82.85 82.80 82.16 85.07 82.85

Table 4. The performance of each algorithm at 1000th iteration with
10-fold cv. on Breast cancer dataset.

Algorithm 3 Algorithm 4 Algorithm 5

acc. train acc.test acc. train acc.test acc. train acc.test

Fold 1 97.62 92.75 97.46 91.30 97.62 92.75
Fold 2 96.66 98.57 96.82 98.57 96.66 98.57
Fold 3 96.50 98.57 96.18 98.57 96.50 98.57

Fold 4 96.34 97.14 96.03 95.71 96.34 97.14
Fold 5 97.14 98.57 96.66 97.14 97.14 98.57

Fold 6 96.66 97.14 96.34 97.14 96.66 97.14

Fold 7 96.82 98.57 96.34 98.57 96.82 98.57
Fold 8 97.46 97.14 97.14 97.14 97.30 97.14

Fold 9 96.66 98.57 96.82 97.14 96.66 98.57

Fold 10 96.82 95.71 96.66 97.14 96.66 95.71

Average acc. 96.87 97.28 96.65 96.84 96.84 97.28
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Table 5. The performance of each algorithm at 1000th iteration with
10-fold cv. on Wine dataset.

Algorithm 3 Algorithm 4 Algorithm 5

acc. train acc.test acc. train acc.test acc. train acc.test

Fold 1 100.00 100.00 97.52 100.00 98.76 100.00

Fold 2 100.00 100.00 97.50 100.00 99.38 100.00
Fold 3 100.00 100.00 97.50 100.00 98.75 94.44
Fold 4 99.38 100.00 97.50 100.00 98.75 100.00

Fold 5 100.00 100.00 97.50 100.00 98.75 100.00
Fold 6 100.00 100.00 97.50 100.00 99.38 100.00

Fold 7 100.00 94.44 98.12 94.44 99.38 94.44
Fold 8 100.00 100.00 97.50 100.00 98.75 100.00
Fold 9 100.00 94.44 98.75 88.89 99.38 94.44

Fold 10 100.00 100.00 98.14 94.12 99.38 94.12

Average acc. 99.94 98.89 97.75 97.75 99.06 97.75

5. Conclusion

In this paper, we introduced a new accelerated algorithm for convex bi-level optimiza-
tion problems in Hilbert space. First, we prove a strong convergence in Algorithm 1
under some suitable control conditions. Next, we prove strong convergence theorems in
Algorithm 2. Finally, we apply an algorithm to solve the data classification problems.
We find that our algorithm provide a higher accuracy than BiG-SAM and iBig-SAM.
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