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Abstract : In this paper, we suggest and analyze an iterative scheme based on the
hybrid steepest descent method for finding a common element of the set of solutions
of a system of equilibrium problems, the set of fixed points of a nonexpansive
mapping and the set of solutions of the variational inequality problems for inverse-
strongly monotone mappings in Hilbert spaces. We obtain a strong convergence
theorem for the sequence generate by these processes in Hilbert spaces. The results
in this paper improve and extend the corresponding results given by many others.
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1 Introduction

Let H be a real Hilbert space with inner product (-,-) and norm || - || and
let C' be a nonempty closed convex subset of H. A mapping S of C into itself is
called nonezpansive (see [11]) if | Sz — Sy|| < ||z — y|| for all z,y € C. We denote
F(S) = {z € C : © = Sz} be the set of fixed points of S. Recall also that a
self-mapping f : C' — C'is a contraction if there exists a constant « € (0, 1) such
that [|f(z) — f(y)|| < aflz —y||, Y,y € C. In addition, let B : C — H be a
nonlinear mapping. The variational inequality problem is to find x € C' such that

(Bz,y—x) >0, Yyedl. (1.1)
The set of solutions of (1.1) is denoted by VI(C, B).
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Let {F;, i = 1,2,...,N} be a finite family of bifunctions from C x C into
R, where R is the set of real numbers. The system of equilibrium problems for
{F1,F,,...,Fx} is to find a common element 2 € C' such that

Fl(xuy) 207 VyEC,

Fo(x,y) >0, Yy € C,
.( : (1.2)

Fn(z,y) >0, VyeC.

The set of solutions of (1.2) is denoted by NY, SEP(F;), where SEP(F;) is the
set of solutions of the equilibrium problem, that is,

Fi(z,y) >0, VyeC. (1.3)

If N =1, then the problem (1.2) is reduced to the equilibrium problem (EP).
If N =1 and F(z,y) = (Bx,y — x), then the problem (1.2) is reduced to the
variational inequality problem.

The system of equilibrium problems includes fixed point problems, variational
inequality problems, optimization problems, Nash equilibrium problems and the
equilibrium problem as special cases (see, for instance, [1, 2, 3]). In 1997, Com-
bettes and Hirstoaga [2] introduced an iterative scheme of finding the best approx-
imation to initial data when EP(F') is nonempty and proved a strong convergence
theorem.

Definition 1.1. Let B : C'— H be a nonlinear mapping. Then B is called

(1) monotone if
<B$—By,x—y>20, Vl“vyEC,

(2) [-strongly monotone if there exists a constant 3 > 0 such that
<B$_Bya$_y>25”$_y”2= vxuyec7
(3) m-Lipschitz continuous if there exists a positive real number n such that

Bz — Byl < nllz —yll, Vz,yeC,
(4) &-inverse-strongly monotone if there exists a constant € > 0 such that
(Bx — By, —vy) > &||Bx — Byl||?, Va,y € C.

Remark 1.2. It is obvious that any &-inverse-strongly monotone mappings
B are monotone and %—Lipschitz continuous.
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A set-valued mapping T : H — 2 is called monotone if for all x,y € H,
f€Txand g € Ty imply (z —y, f —g) > 0. A monotone mapping T : H — 2 is
called mazimal if the graph G(T') of T is not properly contained in the graph of
any other monotone mapping. It is known that a monotone mapping 7" is maximal
if and only if for (x, f) € H x H, (x —y, f — g) > 0 for every (y,g) € G(T) implies
f € Tx. Let B be a monotone map of C' into H and let Nov be the normal cone
to C' at v € C, that is, Nov ={w € H : (u —v,w) > 0,Vu € C} and define

| Bv+ Ncgv, veC;
TU_{(]], vé¢C.

Then T is the maximal monotone and 0 € T'w if and only if v € VI(C, B); see [9].

For finding a common element of the set of fixed points of a nonexpansive
mapping and the set of solutions of variational inequalities for a &-inverse-strongly
monotone, Takahashi and Toyoda [12] introduced the following iterative scheme:

(1.4)

xp € C chosen arbitrary,
Tpt1 = @y + (1 — ap)SPe(x, — \pBxy,), Yn >0,

where B is a {-inverse-strongly monotone, {«,} is a sequence in (0,1) and {\,,} is
a sequence in (0, 2¢). They showed that if F'(S)NVI(C, B) is nonempty, then the
sequence {z,} generated by (1.4) converges weakly to some z € F(S)NVI(C,B).

For finding an element of VI(C, B), Iiduka et al. [5] introduced the following
iterative scheme:

{ xp € C chosen arbitrary, (1.5)

Tni1 = Po(onzy + (1 — an)Po(zy — Ay Bxy)), ¥n >0,

where B is a {-inverse-strongly monotone mapping, {«,} is a sequence in (-1, 1)
and {A\,} is a sequence in (0, 2¢). They proved that if VI(C, B) is nonempty, then
the sequence {z,} generated by (1.5) converges weakly to some z € VI(C, B).

For finding a common element of F(S)NVI(C,B), let S : H — H be a
nonexpansive mapping, Yamada [14] introduced the following iterative scheme
called the hybrid steepest descent method:

Tpt1 = STp — MBSy, Y > 1, (1.6)

where 1 = z € H, {\,} C (0,1), B: H — H be a strongly monotone and
Lipschitz continuous mapping and p is a positive real number. He proved that
the sequence {x,} generated by (1.6) converging strongly to the unique solution
of the F(S)NVI(C,B).

In 2009, Peng and Yao [8] introduced an iterative scheme for finding a com-
mon element of the set of solutions for a system equilibrium problems, the set
of solutions to the variational inequality for a monotone and Lipschitz continuous
mapping and the set of common fixed points of a countable family of nonexpansive
mappings in a Hilbert space and proved a strong convergence theorem.
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Motivated and inspired by the work in the literature, in this paper, we intro-
duce an iterative scheme for finding a common element of the set of solutions of
the system equilibrium problems, the set of fixed points of a nonexpansive map-
ping and the set of solutions of variational inequality problems for inverse-strongly
monotone mappings in Hilbert spaces. Furthermore, we prove that the proposed
iterative scheme converges strongly to a common element of the above three sets
by using the hybrid steepest descent method. Our results extend and improve the
corresponding results of Tiduka et al. [5], Yamada [14], Peng and Yao [8] and many
others.

2 Preliminaries

Let H be a real Hilbert space and C' be a nonempty closed convex subset of
H. For a sequence {x,}, the notation of z, — x and x,, — = means that the
sequence {x,} converges weakly and strongly to x, respectively. In a real Hilbert
space H, we have

A2+ (1= Nyll* = Ml + 1 = NIyl = A1 = Nz =yl

for all x,y € H and A € [0,1]. For any x € H, there exists a unique nearest point
in C, denoted by Pcx, such that || — Pox|| < ||z —y]| for all y € C. The mapping
Pc is called the metric projection of H onto C. It is well known that P¢ is a firmly
nonexpansive mapping of H onto C', that is,

(x =y, Pox — Pey) > ||Pox — Pey|?, Va,y € H. (2.1)
Moreover, Pox is characterized by the following properties: Pocx € C and
(x — Pox,y — Pox) <0, Ve e H, ye C (2.2)

Lemma 2.1. [11] Let H be a Hilbert space, let C' be a nonempty closed convex
subset of H and let B be a mapping of C' into H. Let x € C. Then for A > 0,

x € VI(C,B) <= z = Pc(z — A\Bx),
where Pc is the metric projection of H onto C.

Lemma 2.1. [7] Let (C,(.,.)) be an inner product space. Then for all x,y,z € C
and «, 3,7y € [0,1] with o + 84+ v =1, we have

lacz+ By +7z)1* = allzl* + Bllyl* +vll21* — aBllz —y||* - ayllz — 2> = Bylly — =]

Lemma 2.2. [6] Fach Hilbert space H satisfies Opial’s condition, i.e., for any
sequence {x, } C H with x, — x, the inequality

liminf ||z, — z|| < liminf ||z, — y|,
n—oo n—oo

hold for each y € H with y # x.



The hybrid steepest descent method for addressing fixed point problems 279

For solving the equilibrium problem for a bifunction F' : C' x C — R, let us
assume that F' satisfies the following conditions:

(Al) F(z,z) =0 for all z € C;

(A2) F is monotone, i.e., F(z,y) + F(y,z) <0 for all z,y € C;

(A3) for each z,y,z € C, lim¢ o F(tz + (1 — t)x,y) < F(x,y);

(A4) for each z € C,y — F(x,y) is convex and lower semicontinuous.

Lemma 2.3. [1] Let C be a nonempty closed convex subset of H and let F be a
bifunction of C x C into R satisfying (A1)-(A4). Let v > 0 and x € H. Then,
there exists z € C such that

1
Flzy)+—(y—z2-2)20, Vel
Lemma 2.4. [3] Assume that F': C x C' — R satisfies (A1)-(A4). Forr >0 and
x € H, define a mapping J¥' : H — C as follows:
1
JE (z) = { z€C:Fz,y)+—(y—2z2z—2)>0, VyeC }
T
for all z € H. Then, the following hold:
(1) JE is single- valued;
(2) JE is firmly nonexpansive, i.e., for any x,y € H,

| = IFyl < (IFa = Iy, —y);

(3) F(JF) = EP(F); and
(4) EP(F) is closed and convex.

Lemma 2.5. [10] Let {z,,} and {z,} be bounded sequences in a Banach space X
and let {B,} be a sequence in [0,1] with 0 < liminf 8, <limsup G, < 1. Suppose

n—oo
Tnt1 = (1= Bn)zn + Bnzn for all integers n > 0 and limsup(|| 241 — 2n|| — | Tnt1 —
n—oo
Znll) 0. Then, lim |z, —x,| = 0.
n—oo

Lemma 2.6. [13] Let {a,} is a sequence of nonnegative real numbers such that
An41 S (1 - ln)an + On; vn Z 17

where {l,} is a sequence in (0,1) and {on} is a sequence in R such that
(1) Z I, = o0,
n=1

(2) limsup(g, / 1) <0 or Z lon| < o0; then lim a, = 0.

n=1

Lemma 2.7. In a real Hilbert space H, there holds the following inequality:
lz +yl1* < ll2l* + 2{y, 2 +y) for all z,y € H.
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3 Main Results

In this following, we establish a strong convergence theorem which solved
the problem of finding a common element of the set of solutions of a system of
equilibrium problems, the set of solutions of variational inequality problems and
the set of fixed points of a nonexpansive mapping in Hilbert spaces.

We first prove the following lemma.

Lemma 3.1. Let H be a real Hilbert space, let C be a monemply closed convex
subset of H, S : C' — C be a nonexpansive mapping and let B : C — H be &-
inverse-strongly monotone. It 0 < A, < 2€, then S — N\, BS is a nonexpansive
mapping in H.

Proof. For all z,y € C and 0 < A\, < 2¢, we have

1(S = AuBS)z — (S — X BS)y|?
(S — Sy) — A (BSz — BSy)|?
| Sz — Sy||*> — 2\, (Sz — Sy, BSx — BSy) + \2||BSz — BSy||?

< o —yll* — 2X\€||BSz — BSy| + AZ|| BSz — BSy||?
= |z —ylI> + A (An — 29[| BSz — BSy|?
< -yl

So, S — a,, BS is a nonexpansive mapping of C' into H.
Now we can prove that a strong convergence theorem is a real Hilbert space.

Theorem 3.2. Let C be a nonempty closed convexr subset of a real Hilbert space
H,let F;,i € {1,2,3,...,N} be a bifunction from C'x C to R satisfying (A1)-(A4),
let S be a nonexpansive mapping of C' into itself and let B be a &-inverse-strongly
monotone mapping of C into H such that

© := F(S) N (N1 SEP(Fy)) N VI(C, B) # 0.

N
Let f be a contraction of C into itself. Let {x,} and {u%k)} be sequences

generated by

x1 =x € C chosen arbitrary,

Fl(u’EIl))y) + % y_u’EIl);u’Ell) _In> Z 07 Vy € O?

F2(u512)7y) + % Yy _u512)7u512) _u511)> 2 07 Vy S 07

Fy @i y) + $<y —u™M WY - u%N’1)> >0, Yy € C,

Tpy1 = anPc(Su%N) - /\nBSu%N)) + Bnxn + ynf(Sxzy),
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foralln=1,2,3,..., where

(1) F
Uy = Jrlfnxn,

2 1
u( ) Jf}nugl)

(2) Fo, (1) F, gFi1 | (i—2) F; gFic1 gFio2 Fy o, (1)
Un" = Jrilnun = Jrl?n JTz'fl,nun = JT;’" Jrifl,n JT'L72,71 e Jr22’nuﬂ

=I5 TR I T R, i=2,3, N

(3.2)
and Jf}n :C — C) i =1,2,3,...N, where {a,}, {Bn}, {7} are sequence in
(0,1), {\.} C [a,b] € (0,26) and {r;n},i € {1,2,3,..., N} are a real sequence in

(0, 00) satisfy the following conditions:
(C1) ap+ Bn+vm =1,
(C2) liminf oy, > 0 and lim «, =0,

n—oo

(C3) lim ~, =0 and Z’yn:oo,

n=1

(C4) 0 < liminf 3, <limsup S, < 1,

(C5) lim |[Apy1 —Ap| =0.
Y ~ F
Then, {x,} and {un }k ) converge strongly to z = Pez provided Jrkk,nv k =

1,2,3,...N is firmly none?vpansive, that is,

Proof. We proceed with the following steps.

Step 1. We claim that {z,} is bounded.
Let & € ©. Denote by 8% = JFe Jikt Ji2 o gFe JI fork e {1,2,3,...,N}

and B = [ for all n. In fact, by the definition that for each k € {1,2,3,..., N},
Jf;’fn is nonexpansive and # = BF7 and we note that ull) = Bz, If follows that

2
F, F F F,
Jrk’fnx — Jrk’fnyH < <JTk’fn;v — JTk’fny, T — y>

[ulP — Z|| = ||BEy, — BEE| < [|yn — Z]-

Put ¢, = Pc(Su%k) —)\nBSu%k)) and form Lemma 3.1 S—q,, BS is a nonexpansive
mapping and P¢ is a nonexpansive mapping. For & € VI(C, B), we have & =
Po(z — A\, BZ) from Lemma 2.1, we have

[n =& = |Pe(Sul) = \BSu) — Po(@ — A B3)|
< [[(Sulf) = \uBSul — (& — X, Bi)|
= [I(Sul) =\ BSulF)) — (5% — A, BSF)||

1(S — M BS)ull) — (S — X\, BS)7||

luf = Z|| < ||lzn — .

IN
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From (3.1), we obtain

[Znt1 = Z| = llanthn + Buzn + ynf(Szn) — |

< anllvn — 2| + Ballzn — || + nll f(Sza) — 2
< anllzn = 2|+ Bollen — 2| + mallzn — 2| + 7l £(2) - 2
= (1=)len = &l + yalzn — Zl| + 7all £ (2) — Z|

(1= + Y0 |z — | + 7l £(Z) — Z|
— (=l = @)l = 8]+, 01 - ) LT

o If@) — 2|

< max{a, - 3, LD =I
< ...
< max{”a:l— Il IF(%) = 3:||}7 VYn > 1.

(1-a)

This implies that {x,} is bounded. We also obtain that {u%k)}, {¥n}, {BSu%k)},
{Szn}, {f(Sz,)} are all bounded.
Step 2. We claim that if w,, be a bounded sequence in C' then

lim_ |BEw, —BE w,| =0, (3.3)

for every k € {1,2,3,...,N}. From Step 2 of the proof Theorem 3.1 in [4], we
have that for k € {1,2,3,...,N},

F
nlim ”Jrkk 1Wn

— Jfk wal = 0. (3.4)
Note that for every k € {1,2,3,..., N}, we obtain
F, 7F) F Fy 7F Fr qgk—1
% - JTk:kn JT: lanTkk 22'n. JT22n Jrlln - Jrkkn%

So, we have

||93kwn - s33fwr1¢‘fn|| (3.5)
= B wn = I B |
< R B wn — IR BT || T B w, — IR B |
< NSk B o = I L B w4 B wn —%ii; wal
< IRk B e = I BE || (|5 B e — I B Ry
+||%5;2wn - %Z—i- Wn”
< IR B wn — JEE L BE T ||+ || I 11n%k 2w — JEL BE |

o+ 12 Blwn — T2

T2, n+4+1

T1,n+1
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Now, apply (3.4) to conclude (3.3).
Step 3. We claim that lim, o ||2n+1 — 2| = 0.

On the other hand, from ulV) = BNy, and ugfi)l =B, 1Yn+1, we have

[ul) — w0 BN, 1201 — BN, |
= BN @1 — BY @l + IBY 2, — B,

< lzngr — 2l + H%n—i-lxn %n Ty . (3.6)

A

Since S — a,, BS' is nonexpansive, we have

HwnJrl - 1/}nH
HPC(SUSR - )\n+1BSU(]Yr)1) — Pe(Sul™) — X, BSuM))|

—

< 1(5ulY) = A1 BSuSY)) — (Sul™ — A, BSuM))|
= [1(5ul) = A BSuY)) = (SulM) — A1 BSuM) + (A — Anp1) BSuN|
< 108 = AnsaBS)ulY) — (S = s BS)ulM || + [\ = A || BSulM||
<l = w4 A = An g || BSu|. (3.7)
Substituting (3.6) into (3.7), we obtain
[¥nt1 — ¢l
<l = )+ A = A | BSuM|
< engr =zl + 1B 020 — B all + [An = Mg [| BSuGVY|. (3.8)

Indeed, define a sequence {z,} by
Tn1 = ﬁnxn + (1 - ﬁn)zn, Vn > 1.

Then we have

Zn+l — Zn

_ Uy 1¥nt1 + Ynp1 f(STni1) _Qn Un + Y f(Szp)
1- ﬁn—i-l 1-— ﬁn
_ Qnt1 _ Apt1
N 1_6""‘1 (wnJrl 1/}71)_'— <1_ﬁn+1 1_ﬁn)wn
7’Y"+1 Tn+1 Tn

+ 1= 6o (f(Szpt1) — f(Szn)) + <1 e ﬁn>f(Sa:n)
_ Xnt1 o Qp1
- 1_5”“(1%“ gt (1_6n+1 1—571)1%

VYn+1 Oyl o,
’ Tﬁn“(f(sxn-’_l) - f(an)) - (1 - ﬂnJrl B 1- 6n>f(sxn)

_ An41 N On41 . Ay N
T =)+ (125 - 22 (0 - S50

Tn
T (f(Sann) = (S). (3.9)
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It follows from (3.9) that

2n+1 — 2al|
Op41 anJrl
< o~ + | | (el + 7Sl
1— Bt 1-—
Qp41
+ 11— —FF— |||zt — 20| 3.10
(1= 122 alonr — ol (3:10)

Combining (3.8) and (3.10), we obtain

lzn+1 = 2nll = [[Zn41 — zal|
n41
< 2w - wall + 1B 20— B a
1= By
(N) Qn 41 Qp
= Al BSuI o+ 325 = 2 (1Sl
+ (1 1 fnﬁt )aHfEnJrl =zl = a1 — 2
Qp
< 7B — B 4 D — Al [ BSuEY | |
1_ﬁn+1
Q41 Qo
+‘ - nll + 11 (Sz)])-
T e | Ul ()l

Since conditions (C1)-(C5), (3.3) and { f(Szy)}, {¢n} and {BSU%N)} are bounded,
so we have

1imsup(|\zn+1 = znll = l|Tns1 — an) <0.
Thus, by Lemma 2.5, we obtain lim ||z, — x,|| = 0. Consequently, it follows that
lim ||2p11 — 2] = lim (1 — B)]|zn — xa|| = 0. (3.11)

From (3.3), (3.6), (3.7) and conditions in Theorem 3.2 and (3.11), we obtain that
Jim s = uiM)| = Jim [[¢gng1 = ¢u = 0.

Step 4. We claim that lim ||Sv, — ¢¥,] = 0.
For any Z € ©, we see that

lltpn — &||?
| Po(Sul™ — X\, BSulN)) — Po(i — A\, B)||?

< |1(SulN) = X, BSuN)) — (& — A\, B)||?

= [I(SulM) — &) = M (BSulN) — Bi)||?

= |1Su™ — 7)? — 20, (SulY) — &, BSuN) — Bi) + 22| BSuM) — Bz
< N = #)? = 220 (SulY) — 2, BSuN) — Bi) + X2 || BSuN) — Bi|?
< o — Z[* = 208 BSulY) — Bi| + A5 || BSulY) — B|®

= lzn — Z)? + M — 20)|| BSuN) — B2
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Therefore, we have
[Zne1 = 21* = llan(Wn = &) + Ba(zn — ) + 7 (f(Szn) — 2)|?
< aplln = Z7 4 Ballzn = Z(* +mll f(Sza) - 2* (3.12)
< an{llen = &2+ A - 20)| BSu - B3|}
+ Balln — &) 4yl F(Szn) — 2
= A=)z - j||2 + anAn(An — 2§)||BSU’ELN) - Bi”2
+ | f(Szn) — 2|2
< lan — 2% + andn (A — 26)|| BSuN) — Bi||?
+7n||f(sxn) - ‘%”2
Thus, we have
ana(b —26)||BSuN) — BE||?
< anda(An — 20)||BSulY) — Bi||?
< lwn = 212 = llonts — 21 + yall £ (Sza) — 2|
< (lzn =) = lznr1 = ZDUzn = El + wnsr = Z)) +7all f(Sza) — 2|
< len = zasl(len = )+ [2nr1 — 2[) + ol £ (Sz0) — 212

Since liminf o, > 0, v, — 0, (3.11) and {z,,} and {f(Sz,)} are bounded, we have

lim ||BSu{™) — Bi| = 0.
Moreover, form (2.1) we obtain

[m — |2
| Po(Sul™) — X\, BSulN)) — Po(i — A\, BZ)||?

(3.13)

< {(Sul) = X, BSuM) — (& — M\ BZ), ¢, — &)
= SIS —2.BSULD) — (&~ MBI+ 1 — F
—1(S5ufN) = X BSuM) = (& = A BE) — (0 — )12}
< (I = 32+ 1 — 312 = NS4 — ) ~ A(BSUY — B}
< gl = @2+ o — 22— 50 — 2

~X2BSUY) — BE|P + 20, (Sl — . BSu) - BE) ).

which yields that

[ =1 < [l = &° = [ Sul) = nl|* + 20| Su™ =, || BSuY) — B (3.14)
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Substituting (3.14) into (3.12), we have

s = 2

< anlln = &1+ Bulln — 3 + 7l £ (S0) - 2

< an{llan = 712 = 15U — 2 + 221 Su — || BSu) - Bl |
+ Ballzn = &+ allf(Sz0) — 31

< Jan = 2 = anllSu = 2 + 2025l = gl BSu - B

+ynll f(Szn) — 2|,

Then we have

| SufN) — |2

< lzn =3 = e — 211
+ 200 An|Su) — v || BSU) — Bl| + vl f(Szn) — 212
< o — engall(len = 2l + 2 — 2[)

+ 20 A (|SuV | + [9a ) IBSuGY — BE|| +7al f(Sz0) — 2%

Since liminf oy, > 0, 7, — 0, (3.11), (3.13) and {z,, }, {SuslN)}, {tn} and {f(Sz,)}

n—oo

are bounded, we obtain

lim [ SulM) —,| = 0. (3.15)

For any £ € O, note that J,f;’fn is firmly nonexpansive (Lemma 2.4) for k €
{1,2,3,..., N}, then we have

1B, —pl> = ||J5F B, — Ik E|?
< (B B — JE 5B, — )

- <%,’§xn G, Bkl - x>
= 5 (I8 — &7 + 15 0 — 27 — B — B ?)
and hence
|BEx, — )% < B 1z, — )% — |BFx, — B 1,2, k=1,2,3,...,N
which implies that for each k € {1,2,3,..., N — 1},

195, — 2|

< B0 — F|” — (|Bhn — B
- ”‘Bﬁ_lzn - ‘Bﬁ_zznll2 IR ||%$L33n - %}LIHH2 - ”%7115571 - %rozxn||2
<l — &)1 = 1Bgzn — B .
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Also, we observe that for € O,

lnsr — 2

< anl[Po(Su) — MBSuN) = £ + Bullan — 2+l £(S) —

< anful™ = &% + Bullzn — Z)12 + ll £ (Sz0) — |

< anl|Bhan — Z? + Bollon — Z* + vull f(Szn) — E||

< an{IIxn —&)* — | Bhwn - %f;lxnllz} + Bullen — E|* + ynll f(Sza) — 1
(1 =)l — 53”2 - O‘nn%fﬂjn - %fflxnllz + Yl f(Szn) — 53”2

< lwn = 27 — anl|Bran — B w1+ vall £ (Szn) — F.

Thus, we have
o ||BF 2, — BE 1, |2
< len = 2% = lznsr — E° + vall £ (Szn) — 22
< len = @asill(len = 2+ 2ns1 — Z) +vall £ (Szn) — 2%

Hence, by liminf v, > 0, 7, — 0, (3.11) and {x,,} and {f(Sz,)} are bounded, so
we deduce that

lim ||BFz, — B 1z, =0 forany k=1,2,...,N — 1, (3.16)
that is,
[ul® — u*F=1| = 0 as n — .
Therefore, we have
[

”%gzn - ‘BfﬂﬂnH

B0 — Braall + |Bpzn — Brzall + ... + 1B 20 — B aa|.

IN

From (3.16), we have
lim ||z, —uNM || = 0. (3.17)

Since 41 = apty + Bnn + Y f(Sx,) and «,, + B, + 7 = 1, we obtain
Tnt1 = Tn = (¥ = a) + 90 (f(S20) — 24).
It follows that
ot = @nll < |2ng1 = Tnll + Yl f(S20) — 2al|.

Since v, — 0, ||@nt1 — zpnl| — 0 and liminf«,, > 0, so by the boundedness of
{f(Sz,) — x,}, we have

lim |4y, — 2] = 0. (3.18)
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Furthermore, by the triangular inequality, we also have

1S90 — tnll 1585 = Sul™|| + [|Sul) — ||
”"/’n - ugzN)H + ||Su51N) - 1bn”

1on = zall + llen — ||+ |Sul —ull.

IA N IA

Applying (3.15), (3.17) and (3.18), we have

Step 5. We claim that the mapping Pg f has a unique fixed point.
Let Q = Po. Since f is a contraction with a € (0, 1), we obtain

1Qf(z) = Qf W < If (@) = fFWIl < allz —yll, Va,yeC.

Therefore, Qf is a contraction of C' into itself, which implies that there exists a
unique element z € C such that z = Qf(z) = Po f(2).

Step 6. We claim that limsup,, . (f(2) — z, 2, — 2) <0, where z = Po f(2).

To show this inequality, we choose a subsequence {t,, } of {1, } such that

limsup(f(z) — z, S, — z) = lim (f(2) — z, S¢n, — 2).

Since {4y, } is bounded, there exists a subsequence {1y, } of {1, } which converges
weakly to z € C. Without loss of generality, we may assume that {i,,} — z.
From ||[St¢,, — 1,|| — 0, we obtain St,,, — z. Since {z,, } is bounded, there exists
a subsequence {ay, } of {zn,} which converges weakly to w € C. Without loss of
generality, we can assume that {z,,} — w. Since lim,, . [|BXz, — BE~12,|| =0
for k=1,2,3,..., N, we have ’Bﬁxm —w for k=1,2,3,..., N. Next, we show
that w € ©, where © := F(S) N (Ny_, SEP(F;)) NVI(C, B).

First, we show that w € NY_, SEP(F}). Since uSIN) =BFg, fork=1,2,3,...,N,
we also have

1
Fk(‘Bﬁxn, y) + r—(y - ‘Bfla:n, ‘Bfla:n - ‘Bfflxn> >0, VyecC.

n

If follows from (A2) that,

1
_<y - %ﬁxnu %ﬁxn - %ﬁ_lxn> > Iy (%ﬁxna y) > Fk(yu %ﬁxn)

Tn

and hence N -

Tn,

7

kg, —BE
Since — i — (0 and Bf x,, — w, it follows by (A4) that

g

Fi(y,w) <0 VyeC,
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for each K =1,2,3,..., N.
Fort with0 <t <1landy € H,let ys = ty+ (1 —t)w. Since y € C and w € C,
we have y; € C' and hence Fj(y;, w) < 0. So, from (Al) and (A4) we have

0 = Fry,ye) < tFe(ye,y) + (1 =) Fr(yr, w) < tFe(yr, y)

and hence Fj(y:,y) > 0. From (A3), we have Fj(w,y) > 0 for all y € C' and hence
w € EP(Fy) for k=1,2,3,..., N, that is, w € N}_, SEP(F},).

Next, we show that w € F(S). Assume w ¢ F(S). Since ¢,,, — w and w # Sw,
it follows by the Opial’s condition (Lemma 2.2) that

liminf |4, —w| < liminf|¢,, — Sw||
11— 00 11— 00

lim inf{”‘/’m — S,

lim inf [, — ]
11— 00

< + (1S, — Swll}
<

This is a contradiction. So, we get w € F(.5).
Finally, we show that w € VI(C, B). Define

| Bv+ Ngv, ved,
T“—{@, v C.

Then, T is maximal monotone. Let (v,w1) € G(T). Since w; — Bv € Ngv and
Yn € C, we have (v — b, w; — Bv) > 0. On the other hand, ¥, = P (SulY) —
)\nBSu,(ZN)), we have

(0 = Py b — (SulM) = X, BSuN)) > 0,

_ (N)
<v_¢n,m+3w>> -

and hence

An

Therefore, we have

<U_1/)ni7w1> Z <’U_1/}’n.iaB’U>

Ao,

(V)
> (v—1y,, Bv) — <’U — Un,s w + BSugiV)>
(V)
_ <_B by u>
An,
= (0~ tn,, Bv— Bipn,) + (v — ¥y, Bon, — BSu))
(N)
Un,; — Sy,
<'U 1/}77.1'; )\nl
o (V)
> (v =y, By, — BSulY) - <v — Y, M> .
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Hence, we have (v —w,w;) > 0 as i — oo. Since T is maximal monotone, we have
w € T7'0 and hence w € VI(C, B).
Hence w € ©, where © := F(S) N (NY_,SEP(Fy)) NVI(C,B). Then we have

limsup(f(z) — z, @, — 2) = limsup(f(z) — z, S, — 2)
= g (f(2) - 250, - 2)
= (f(z) —z,w—2) <0. (3.20)

Step 7. Finally, we claim that {x,} converges strongly to z = Pg f(2).
Indeed, from (3.1) and Lemma 2.7, we have

041 — 2|

= {ann + Bntn + Y f(STn) — 2, np1 — 2)

= 'yn<f(Sa:n) — 2, Tpy1 — z> + Bnltn — 2, Tpy1 — 2)
+an (Vn, — 2, Tpt1 — 2)

1 1

< Bn(llen = 212+ lowss = 212) + 50 (lim = 212 + lznss = 211°)
+'7n<f(s‘rn) - f(z)vxn-i-l - Z> +’7n<f(2) — 2, Tn41 — Z>
1 1

< S0 =m)(len =22+ lznss = 212) + 370 (11£(S20) = £GP
Hlonsr = 212) + A (F(2) = 2 2ns1 = 2)
1 1

< S(1=m(t=a?)) e =22 + 50 = W)llznss — 2|1

1
+§O‘n”‘rn+1 - ZH2 +’7n<f(z) — 2, Tp+41 — Z>7

which implies that
lensr = 2l < (1= (1= 0%)) len = 2l + 290 (2) = 2,011 — ). (3:21)
Taking

On = 27n<f(z) — 2, Tpa1 — z> and 1, = 1, (1 — a?),

using (C3) and (3.20), we get 1, — 0, > 1, = co and limsup,,_, ., & <0.

Applying Lemma 2.6 to (3.21), we conclude that x,, — z in norm. Finally, notice

that ||u£LN) — 2| = ||BE2, —BE 2| < ||2, — 2||. We also conclude that M) = zin
norm. This completes the proof. |
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