Thai Journal of Mathematics Volume 8 (2010) Number 2 : 263–273

www.math.science.cmu.ac.th/thaijournal Online ISSN 1686-0209

Warped Product Pseudo-Slant Submanifold of Trans-Sasakian Manifolds

M.A. Khan and K.S. Chahal

Abstract : In this paper, we have obtained the Integrability condition of pseudoslant submanifold in trans-Sasakian manifold. Also, we have studied the warped and doubly warped product pseudo-slant submanifold of trans-Sasakian manifold.

Keywords :Warped Product, Doubly Warped Product, Pseudo-Slant Submanifold, Trans-Sasakian manifolds

2000 Mathematics Subject Classification : 53C40; 53B25; 53C25

1 Introduction

Bishop and O' Neill [9] introduced the concept of warped products. B.Y.Chen [5] extended the work of Bishop and O' Neill and studied the warped product CR-submanifold of Kaehler manifolds and many more[5],[6]. After B.Y.Chen many other authors extended these results in different settings [3],[8].

Our aim in this paper is to study the warped and doubly warped product pseudo-slant submanifold of trans-Sasakian manifold. This paper is organized as, section 2 is devoted to preliminaries. In section 3, some basic results for pseudoslant submanifolds are given and also, we have obtained integrability condition of pseudo-slant submanifold of trans-Sasakian manifold. Section 4 deals with the basic results of warped and doubly warped product submanifolds. In section 5, we have studied warped product pseudo-slant submanifold of trans-Sasakian manifold. In section 6, we have studied the pseudo-slant warped product submanifold of trans-Sasakian manifold. After the main results we have provide an example of pseudo-slant warped product submanifold of Kenmotsu manifold. In section 7 and 8 we have obtained doubly warped product pseudo-slant and pseudo-slant doubly warped product submanifolds of trans-Sasakian manifold.

Copyright \bigodot 2010 by the Mathematical Association of Thailand. All rights reserved.

2 Preliminaries

A (2n + 1)-dimensional Riemannian manifold (\overline{M}, g) is said to be a trans-Sasakian manifold if it admits an endomorphism ϕ of its tangent bundle $T\overline{M}$, a vector field ξ , called structure vector field and η , the dual 1-form of ξ satisfying the following:

$$\phi^2 X = -X + \eta(X)\xi, \eta(\xi) = 1, \phi(\xi) = 0, \eta \circ \phi = 0$$
(1)

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \eta(X) = g(X, \xi)$$

$$\tag{2}$$

$$(\bar{\nabla}_X \phi)Y = \alpha(g(X, Y)\xi - \eta(Y)X) + \beta(g(\phi X, Y)\xi - \eta(Y)\phi X)$$
(3)

$$\bar{\nabla}_X \xi = -\alpha \phi X + \beta (X - \eta(X)\xi). \tag{4}$$

for any $X, Y \in T\overline{M}$. In this case

$$g(\phi X, Y) = -g(X, \phi Y) \tag{5}$$

where α and β are smooth function on \overline{M} and $\overline{\nabla}$ denote the Riemannian connection with respect to the Riemannian metric g. If α (respectively β) is zero then \overline{M} is called β -Kenmotsu (respectively α -Sasakian). If α and β are both zero then the manifold \overline{M} becomes Cosymplectic.

Now, let M be a submanifold immersed in \overline{M} . The Riemannian metric induced on M is denoted by the same symbol g. Let TM and $T^{\perp}M$ be the Lie algebra of vector fields tangential to M and normal to M respectively and ∇ be the induced Levi-Civita connections on M, then the Gauss and Weingarten formulas are given by

$$\bar{\nabla}_X Y = \nabla_X Y + h(X, Y) \tag{6}$$

$$\bar{\nabla}_X V = -A_V X + \nabla_X^{\perp} V \tag{7}$$

for any $X, Y \in TM$ and $V \in T^{\perp}M$, where ∇^{\perp} is the connection on the normal bundle $T^{\perp}M$, h is the second fundamental form and A_V is the Weingarten map associated with V as

$$g(A_V X, Y) = g(h(X, Y), V).$$
(8)

For any $x \in M$ and $X \in T_x M$, we write

$$\phi X = TX + NX \tag{9}$$

where $TX \in T_x M$ and $NX \in T_x^{\perp} M$. Similarly, for $V \in T_x^{\perp} M$, we have

$$\phi V = tV + nV \tag{10}$$

where tV (resp. nV) is the tangential component (resp. normal component) of ϕV .

From (5) and (9), it is easy to observe that for each $x \in M$, and $X, Y \in T_x M$

$$g(TX,Y) = -g(X,TY).$$
(11)

265

For any $X, Y \in TM$ on using (4) and (6) we have the following

(a)
$$\nabla_X \xi = -\alpha T X + \beta (X - \eta(X)\xi)$$
 (b) $h(X,\xi) = -\alpha N X$, (12)

3 Pseudo-Slant submanifolds

A.Carriazo [1] defined and studied Bi-slant immersion in almost Hermitian manifold and simultaneously gave the notion of pseudo-slant submanifolds in almost Hermitian manifold. Recently, V.A.Khan and M.A.Khan [10] studied the pseudo-slant submanifold of a Sasakian manifold and found some basic results.

A submanifold M of an almost contact metric manifold \overline{M} is said to be a slant submanifold if for any $x \in M$ and $X \in T_x M$, linearly independent to ξ , the angle between ϕX and $T_x M$ is constant. The constant angle $\theta \in [0, \pi/2]$ is then called slant angle of M in \overline{M} . If $\theta = 0$ the submanifold is invariant submanifold if $\theta = \pi/2$ then it is called anti-invariant submanifold if $\theta \neq 0, \pi/2$ then it is called proper slant submanifold.

We say that M is a pseudo-slant submanifold of an almost contact metric manifold \overline{M} , if there exist two orthogonal distributions D^{\perp} and D_{θ} on M such that

(i)
$$T_M = D^{\perp} \oplus D_{\theta} \oplus \langle \xi \rangle$$
.

- (ii) The distribution D^{\perp} is anti-invariant *i.e.*, $\phi D^{\perp} \subseteq T^{\perp} M$.
- (iii) The distribution D_{θ} is slant with slant angle $\theta \neq \pi/2$

from the definition it is clear that if $\theta = 0$, the pseudo-slant submanifold become semi-invariant submanifold.

Suppose M to be a pseudo-slant submanifold of an almost contact metric manifold \overline{M} . Then, for any $X \in TM$, put

$$X = P_1 X + P_2 X + \eta(X)\xi \tag{13}$$

where $P_i = (i = 1, 2)$ are projection maps on the distributions D^{\perp} and D_{θ} . Now operating ϕ on both sides of equation (13)

$$\phi X = NP_1 X + TP_2 X + NP_2 X \tag{14}$$

it is easy to see that

$$TX = TP_2X, \quad NX = NP_1X + NP_2X$$

and,

$$\phi P_1 X = N P_1 X, \quad T P_1 X = 0, \tag{15}$$

$$TP_2 X \in D_{\theta}.\tag{16}$$

If μ is the invariant subspace of the normal bundle $T^{\perp}M$ then, in the case of pseudo-slant submanifold, the normal bundle $T^{\perp}M$ can be decomposed as follows

$$T^{\perp}M = \mu \oplus ND^{\perp} \oplus ND_{\theta}.$$
 (17)

As D^{\perp} and D_{θ} are orthogonal distribution on M, g(Z, X) = 0 for each $Z \in D^{\perp}$ and $X \in D_{\theta}$. Thus, by equation (9) and (5), we may write

$$g(NZ, NX) = g(\phi Z, \phi X) = g(Z, X) = 0.$$

That means the distributions ND^{\perp} and ND_{θ} are mutually perpendicular. Infect, the decomposition (17) is an orthogonal direct decomposition.

For a pseudo-slant submanifold of a trans-Sasakian manifold the following lemmas play an important role in working out the integrability conditions of the distributions involved in this setting.

Lemma 3.1. Let M be a pseudo-slant submanifold of a trans-Sasakian manifold \overline{M} , then

$$A_{\phi Y}X = A_{\phi X}Y \tag{18}$$

for all $X, Y \in D^{\perp}$.

Proof. For any X, Y in D^{\perp} and Z in TM, using (8),(5),(4) and (6) we find that

$$g(A_{\phi Y}X,Z) = -g(\phi \bar{\nabla}_Z X,Y)$$

$$= -g(\nabla_Z \phi X - (\nabla_z \phi)X, Y).$$

on applying equations (3) and (7) the above equation yields

$$g(A_{\phi Y}X, Z) = g(A_{\phi X}Y, Z)$$

the results follows from the above equation.

Lemma 3.2. Let M be a pseudo-slant submanifold of a trans-Sasakian manifold $\overline{M}, \alpha \neq 0$, then for any $X, Y \in D^{\perp} \oplus D_{\theta}$

$$g([X,Y],\xi) = 2\alpha g(TX,Y) \tag{19}$$

the proof of equation (19) is straightforward and may be obtained by using (12)(a).

266

Proposition 3.3. Let M be a pseudo-slant submanifold of a trans-Sasakian manifold \overline{M} . Then, anti-invariant distribution D^{\perp} is integrable.

Proof. For any $X, Y \in D^{\perp}$ and $Z \in D_{\theta}$, by (13)

$$g([X,Y],TP_2Z) = -g(\phi[X,Y],P_2Z)$$

Now, using (3) and (7), we find

$$g([X,Y],TP_2Z) = g(A_{\phi Y}X - A_{\phi X}Y,P_2Z)$$

Now, the integrability of the distribution D^{\perp} follows on using equation (18) and (19).

Lemma 3.4. Let M be a pseudo-slant submanifold of trans-Sasakian manifold \overline{M} , with $\alpha \neq 0$, then the slant distribution D_{θ} is not integrable.

By the definition of pseudo-slant submanifold and in view of equation (19) the results follows.

Proposition 3.5. Let M be a pseudo-slant submanifold of \overline{M} , with $\alpha \neq 0$, then the distribution $D_{\theta} \oplus \langle \xi \rangle$ is integrable if and only if

$$h(Z,TW) - h(W,TZ) + \nabla_X^{\perp} NW - \nabla_W^{\perp} NZ$$

lies in ND_{θ} for each $Z, W \in D_{\theta} \oplus \langle \xi \rangle$.

Proof. Making use of equations (9), (3), (6) and (7), we obtain

$$g(N[Z,W], NX) = g(h(Z,TW) - h(W,TZ) + \nabla_X^{\perp} NW - \nabla_W^{\perp} NZ, NX)$$

for each $X \in D^{\perp}$ and $Z, W \in D_{\theta}$. The Result follows on using the fact that ND^{\perp} and ND_{θ} are mutually perpendicular.

Now we have the following consequence of above result.

Corollary 3.6. Let M be a pseudo-slant submanifold of a β -Kenmotsu manifold or Cosymplectic manifold, then the slant distribution D_{θ} is integrable iff

$$h(Z,TW) - h(W,TZ) + \nabla_X^{\perp} NW - \nabla_W^{\perp} NZ$$

lies in ND_{θ} for each $Z, W \in D_{\theta}$.

4 Warped Product and Doubly warped product submanifolds

The study of warped product submanifold was initiated by R.L. Bishop and B.O'Neill [9]. They defined as follows

Definition. Let (B, g_B) and F, g_F be two Riemannian manifolds with Riemannian metric g_B and g_F respectively and f a positive differentiable function on B. The warped product $B \times_f F$ of B and F is the Riemannian manifold $(B \times F, g)$, where

$$g = g_B + f^2 g_F. ag{20}$$

More explicitly, if U is tangent to $M = B \times_f F$ at (p, q), then

$$||U||^{2} = ||d\pi_{1}U||^{2} + f^{2}(p)||d\pi_{2}U||^{2}$$

where $\pi_i (i = 1, 2)$ are the canonical projections of $B \times f$ on B and F, respectively.

The following lemma provides some basic formulas on warped product submanifolds.

Lemma 4.1. Let $M = B \times_f F$ be warped product manifold. If $X, Y \in TB$ and $V, W \in TF$ then

- (i) $\nabla_X Y \in TB$
- (*ii*) $\nabla_X V = \nabla_V X = X(lnf)V$
- (*iii*) $nor(\nabla_V W) = -\frac{g(V,W)}{f} \nabla f$

where $nor(\nabla_V W)$ is the component of $\nabla_V W$ in TB and ∇f is the gradient vector field of the warping function f.

From (ii) of above lemma we can see that

$$\nabla_U V = \nabla_V U = (U l n f) V \tag{21}$$

for any vector fields U tangent to B and V tangent to F.

If the manifolds N_{θ} and N_{\perp} are slant and anti-invariant submanifolds respectively of trans-Sasakian manifold \bar{M} , then their warped products are

(a)
$$N_{\perp} \times_f N_{\theta}$$
,
(b) $N_{\theta} \times_f N_{\perp}$.

Note (i) In the sequel, we call the warped product submanifold (a) as warped product pseudo-slant submanifold and the warped product (b) as pseudo-slant warped product submanifold.

268

B.Y.Chen [5],[6] extended the work of Bishop and O' Neill and studied the warped product CR-submanifold of Kaehler manifolds. B. Sahin [3] proved the non-existence theorem for warped product CR-submanifolds. Doubly warped product manifolds were introduced as generalization of warped product manifold by B. Unel [4]. A doubly warped product (M, g) is a product manifold of the form $M =_f B \times_b F$ with the metric $g = f^2 g_B \oplus b^2 g_F$, where $b : B \longrightarrow (0, \infty)$ and $f : F \longrightarrow (0, \infty)$ are smooth maps and g_B, g_F are the metric on the Riemannian manifolds B and F respectively. If either b = 1 or f = 1, but not both, then we obtain a (*single*) warped product. If both b = 1 and f = 1, then we have a product manifold. If neither b nor f is constant, then we have a non trivial doubly warped product.

If
$$X \in T(B)$$
 and $Z \in T(F)$, then the Levi-Civita connection is
 $\nabla_X Z = Z(lnf)X + X(lnb)Z.$ (22)

5 Warped product Pseudo-slant submanifold of trans-Sasakian manifold

Throughout this section, we assume that \overline{M} is a trans-Sasakian manifolds, with $\alpha \neq 0$ and $M = N_{\perp} \times_f N_{\theta}$ be a warped product pseudo-slant submanifold of a trans-Sasakian manifold \overline{M} . Such submanifolds are always tangent to the structure vector field ξ . We distinguish 2 cases

(i) ξ tangent to N_{\perp} , (ii) ξ tangent to N_{θ} .

Note (ii). By lemma (3.4), in case of trans-Sasakian manifold with $\alpha \neq 0$, The slant distribution D_{θ} is not integrable, due to this there does not exist slant submanifold N_{θ} , but $D_{\theta} \oplus \langle \xi \rangle$ is integrable, so in view of this remark we cannot take ξ tangential to N_{\perp} , hence there is only possibility of case (ii).

In view of above note we have the following result.

Theorem 5.1. Let \overline{M} be a trans-Sasakian manifold, $\alpha \neq 0$, then there do not exist warped product submanifolds $M = N_{\perp} \times_f N_{\theta}$ in \overline{M} such that N_{\perp} is anti-invariant submanifold and N_{θ} is a proper slant submanifold of \overline{M} , ξ tangent to N_{θ} .

Proof. By equation (21),

$$\nabla_X Z = \nabla_Z X = (Zlnf)X \tag{23}$$

for any vector fields $X \in N_{\theta}$ and $Z \in N_{\perp}$.

Now, for $\xi \in N_{\theta}$

$$\nabla_Z \xi = (Z ln f) \xi \tag{24}$$

Also, by equation (3) and (6), we have

$$-\alpha\phi Z + \beta(Z - \eta(Z)\xi) = \bar{\nabla}_Z \xi = \nabla_Z \xi + h(Z,\xi)$$
(25)

$$\nabla_Z \xi + h(Z,\xi) = -\alpha F Z + \beta Z \tag{26}$$

from (26), we get

$$\nabla_Z \xi = \beta Z \tag{27}$$

$$h(Z,\xi) = -\alpha FZ \tag{28}$$

Thus (24) and (27) imply (Zlnf) = 0, for all $Z \in N_{\perp}$. Which shows that f is constant, thus proof is complete.

6 Pseudo-slant Warped product submanifolds of trans-Sasakian manifold

In this case we will study pseudo-slant warped product submanifolds $N_{\theta} \times_f N_{\perp}$, there are also two cases.

(i) ξ tangent to N_{\perp} , (ii) ξ tangent to N_{θ} .

In view of note ii, we cannot take ξ tangential to N_{\perp} , So, the remaining case is case (ii).

Theorem 6.1. Let \overline{M} be trans-Sasakian manifold, with $\alpha \neq 0$, then there exit $M = N_{\theta} \times_f N_{\perp}$ pseudo-slant warped product submanifold, such that N_{θ} is a proper slant submanifold tangent to ξ and N_{\perp} is an anti-invariant submanifold of \overline{M} .

Proof. For any vector fields $X \in N_{\theta}$ and $Z \in N_{\perp}$, using equation(21), for $\xi \in N_{\theta}$ we have

$$\nabla_Z \xi = (\xi lnf)Z. \tag{29}$$

Now, by structure equation (3) and using (6), we have

$$\nabla_Z \xi = \beta Z \tag{30}$$

$$h(Z,\xi) = -\alpha FZ \tag{31}$$

These equation imply, $\xi ln f = \beta$ for all $Z \in N_{\perp}$. Therefore in this case warped product do exist.

In particular, we can obtain an example of pseudo-slant submanifold in the setting of Kenmotsu manifold as follows.

Example 6.2. Consider the complex space C^4 with the Usual Kaehler Structure and real global coordinates $(x^1, y^1, x^2, y^2, x^3, y^3, x^4, y^4)$. Let $\overline{M} = R \times_f C^4$ be the warped product between the real line R and C^4 , where the warping function e^z , where z being the global coordinates in R, then \overline{M} is a Kenmotsu manifold [8]. Now defining orthogonal basis

 $e_1 = \partial/\partial x^1, \ e_2 = \partial/\partial y^3, \ e_3 = \cos\theta \ \partial/\partial y^4 - \sin\theta \ \partial/\partial x^4, \ e_4 = \cos\theta \ \partial/\partial x^4 + \sin\theta \ \partial/\partial y^4 \ and \ e_5 = \partial/\partial z$

Distribution $D_{\theta} = \langle e_3, e_4 \rangle$ and $D^{\perp} = \langle e_5, e_1, e_2 \rangle$ are integrable and denoted by N_{θ} and N_{\perp} , then $M = N_{\perp} \times_f N_{\theta}$ is a pseudo-slant warped product submanifold isometrically immersed in \overline{M} , here the warping function is $f = e^z$

7 Doubly warped product Pseudo-slant submanifold of trans-Sasakian manifold

In this section, we will study doubly warped product pseudo-slant submanifold of trans-Sasakian manifold, as earlier in view of note ii, there is only case in which we can take ξ tangential to N_{θ} , in this case we have the following result.

Theorem 7.1. Let \overline{M} be trans-Sasakian manifold, with $\alpha \neq 0$, then there do not exist doubly warped product submanifolds $M = {}_{f_2}N_{\perp} \times {}_{f_1}N_{\theta}$ in \overline{M} , such that N_{\perp} is anti-invariant and N_{θ} is proper slant submanifold of M, ξ tangential to N_{θ} .

Proof. Let $M = {}_{f_2}N_{\perp} \times {}_{f_1}N_{\theta}$ be doubly warped product pseudo-slant submanifold of trans-Sasakian manifold \bar{M} , ξ tangent to N_{θ} then, for any $Z \in TN_{\perp}$

$$\nabla_Z \xi = Z(lnf_1)\xi + \xi(lnf_2)Z \tag{32}$$

Also, by structure equation (3) and (6), we have

$$-\alpha\phi Z + \beta(Z - \eta(Z)\xi) = \bar{\nabla}_Z \xi = \nabla_Z \xi + h(Z,\xi)$$
(33)

$$-\alpha FZ + \beta Z = \nabla_Z \xi + h(Z,\xi) \tag{34}$$

This means that

$$\nabla_Z \xi = \beta Z \tag{35}$$

$$h(Z,\xi) = -\alpha F Z. \tag{36}$$

Using equation (32) and (35), we get

$$Z(lnf_1)\xi + \xi(lnf_2)Z = \beta Z \tag{37}$$

By the orthogonality of two distribution, we get

$$Z(lnf_1) = 0 \tag{38}$$

$$\xi(\ln f_2) = \beta \tag{39}$$

(38) yields, f_1 is constant. So, there does not exist doubly warped product pseudoslant submanifold of the form $f_2N_{\perp} \times f_1N_{\theta}$, with ξ tangent to N_{θ} .

8 Pseudo-slant Doubly warped product submanifold in trans-Sasakian manifold

This section is devoted to the study of pseudo-slant Doubly warped product submanifold in trans-Sasakian manifold. In this section, we have obtained the nonexistence of pseudo-slant warped product submanifold, the main result of this section is given as follows

Theorem 8.1. There is no proper pseudo-slant doubly warped product submanifolds in trans-Sasakian manifolds, with $\alpha \neq 0$.

Proof. Let $M =_{f_1} N_{\theta} \times_{f_2} N_{\perp}$ be a pseudo-slant Doubly warped product submanifold in trans-Sasakian manifold \overline{M} , where N_{θ} and N_{\perp} are proper slant and anti-invariant submanifolds respectively.

Due to note (ii), we can not take ξ tangential to N_{\perp} , So taking ξ tangential to N_{θ} , Now, for any $X \in N_{\theta}$ and $Z \in N_{\perp}$, by equation (3) and (6), we have

$$\nabla_Z \xi = \beta Z \tag{40}$$

Also, from (22), we get

$$\nabla_Z \xi = Z(lnf_1)\xi + \xi(lnf_2)Z. \tag{41}$$

It follows from (40) and (41)

$$Z(lnf_1) = 0, (42)$$

$$\xi(\ln f_2) = \beta \tag{43}$$

From $(43), Z(lnf_1) = 0$, shows that f is constant. Therefore there does not exist pseudo-slant doubly warped product submanifold in trans-Sasakian manifold.

References

- A. Carriazo, New Developments in Slant Submanifolds Theory, Narosa Publishing House, New Delhi, India, (2002)
- [2] A. Lotta, Slant Submanifolds in Contact Geometry, Bull.Math.Soc.Romania 39(1996), 183-198.
- B. Sahin, Nonexistence of warped products semi-slant submanifolds of Kaehler manifolds, Geometriae Dedicata. 117 (2006) 195-202.
- B. Unal, Doubly warped products, Differential geometry and Its Applications, 15(3)(2001), 253-263.
- [5] B. Y. Chen, Geometry of warped product CR-submanifolds in Kaehler manifolds I, K. Monatsh. Math. 133(2001), 177-195.
- [6] B. Y. Chen, Geometry of warped product CR-Submanifolds in Kaehler Manifolds II, Monatsh. Math. 134 (2001) 103-119.
- [7] J. Oubina, New classes of almost contact metric structures, Publicationes Mathematicae, 32 (1985), pp. 187-193.
- [8] M. I. Munteam, A Note on Doubly Warped Product contact CR-Submanifolds in trans-sasakian Manifolds, arXiv:math. DG/0604008v1, 1 Apr2006
- [9] R. L. Bishop and B. O. Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969) 1-49.
- [10] V. A. Khan and M. A. Khan, Pseudo-Slant Submanifolds of a Sasakian Manifold, Indian J. pure appl. Math., 38(1)31-42, 2007.

(Received 2 April 2009)

Meraj Ali Khan School Of Mathematics and Computer Applications, Thapar University, Patiala 147004, India. e-mail : meraj790gmail.com

Khushwant Singh Chahal School Of Mathematics and Computer Applications, Thapar University, Patiala 147004, India. e-mail: khushwantchahil@gmail.com and khushwant@thapar.edu