Warped Product Pseudo-Slant Submanifold of Trans-Sasakian Manifolds

M.A. Khan and K.S. Chahal

Abstract

In this paper, we have obtained the Integrability condition of pseudoslant submanifold in trans-Sasakian manifold. Also, we have studied the warped and doubly warped product pseudo-slant submanifold of trans-Sasakian manifold.

Keywords :Warped Product, Doubly Warped Product, Pseudo-Slant Submanifold, Trans-Sasakian manifolds
2000 Mathematics Subject Classification : 53C40; 53B25; 53C25

1 Introduction

Bishop and O' Neill [9] introduced the concept of warped products. B.Y.Chen [5] extended the work of Bishop and O' Neill and studied the warped product CRsubmanifold of Kaehler manifolds and many more[5],[6]. After B.Y.Chen many other authors extended these results in different settings [3], [8].

Our aim in this paper is to study the warped and doubly warped product pseudo-slant submanifold of trans-Sasakian manifold. This paper is organized as, section 2 is devoted to preliminaries. In section 3, some basic results for pseudoslant submanifolds are given and also, we have obtained integrability condition of pseudo-slant submanifold of trans-Sasakian manifold. Section 4 deals with the basic results of warped and doubly warped product submanifolds. In section 5, we have studied warped product pseudo-slant submanifold of trans-Sasakian manifold. In section 6, we have studied the pseudo-slant warped product submanifold of trans-Sasakian manifold. After the main results we have provide an example of pseudo-slant warped product submanifold of Kenmotsu manifold. In section 7 and 8 we have obtained doubly warped product pseudo-slant and pseudo-slant doubly warped product submanifolds of trans-Sasakian manifold.

```
Copyright (c) }2010\mathrm{ by the Mathematical Association of Thailand. All rights
reserved.
```


2 Preliminaries

A $(2 n+1)$-dimensional Riemannian manifold (\bar{M}, g) is said to be a transSasakian manifold if it admits an endomorphism ϕ of its tangent bundle $T \bar{M}$, a vector field ξ, called structure vector field and η, the dual 1 -form of ξ satisfying the following:

$$
\begin{gather*}
\phi^{2} X=-X+\eta(X) \xi, \eta(\xi)=1, \phi(\xi)=0, \eta \circ \phi=0 \tag{1}\\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \eta(X)=g(X, \xi) \tag{2}\\
\left(\bar{\nabla}_{X} \phi\right) Y=\alpha(g(X, Y) \xi-\eta(Y) X)+\beta(g(\phi X, Y) \xi-\eta(Y) \phi X) \tag{3}\\
\bar{\nabla}_{X} \xi=-\alpha \phi X+\beta(X-\eta(X) \xi) . \tag{4}
\end{gather*}
$$

for any $X, Y \in T \bar{M}$. In this case

$$
\begin{equation*}
g(\phi X, Y)=-g(X, \phi Y) \tag{5}
\end{equation*}
$$

where α and β are smooth function on \bar{M} and $\bar{\nabla}$ denote the Riemannian connection with respect to the Riemannian metric g. If α (respectively β) is zero then \bar{M} is called β-Kenmotsu (respectively α-Sasakian). If α and β are both zero then the manifold \bar{M} becomes Cosymplectic.

Now, let M be a submanifold immersed in \bar{M}. The Riemannian metric induced on M is denoted by the same symbol g. Let $T M$ and $T^{\perp} M$ be the Lie algebra of vector fields tangential to M and normal to M respectively and ∇ be the induced Levi-Civita connections on M, then the Gauss and Weingarten formulas are given by

$$
\begin{align*}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{6}\\
& \bar{\nabla}_{X} V=-A_{V} X+\nabla_{X}^{\frac{1}{X} V} \tag{7}
\end{align*}
$$

for any $X, Y \in T M$ and $V \in T^{\perp} M$, where ∇^{\perp} is the connection on the normal bundle $T^{\perp} M, h$ is the second fundamental form and A_{V} is the Weingarten map associated with V as

$$
\begin{equation*}
g\left(A_{V} X, Y\right)=g(h(X, Y), V) \tag{8}
\end{equation*}
$$

For any $x \in M$ and $X \in T_{x} M$, we write

$$
\begin{equation*}
\phi X=T X+N X \tag{9}
\end{equation*}
$$

where $T X \in T_{x} M$ and $N X \in T_{x}^{\perp} M$. Similarly, for $V \in T_{x}^{\perp} M$, we have

$$
\begin{equation*}
\phi V=t V+n V \tag{10}
\end{equation*}
$$

where $t V$ (resp. $n V$) is the tangential component (resp. normal component) of ϕV.

From (5) and (9), it is easy to observe that for each $x \in M$, and $X, Y \in T_{x} M$

$$
\begin{equation*}
g(T X, Y)=-g(X, T Y) \tag{11}
\end{equation*}
$$

For any $X, Y \in T M$ on using (4) and (6) we have the following

$$
\begin{equation*}
\text { (a) } \nabla_{X} \xi=-\alpha T X+\beta(X-\eta(X) \xi) \quad \text { (b) } \quad h(X, \xi)=-\alpha N X \tag{12}
\end{equation*}
$$

3 Pseudo-Slant submanifolds

A.Carriazo [1] defined and studied Bi-slant immersion in almost Hermitian manifold and simultaneously gave the notion of pseudo-slant submanifolds in almost Hermitian manifold. Recently, V.A.Khan and M.A.Khan [10] studied the pseudo-slant submanifold of a Sasakian manifold and found some basic results.

A submanifold M of an almost contact metric manifold \bar{M} is said to be a slant submanifold if for any $x \in M$ and $X \in T_{x} M$, linearly independent to ξ, the angle between ϕX and $T_{x} M$ is constant. The constant angle $\theta \in[0, \pi / 2]$ is then called slant angle of M in \bar{M}. If $\theta=0$ the submanifold is invariant submanifold if $\theta=\pi / 2$ then it is called anti-invariant submanifold if $\theta \neq 0, \pi / 2$ then it is called proper slant submanifold.

We say that M is a pseudo-slant submanifold of an almost contact metric manifold \bar{M}, if there exist two orthogonal distributions D^{\perp} and D_{θ} on M such that
(i) $T_{M}=D^{\perp} \oplus D_{\theta} \oplus<\xi>$.
(ii) The distribution D^{\perp} is anti-invariant i.e., $\phi D^{\perp} \subseteq T^{\perp} M$.
(iii) The distribution D_{θ} is slant with slant angle $\theta \neq \pi / 2$
from the definition it is clear that if $\theta=0$, the pseudo-slant submanifold become semi-invariant submanifold.

Suppose M to be a pseudo-slant submanifold of an almost contact metric manifold \bar{M}. Then, for any $X \in T M$, put

$$
\begin{equation*}
X=P_{1} X+P_{2} X+\eta(X) \xi \tag{13}
\end{equation*}
$$

where $P_{i}=(i=1,2)$ are projection maps on the distributions D^{\perp} and D_{θ}. Now operating ϕ on both sides of equation (13)

$$
\begin{equation*}
\phi X=N P_{1} X+T P_{2} X+N P_{2} X \tag{14}
\end{equation*}
$$

it is easy to see that

$$
T X=T P_{2} X, \quad N X=N P_{1} X+N P_{2} X
$$

and,

$$
\begin{gather*}
\phi P_{1} X=N P_{1} X, \quad T P_{1} X=0, \tag{15}\\
T P_{2} X \in D_{\theta} . \tag{16}
\end{gather*}
$$

If μ is the invariant subspace of the normal bundle $T^{\perp} M$ then, in the case of pseudo-slant submanifold, the normal bundle $T^{\perp} M$ can be decomposed as follows

$$
\begin{equation*}
T^{\perp} M=\mu \oplus N D^{\perp} \oplus N D_{\theta} . \tag{17}
\end{equation*}
$$

As D^{\perp} and D_{θ} are orthogonal distribution on $M, g(Z, X)=0$ for each $Z \in D^{\perp}$ and $X \in D_{\theta}$. Thus, by equation (9) and (5), we may write

$$
g(N Z, N X)=g(\phi Z, \phi X)=g(Z, X)=0 .
$$

That means the distributions $N D^{\perp}$ and $N D_{\theta}$ are mutually perpendicular. Infect, the decomposition (17) is an orthogonal direct decomposition.

For a pseudo-slant submanifold of a trans-Sasakian manifold the following lemmas play an important role in working out the integrability conditions of the distributions involved in this setting.

Lemma 3.1. Let M be a pseudo-slant submanifold of a trans-Sasakian manifold \bar{M}, then

$$
\begin{equation*}
A_{\phi Y} X=A_{\phi X} Y \tag{18}
\end{equation*}
$$

for all $X, Y \in D^{\perp}$.
Proof. For any X, Y in D^{\perp} and Z in $T M$, using (8),(5),(4) and (6) we find that

$$
\begin{aligned}
g\left(A_{\phi Y} X, Z\right) & =-g\left(\phi \bar{\nabla}_{Z} X, Y\right) \\
= & -g\left(\bar{\nabla}_{Z} \phi X-\left(\bar{\nabla}_{z} \phi\right) X, Y\right) .
\end{aligned}
$$

on applying equations (3) and (7) the above equation yields

$$
g\left(A_{\phi Y} X, Z\right)=g\left(A_{\phi X} Y, Z\right)
$$

the results follows from the above equation.
Lemma 3.2. Let M be a pseudo-slant submanifold of a trans-Sasakian manifold $\bar{M}, \alpha \neq 0$, then for any $X, Y \in D^{\perp} \oplus D_{\theta}$

$$
\begin{equation*}
g([X, Y], \xi)=2 \alpha g(T X, Y) \tag{19}
\end{equation*}
$$

the proof of equation (19) is straightforward and may be obtained by using (12)(a).

Proposition 3.3. Let M be a pseudo-slant submanifold of a trans-Sasakian manifold \bar{M}. Then, anti-invariant distribution D^{\perp} is integrable.

Proof. For any $X, Y \in D^{\perp}$ and $Z \in D_{\theta}$, by (13)

$$
g\left([X, Y], T P_{2} Z\right)=-g\left(\phi[X, Y], P_{2} Z\right)
$$

Now, using (3) and (7), we find

$$
g\left([X, Y], T P_{2} Z\right)=g\left(A_{\phi Y} X-A_{\phi X} Y, P_{2} Z\right)
$$

Now, the integrability of the distribution D^{\perp} follows on using equation (18) and (19).

Lemma 3.4. Let M be a pseudo-slant submanifold of trans-Sasakian manifold \bar{M}, with $\alpha \neq 0$, then the slant distribution D_{θ} is not integrable.

By the definition of pseudo-slant submanifold and in view of equation (19) the results follows.

Proposition 3.5. Let M be a pseudo-slant submanifold of \bar{M}, with $\alpha \neq 0$, then the distribution $D_{\theta} \oplus<\xi>$ is integrable if and only if

$$
h(Z, T W)-h(W, T Z)+\nabla_{X}^{\perp} N W-\nabla_{W}^{\perp} N Z
$$

lies in $N D_{\theta}$ for each $Z, W \in D_{\theta} \oplus<\xi>$.
Proof. Making use of equations $(9),(3),(6)$ and (7), we obtain

$$
g(N[Z, W], N X)=g\left(h(Z, T W)-h(W, T Z)+\nabla_{X}^{\perp} N W-\nabla_{W}^{\perp} N Z, N X\right)
$$

for each $X \in D^{\perp}$ and $Z, W \in D_{\theta}$. The Result follows on using the fact that $N D^{\perp}$ and $N D_{\theta}$ are mutually perpendicular.

Now we have the following consequence of above result.

Corollary 3.6. Let M be a pseudo-slant submanifold of a β-Kenmotsu manifold or Cosymplectic manifold, then the slant distribution D_{θ} is integrable iff

$$
h(Z, T W)-h(W, T Z)+\nabla_{X}{ }^{\perp} N W-\nabla_{W}{ }^{\perp} N Z
$$

lies in $N D_{\theta}$ for each $Z, W \in D_{\theta}$.

4 Warped Product and Doubly warped product submanifolds

The study of warped product submanifold was initiated by R.L. Bishop and B.O'Neill [9]. They defined as follows

Definition. Let $\left(B, g_{B}\right)$ and F, g_{F} be two Riemannian manifolds with Riemannian metric g_{B} and g_{F} respectively and f a positive differentiable function on B. The warped product $B \times{ }_{f} F$ of B and F is the Riemannian manifold ($B \times F, g$), where

$$
\begin{equation*}
g=g_{B}+f^{2} g_{F} \tag{20}
\end{equation*}
$$

More explicitly, if U is tangent to $M=B \times{ }_{f} F$ at (p, q), then

$$
\|U\|^{2}=\left\|d \pi_{1} U\right\|^{2}+f^{2}(p)\left\|d \pi_{2} U\right\|^{2}
$$

where $\pi_{i}(i=1,2)$ are the canonical projections of $B \times f$ on B and F, respectively.
The following lemma provides some basic formulas on warped product submanifolds.

Lemma 4.1. Let $M=B \times_{f} F$ be warped product manifold. If $X, Y \in T B$ and $V, W \in T F$ then
(i) $\nabla_{X} Y \in T B$
(ii) $\nabla_{X} V=\nabla_{V} X=X(\ln f) V$
(iii) $\operatorname{nor}\left(\nabla_{V} W\right)=-\frac{g(V, W)}{f} \nabla f$
where $\operatorname{nor}\left(\nabla_{V} W\right)$ is the component of $\nabla_{V} W$ in $T B$ and ∇f is the gradient vector field of the warping function f.

From (ii) of above lemma we can see that

$$
\begin{equation*}
\nabla_{U} V=\nabla_{V} U=(U \ln f) V \tag{21}
\end{equation*}
$$

for any vector fields U tangent to B and V tangent to F.
If the manifolds N_{θ} and N_{\perp} are slant and anti-invariant submanifolds respectively of trans-Sasakian manifold \bar{M}, then their warped products are
(a) $N_{\perp} \times_{f} N_{\theta}$,
(b) $N_{\theta} \times{ }_{f} N_{\perp}$.

Note (i) In the sequel, we call the warped product submanifold (a) as warped product pseudo-slant submanifold and the warped product (b) as pseudo-slant warped product submanifold.
B.Y.Chen [5],[6] extended the work of Bishop and O' Neill and studied the warped product CR-submanifold of Kaehler manifolds. B. Sahin [3] proved the non-existence theorem for warped product CR-submanifolds. Doubly warped product manifolds were introduced as generalization of warped product manifold by B. Unel [4]. A doubly warped product (M, g) is a product manifold of the form $M={ }_{f} B \times_{b} F$ with the metric $g=f^{2} g_{B} \oplus b^{2} g_{F}$, where $b: B \longrightarrow(0, \infty)$ and $f: F \longrightarrow(0, \infty)$ are smooth maps and g_{B}, g_{F} are the metric on the Riemannian manifolds B and F respectively. If either $b=1$ or $f=1$, but not both, then we obtain a (single) warped product. If both $b=1$ and $f=1$, then we have a product manifold. If neither b nor f is constant, then we have a non trivial doubly warped product.

If $X \in T(B)$ and $Z \in T(F)$, then the Levi-Civita connection is

$$
\begin{equation*}
\nabla_{X} Z=Z(\ln f) X+X(\ln b) Z \tag{22}
\end{equation*}
$$

5 Warped product Pseudo-slant submanifold of trans-Sasakian manifold

Throughout this section, we assume that \bar{M} is a trans-Sasakian manifolds, with $\alpha \neq 0$ and $M=N_{\perp} \times_{f} N_{\theta}$ be a warped product pseudo-slant submanifold of a trans-Sasakian manifold \bar{M}. Such submanifolds are always tangent to the structure vector field ξ. We distinguish 2 cases
(i) ξ tangent to N_{\perp},
(ii) ξ tangent to N_{θ}.

Note (ii). By lemma (3.4), in case of trans-Sasakian manifold with $\alpha \neq 0$, The slant distribution D_{θ} is not integrable, due to this there does not exist slant submanifold N_{θ}, but $D_{\theta} \oplus<\xi>$ is integrable, so in view of this remark we cannot take ξ tangential to N_{\perp}, hence there is only possibility of case (ii).

In view of above note we have the following result.
Theorem 5.1. Let \bar{M} be a trans-Sasakian manifold, $\alpha \neq 0$, then there do not exist warped product submanifolds $M=N_{\perp} \times{ }_{f} N_{\theta}$ in \bar{M} such that N_{\perp} is anti-invariant submanifold and N_{θ} is a proper slant submanifold of \bar{M}, ξ tangent to N_{θ}.

Proof. By equation (21),

$$
\begin{equation*}
\nabla_{X} Z=\nabla_{Z} X=(Z \ln f) X \tag{23}
\end{equation*}
$$

for any vector fields $X \in N_{\theta}$ and $Z \in N_{\perp}$.

Now, for $\xi \in N_{\theta}$

$$
\begin{equation*}
\nabla_{Z} \xi=(Z \ln f) \xi \tag{24}
\end{equation*}
$$

Also, by equation (3) and (6), we have

$$
\begin{gather*}
-\alpha \phi Z+\beta(Z-\eta(Z) \xi)=\bar{\nabla}_{Z} \xi=\nabla_{Z} \xi+h(Z, \xi) \tag{25}\\
\nabla_{Z} \xi+h(Z, \xi)=-\alpha F Z+\beta Z \tag{26}
\end{gather*}
$$

from (26), we get

$$
\begin{gather*}
\nabla_{Z} \xi=\beta Z \tag{27}\\
h(Z, \xi)=-\alpha F Z \tag{28}
\end{gather*}
$$

Thus (24) and (27) imply $(Z \ln f)=0$, for all $Z \in N_{\perp}$. Which shows that f is constant, thus proof is complete.

6 Pseudo-slant Warped product submanifolds of trans-Sasakian manifold

In this case we will study pseudo-slant warped product submanifolds $N_{\theta} \times{ }_{f}$ N_{\perp}, there are also two cases.
(i) ξ tangent to N_{\perp},
(ii) ξ tangent to N_{θ}.

In view of note ii, we cannot take ξ tangential to N_{\perp}, So, the remaining case is case (ii).

Theorem 6.1. Let \bar{M} be trans-Sasakian manifold, with $\alpha \neq 0$, then there exit $M=N_{\theta} \times{ }_{f} N_{\perp}$ pseudo-slant warped product submanifold, such that N_{θ} is a proper slant submanifold tangent to ξ and N_{\perp} is an anti-invariant submanifold of \bar{M}.

Proof. For any vector fields $X \in N_{\theta}$ and $Z \in N_{\perp}$, using equation(21), for $\xi \in N_{\theta}$ we have

$$
\begin{equation*}
\nabla_{Z} \xi=(\xi \ln f) Z \tag{29}
\end{equation*}
$$

Now, by structure equation(3) and using(6), we have

$$
\begin{gather*}
\nabla_{Z} \xi=\beta Z \tag{30}\\
h(Z, \xi)=-\alpha F Z \tag{31}
\end{gather*}
$$

These equation imply, $\xi \ln f=\beta$ for all $Z \in N_{\perp}$. Therefore in this case warped product do exist.

In particular, we can obtain an example of pseudo-slant submanifold in the setting of Kenmotsu manifold as follows.

Example 6.2. Consider the complex space C^{4} with the Usual Kaehler Structure and real global coordinates $\left(x^{1}, y^{1}, x^{2}, y^{2}, x^{3}, y^{3}, x^{4}, y^{4}\right)$. Let $\bar{M}=R \times_{f} C^{4}$ be the warped product between the real line R and C^{4}, where the warping function e^{z}, where z being the global coordinates in R, then \bar{M} is a Kenmotsu manifold [8]. Now defining orthogonal basis
$e_{1}=\partial / \partial x^{1}, e_{2}=\partial / \partial y^{3}, e_{3}=\cos \theta \partial / \partial y^{4}-\sin \theta \partial / \partial x^{4}, e_{4}=\cos \theta \partial /$ $\partial x^{4}+\sin \theta \partial / \partial y^{4}$ and $e_{5}=\partial / \partial z$

Distribution $D_{\theta}=<e_{3}, e_{4}>$ and $D^{\perp}=<e_{5}, e_{1}, e_{2}>$ are integrable and denoted by N_{θ} and N_{\perp}, then $M=N_{\perp_{-}} \times_{f} N_{\theta}$ is a pseudo-slant warped product submanifold isometrically immersed in \bar{M}, here the warping function is $f=e^{z}$

7 Doubly warped product Pseudo-slant submanifold of trans-Sasakian manifold

In this section, we will study doubly warped product pseudo-slant submanifold of trans-Sasakian manifold, as earlier in view of note ii, there is only case in which we can take ξ tangential to N_{θ}, in this case we have the following result.

Theorem 7.1. Let \bar{M} be trans-Sasakian manifold, with $\alpha \neq 0$, then there do not exist doubly warped product submanifolds $M={ }_{f} N_{\perp} \times{ }_{f_{1}} N_{\theta}$ in \bar{M}, such that N_{\perp} is anti-invariant and N_{θ} is proper slant submanifold of M, ξ tangential to N_{θ}.

Proof. Let $M={ }_{f} N_{\perp} \times{ }_{f} N_{\theta}$ be doubly warped product pseudo-slant submanifold of trans-Sasakian manifold \bar{M}, ξ tangent to N_{θ} then, for any $Z \in T N_{\perp}$

$$
\begin{equation*}
\nabla_{Z} \xi=Z\left(\ln f_{1}\right) \xi+\xi\left(\ln f_{2}\right) Z \tag{32}
\end{equation*}
$$

Also, by structure equation(3) and (6), we have

$$
\begin{gather*}
-\alpha \phi Z+\beta(Z-\eta(Z) \xi)=\bar{\nabla}_{Z} \xi=\nabla_{Z} \xi+h(Z, \xi) \tag{33}\\
-\alpha F Z+\beta Z=\nabla_{Z} \xi+h(Z, \xi) \tag{34}
\end{gather*}
$$

This means that

$$
\begin{gather*}
\nabla_{Z} \xi=\beta Z \tag{35}\\
h(Z, \xi)=-\alpha F Z \tag{36}
\end{gather*}
$$

Using equation (32) and (35), we get

$$
\begin{equation*}
Z\left(\ln f_{1}\right) \xi+\xi\left(\ln f_{2}\right) Z=\beta Z \tag{37}
\end{equation*}
$$

By the orthogonality of two distribution, we get

$$
\begin{align*}
& Z\left(\ln f_{1}\right)=0 \tag{38}\\
& \xi\left(\ln f_{2}\right)=\beta \tag{39}
\end{align*}
$$

(38) yields, f_{1} is constant. So, there does not exist doubly warped product pseudoslant submanifold of the form ${ }_{f_{2}} N_{\perp} \times{ }_{f} N_{\theta}$, with ξ tangent to N_{θ}.

8 Pseudo-slant Doubly warped product submanifold in trans-Sasakian manifold

This section is devoted to the study of pseudo-slant Doubly warped product submanifold in trans-Sasakian manifold. In this section, we have obtained the nonexistence of pseudo-slant warped product submanifold, the main result of this section is given as follows

Theorem 8.1. There is no proper pseudo-slant doubly warped product submanifolds in trans-Sasakian manifolds, with $\alpha \neq 0$.

Proof. Let $M=f_{1} N_{\theta} \times f_{2} N_{\perp}$ be a pseudo-slant Doubly warped product submanifold in trans-Sasakian manifold \bar{M}, where N_{θ} and N_{\perp} are proper slant and anti-invariant submanifolds respectively.
Due to note (ii), we can not take ξ tangential to N_{\perp}, So taking ξ tangential to N_{θ}, Now, for any $X \in N_{\theta}$ and $Z \in N_{\perp}$, by equation (3) and (6), we have

$$
\begin{equation*}
\nabla_{Z} \xi=\beta Z \tag{40}
\end{equation*}
$$

Also, from (22), we get

$$
\begin{equation*}
\nabla_{Z} \xi=Z\left(\ln f_{1}\right) \xi+\xi\left(\ln f_{2}\right) Z \tag{41}
\end{equation*}
$$

It follows from (40) and (41)

$$
\begin{array}{r}
Z\left(\ln f_{1}\right)=0, \\
\xi\left(\ln f_{2}\right)=\beta \tag{43}
\end{array}
$$

From (43), $Z\left(\ln f_{1}\right)=0$, shows that f is constant. Therefore there does not exist pseudo-slant doubly warped product submanifold in trans-Sasakian manifold.

References

[1] A. Carriazo, New Developments in Slant Submanifolds Theory, Narosa Publishing House, New Delhi, India,(2002)
[2] A. Lotta, Slant Submanifolds in Contact Geometry, Bull.Math.Soc.Romania 39(1996), 183-198.
[3] B. Sahin, Nonexistence of warped products semi-slant submanifolds of Kaehler manifolds, Geometriae Dedicata. 117 (2006) 195-202.
[4] B. Unal, Doubly warped products, Differential geometry and Its Applications, 15(3)(2001), 253-263.
[5] B. Y. Chen, Geometry of warped product CR-submanifolds in Kaehler manifolds I, K. Monatsh. Math. 133(2001), 177-195.
[6] B. Y. Chen, Geometry of warped product CR-Submanifolds in Kaehler Manifolds II, Monatsh. Math. 134 (2001) 103-119.
[7] J. Oubina, New classes of almost contact metric structures, Publicationes Mathematicae, 32 (1985), pp. 187-193.
[8] M. I. Munteam, A Note on Doubly Warped Product contact CR-Submanifolds in trans-sasakian Manifolds, arXiv:math. DG/0604008v1, 1 Apr2006
[9] R. L. Bishop and B. O. Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969) 1-49.
[10] V. A. Khan and M. A. Khan, Pseudo-Slant Submanifolds of a Sasakian Manifold, Indian J. pure appl. Math., 38(1)31-42, 2007.
(Received 2 April 2009)

```
Meraj Ali Khan
School Of Mathematics and Computer Applications,
Thapar University,
Patiala 147004, India.
e-mail : meraj79@gmail.com
Khushwant Singh Chahal
School Of Mathematics and Computer Applications, Thapar University,
Patiala 147004, India.
e-mail : khushwantchahil@gmail.com and khushwant@thapar.edu
```

