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Complete-Lattice Morphisms

Compatible with Closure Operators
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Abstract : We introduce and study certain morphisms between complete lat-
tices. We investigate three kinds of compatibility of these morphisms with closure
operators on complete lattices.
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1 Introduction, preliminaries

Closure operators that are more general than the Kuratowski ones were studied
by many authors and occur in numerous branches of mathematics, in particular in
set theory, general topology, geometry, algebra, mathematical logic and category
theory - cf. [1]-[13] and [16]. But they are utilized also in many other fields,
especially in theoretical computer science - see e.g. [14] and [15]. Closure operators
on a set X are, in fact, certain structures (unary operations) on the power set 2X .
And morphisms (continuous maps, closed maps, etc.) between closure spaces
are usually defined to be maps for which the induced (lifted) maps between the
corresponding power sets fulfill certain given axioms. Thus, when working with
closure operators on a set X , we work with subsets rather than with points of
X . In other words, we work with the complete lattice (Boolean algebra) 2X . It
is therefore natural to generalize the usual approach to closure operators and to
consider them on an arbitrary complete lattice. Of course, we can define closure
operators even on ordered or preordered sets as it is often done in general algebra.
But in this paper we will study closure operators on just complete lattices because
such closure operators behave similarly to the usual closure operators on sets.
We will define and study certain morphisms between complete lattices. These
morphisms will then be discussed with respect to closure operators on complete
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lattices. We will investigate the behavior of the morphisms with respect to regular,
continuous and closed maps between complete lattices with a closure operator.

A closure operator on a complete lattice L = (L,≤) with the least element 0
is a map u : L → L which is

(0) grounded (i.e., u(0)=0),
(1) extensive (i.e., ∀x ∈ L : x ≤ u(x)),
(2) monotone (i.e., ∀x, y ∈ L : x ≤ y ⇒ u(x) ≤ u(y)),
(3) idempotent (i.e., ∀x ∈ L : u(u(x)) = x).

The pair (L, u) where L is a complete lattice and u is a closure operator on L is
called a closure system. An element x ∈ L is said to be closed if it is a fixed point
of u, i.e., if u(x) = x.

2 Complete-lattice morphisms

¿From now on, L = (L,≤) and L′ = (L′,≤′) will be complete lattices with the
least elements denoted by 0 and 0’ and the joins denoted by

∨
(or ∨) and

∨
′

(or
∨′) respectively.

Definition 2.1. Let f : L → L′ be a map. The map f−1 : L′ → L given by
f−1(x′) =

∨
{x; f(x) = x′} whenever x′ ∈ L′ is called the inversion of f . An

element x′ ∈ L′ is said to be invertible if f−1(x′) > 0.

Thus, x′ is not invertible if x = 0 is the only element with f(x) = x′ or if there
is no such an element x.

Definition 2.2. A map f : L → L′ is said to be a morphism if the following four
conditions are satisfied whenever x, y ∈ L and x′, y′ ∈ L′:

M0: f(x) = 0′ ⇒ x = 0 (conservativity);

M1: x ≤ y ⇒ f(x) ≤′ f(y) (monotonicity);

M2: f(f−1(y′)) ≤ y′ whenever y′ is invertible (inverse consistency);

M3: x′ ≤′ y′ ⇒ f−1(x′) ≤ f−1(y′) (inverse monotonicity).

If f is monotone and y′ invertible, then from f(y) = y′ it follows that y ≤
f−1(y′) and thus y′ = f(y) ≤′ f(f−1(y′)). Therefore, M1 and M2 imply that
f(f−1(y′)) = y′ for all invertible elements y′ ∈ L′. Thus, a monotone map f :
L → L′ is inverse consistent if and only if, for every invertible element y′ ∈ L′,
there exists a greatest element y ∈ L with f(y) = y′. The inverse monotonicity
implies that, whenever y′ ∈ L′ is invertible and y′ ≤′ z′, z′ is invertible too. And
conversely, x′ is not invertible whenever there is a non-invertible element y′ with
x′ ≤′ y′.

If f is a morphism, then f(x) ≤′ y′ is equivalent to x ≤ f−1(y′) whenever y′

is invertible. Thus, f and f−1 constitute a covariant Galois connection (cf. [14])
between L and the set of all invertible elements of L′.
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Example 2.3. Figure 1 illustrates 5 maps fk : 2X → 2X
′

, k = 1, ..., 5, where
X = {a, b, c}, X ′ = {x, y, z} for k = 1, 2, 3 and X ′ = {x, y} for k = 4, 5. Both
power sets 2X and 2X

′

are considered to be complete lattices with respect to set
inclusion.

Y ∈ 2X f1(y) f2(y) f3(y) f4(y) f5(y)

∅ ∅ ∅ ∅ ∅ ∅
{a} {xy} {xz} {xy} {x} ∅
{b} {x} {yz} {xy} {y} {x}
{c} {xz} {yz} {xy} {x} {y}
{ab} {xyz} {xyz} {xy} {xy} {x}
{ac} {xyz} {xy} {xy} {x} {y}
{bc} {xyz} {yz} {xyz} {xy} {xy}
{abc} {xyz} {xyz} {xyz} {xy} {xy}

M0 M0 M0 M0 ¬M0
M1 ¬M1 M1 M1 M1
M2 M2 ¬M2 M2 M2
M3 M3 M3 ¬M3 M3

Figure 1: Five maps between power sets

The leftmost column denotes the 8 elements of 2X . The other columns denote
the images of each of the elements under fk, k = 1, ..., 5. Only f1 is a morphism.
One can verify that it satisfies M0, M1, M2 and M3 by exhaustive examination.
Clearly, f2 is not monotone because f2({a}) 6⊆ f2({a, c}). The map f3 is not inverse
consistent because f−1

3 ({x, y}) = {a, b, c} but f3({a, b, c}) = {x, y, z}. Further, f4

is not inverse monotone because f−1

4 ({x}) = {ac} 6⊆ ∅ = f−1

4 ({x, z}). Finally, f5

is not conservative because f({a}) = ∅. But one can easily see that each of the
maps fk, k = 2, ..., 5, satisfies the remaining three of the four conditions M0, M1,
M2 and M3. Therefore, the conditions M0, M1, M2 and M3 are independent.

Observe that inverse monotonicity of f implies f−1(x′) =
∨
{x; f(x) ≤ x′} for

every x′ ∈ X ′ because f(x) ≤ x′ ⇒ f−1(f(x)) ≤ f−1(x′) ⇒ x ≤ f−1(x′). Note
also that the condition f(0) = 0′ is not required to be fulfilled by a morphism f .
Indeed, such a condition would be quite restrictive because it is not satisfied by
numerous fundamental examples of morphisms - see e.g. the following example.

Example 2.4. Let f : [0, 1] → [0, 1] be a non-decreasing continuous (real) function
with f(x) > 0 for all x ∈ (0, 1]. Consider the natural linear order ≤ on [0, 1], so that
([0, 1],≤) is a complete lattice. It can easily be seen that f : ([0, 1],≤) → ([0, 1],≤)
is a morphism.

A map f : L → L′ is said to be additive if we have f(y′ ∨ z′) = f(y′) ∨
f(z′) whenever y′, z′ ∈ L′. Clearly, each additive map is monotone. Of course, a
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morphism need not be additive. For example, the morphism f1 in Fig.1 of Example
2.3 is not additive because f1({a}) ∪ f1({b}) = {x, y} ⊂ {x, y, z} = f1({a, b}). On
the other hand, the morphisms f from Example 2.4 is additive.

Proposition 2.5. Let f : L → L′ be an additive, conservative and inverse con-
sistent map. Then the following conditions are equivalent:

(a) f is a morphism,
(b) f is inverse monotone,
(c) if y′, z′ ∈ L′ are elements with y′ ≤′ z′ and y′ invertible, then z′ is invert-

ible.

Proof. The equivalence (a) ⇔ (b) is trivial.
(b) ⇒ (c): Let f be inverse monotone and let y′, z′ ∈ L′, y′ ≤′ z′, f−1(y′) 6= 0.
Then 0 6= f−1(y′) ≤ f−1(z′), hence z′ is invertible.
(c) ⇒ (b): Let f fulfil the condition (c) and let y′, z′ ∈ L′ be subsets with y′ ≤ z′.
If y′ is not invertible, i.e., f−1(y′) = 0, then f−1(y′) ≤ f−1(z′) trivially holds.
Suppose that y is invertible, i.e., that f−1(y′) > 0. Then, since f is additive
and both y′ and z′ are invertible, we have f(f−1(y′) ∨ f−1(z′)) = y′ ∨′ z′ = z′.
Consequently, f−1(y′) ∨ f−1(z′) ≤ f−1(z′), which means that f−1(y′) ≤ f−1(z′).
Thus, f is inverse monotone. 2

Lemma 2.6. Let L′′ = (L′′,≤′′) be a complete lattice, let f : L → L′ and g : L′ →
L′′ be inverse monotone maps and let g be moreover inverse consistent. Then
(f ◦ g)−1(y′′) = f−1(g−1(y′′)) for each y′′ ∈ L′′.

Proof. Let y′′ ∈ L′′ and y ∈ L be elements with g(f(y)) = y′′. Then f(y) ≤′

g−1(g(f(y))) ≤′ g−1(y′′) because g is inverse monotone. Now, since also f is
inverse monotone, we get y ≤ f−1(f(y)) ≤ f−1(g−1(y′′)). Consequently, (g ◦
f)−1(y′′) =

∨
{y ∈ L; g(f(y)) = y′′} ≤ f−1(g−1(y′′)). Further, for an arbitrary

subset z ∈ L, f(z) = g−1(y′′) implies g(f(z) = g(g−1(y′′)) = y′′ by the inverse
consistency of g. Using this fact we obtain f−1(g−1(y′′)) =

∨
{z ∈ L; f(y) =

g−1(y′′)} ≤
∨
{z ∈ L; g(f(z)) = y′′} = (g ◦ f)−1(y′′). Thus, the equality (g ◦

f)−1(y′′) = f−1(g−1(y′′)) holds. 2

Proposition 2.7. Let L′′ = (L′′,≤′′) be a complete lattice and let f : L → L′ and
g : L′ → L′′ be morphisms. Then the composition f ◦ g : L → L′′ is a morphism,
too.

Proof. Obviously, the conservativity and monotonicity of maps f, g imply the
conservativity and monotonicity of f ◦ g.
To prove the inverse consistency of g ◦ f , let y′′ ∈ L′′ be an invertible element
(w.r.t. g ◦ f). Then there is an element y ∈ L, y > 0, with g(f(y)) = y′′.
Then f(y) ≤′ g−1(g(f(y))) = g−1(y′′) and so y′′ is invertible (w.r.t. g) because
f is conservative. Further, as f is inverse monotone, we have y ≤ f−1(f(y)) ≤
f−1(g−1(y′′)). Therefore, g−1(y′′) is invertible (w.r.t. f). Now we get g(f(g ◦
f)−1(y′′)) = g(f(f−1(g−1(y′′)))) = g(g−1(y′′)) = y′′ by Lemma 2.6 and by the
inverse consistency of f and g. We have shown that f ◦ g is inverse consistent.
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Finally, let x′′, y′′ ∈ L′′, x′′ ≤′′ y′′. Then g−1(x′′) ≤′ g−1(y′′) as g is inverse
monotone, and so f−1(g−1(x′′)) ≤ f−1(g−1(y′′)) as f is inverse monotone. Thus,
(g ◦ f)−1(x′′) ≤ (f ◦ g)−1(y′′) by Lemma 2.6. Hence, g ◦ f is inverse monotone and
the proof is complete. 2

Since the identity maps are clearly morphisms, the previous Proposition im-
plies that complete lattices and morphisms constitute a category. But it is not the
aim of the present paper to study this category.

Example 2.8. Let X , X ′ be sets and f : X → X ′ be a map. Then f induces a
map f+ : (2X ,⊆) → (2X

′

,⊆) given by f+(A) = {f(x); x ∈ A} whenever A ∈ 2X .
Clearly, f+ fulfills condition M0-M2. Further, we may define a map f− : 2X

′

→ 2X

by putting f−(A′) = {x ∈ X ; f(x) ∈ A′} whenever A′ ∈ 2X
′

. Observe that f+ is
inverse monotone (and hence a morphism) if and only if f is a surjection. Then
(f+)−1(A′) = f−(A′). It can easily be seen that, for a given map g : 2X → 2X

′

,
there is a map f : X → X ′ with g = f+ if and only if g is completely additive
(which means that g(

⋃
{B; B ∈ B}) =

⋃
{g(B); B ∈ B} whenever B ⊆ 2X) and

preserves singletons (which means that g(A) is a singleton whenever A ⊆ X is a
singleton).

3 Regular, continuous and closed morphisms

Definition 3.1. Let (L, u) and (L′, u′) be closure systems. A map f : L → L′ is
said to be

a) regular if, for every x ∈ L, f(u(x)) = f(x) whenever f(x) ∈ L′ is closed;
b) continuous if, for every x ∈ L, f(u(x)) ≤′ u′(f(x));
c) closed if f(x) ∈ L′ is closed whenever x ∈ L is closed.

Theorem 3.2. Let (L, u) and (L′, u′) be closure systems and f : L → L′ a mor-
phism. Then the following conditions are equivalent:

(1) f is regular,
(2) f is continuous,
(3) ∀y′ ∈ L′ : u(f−1(y′)) ≤ f−1(u′(y′)),
(4) ∀y′ ∈ L′ : y′closed ⇒ f−1(y′) closed.

Proof. (2) ⇒ (1) : Let f be continuous and let y ∈ L be an element with f(y)
closed. Then f(u(y)) ≤′ u′(f(y)) implies f(u(y)) ≤′ f(y). As y ≤ u(y), we have
f(y) ≤′ f(u(y)) by monotonicity. Therefore, f(u(y)) = f(y). Thus, f is regular.

(1) ⇒ (4) : Let f be regular and let y′ ∈ L′ be closed. If y′ is not invertible,
then f−1(y′) = 0 is closed. Suppose that y′ is invertible and let y = f−1(y′). Since
f(f−1(y′)) = y′ and f is regular, we have f(u(f−1(y′))) = f(f−1(y′)) = y′. Thus,
u(f−1(y′)) ≤ f−1(f(u(f−1(y′) ≤ f−1(y′) and, therefore, f−1(y′) is closed.

(4) ⇒ (2) : Suppose that, for every y′ ∈ L′, f−1(y′) is closed whenever y′

is closed. Let x ∈ L be an element. If x = 0, then we clearly have f(u(x)) ≤′

u′(f(x)). Let x > 0. As f(x) is invertible, u′(f(x)) is invertible too because
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f−1(u′(f(x))) ≥ f−1(f(x)) ≥ x > 0 (by the inverse monotonicity). Since u′(f(x))
is closed, f−1(u′(f(x))) is closed too. We have x ≤ f−1(f(x)) ≤ f−1(u′(f(x)))
(by inverse monotonicity). Consequently, u(x) ≤ f−1(u′(f(x))), which gives
f(u(x)) ≤′ f(f−1(u′(f(x)))) = u′(f(x)) Thus, f is continuous.

(2) ⇒ (3) : Let f be continuous and let y′ ∈ L′. If y′ is not invertible,
then u(f−1(y′)) = 0 so that u(f−1(y′)) ≤ f−1(u′(y′)) trivially holds. Let y′ be
invertible. Then f(u(f−1(y′))) ≤′ u′(f(f−1(y′))) = u′(y′). Hence, u(f−1(y′)) ≤
f−1(f(u(f−1(y)))) ≤ f−1(u′(y′)).

(3) ⇒ (4) : Suppose that u(f−1(y′)) ≤ f−1(u′(y′)) for every y′ ∈ L′ and let
y′ ∈ L′ be a closed element. Then u(f−1(y′)) ≤ f−1(y′), which means that f−1(y′)
is closed. 2

Example 3.3. A closure space is a pair (X, u) where X is a set and u is a closure
operator on the complete lattice 2X . A closure spaces (X, u) such that u is additive
(i.e., u(A ∪ B) = u(A) ∪ u(B) whenever A, B ∈ 2X) is called a topological space.
Given closure or topological spaces (X, u) and (X ′, u′), a map f : X → X ′ is said
to be continuous (resp. closed) if the map f+ : 2X → 2X

′

is continuous (resp.
closed) (cf. [10]). It is well known that, when replacing f−1 by f− in conditions
(3) and (4) of the previous statement, each of the two conditions is equivalent to
the continuity of f . Of course, regularity of f+ is in general weaker than continuity
of f+ (f+ need not be a morphism). But, if f is a surjection, then f+ is regular
if and only if f+ is continuous (by Example 2.8 and Theorem 3.2).

Proposition 3.4. Let (L, u), (L′, u′) and (L′′, u′′) be closure systems and let f :
L → L′, g : L′ → L′′ be maps, g monotone. If both f and g are continuous, then
so is g ◦ f .

Proof. We have f(u(x)) ≤′ u′(f(x)) for every x ∈ L and g(u′(y)) ≤′′ u′′(g(y))
for every y ∈ L′. Consequently, as g is monotone, g(f(u(x))) ≤′′ g(u′(f(x))) ≤′′

u′′(g(f(x))). This means that g ◦ f is continuous. 2

Proposition 3.5. Let (L, u), (L′, u′) and (L′′, u′′) be closure systems and let f :
L → L′, g : L′ → L′′ be morphisms. If both f and g are regular, then so is g ◦ f .

Proof. The statement follows from Theorem 3.2 and Proposition 3.4. 2

Clearly, an identity map between closure systems is both continuous and reg-
ular. Thus, by Propositions 2.7, 3.4 and 3.5, closure systems with continuous
monotone maps form a category and so do closure systems with regular mor-
phisms. By Theorem 3.2, the latter category is a subcategory of the former one.

Proposition 3.6. Let (L, u), (L′, u′) be closure systems and let f : L → L′ be a
monotone map. Then f is closed if and only if u′(f(x)) ≤′ f(u(x)) for all x ∈ L.

Proof. Let f be closed and let x ∈ X . By monotonicity, x ≤ u(x) implies f(x) ≤′

f(u(x)). But, because u(x) is closed and also f is closed, u′(f(x)) ≤′ f(u(x)).
Conversely, let all elements x ∈ L fulfill u′(f(x)) ≤′ f(u(x)) and let y ∈ L be a
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closed element. Then u′(f(y)) ≤′ f(y). But, we also have f(y) ≤′ u′(f(y)), so
that equality holds. 2

Now, Proposition 3.6 and Definition 3.1b) clearly give

Corollary 3.7. Let (L, u), (L′, u′) be closure systems and let f : L → L′ be a
monotone map. Then f is closed and continuous if and only if f(u(x)) = u′(f(x))
for all x ∈ L.

Corollary 3.8. Let (L, u), (L′, u′) be closure systems and let f : L → L′ be a
morphism. Then f is closed and regular if and only if f(u(x)) = u′(f(x)) for all
x ∈ L.

Proof. The statement follows from Corollary 3.7 and Theorem 3.2.
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