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Abstract : We discuss in this paper a double inequality related with the factorial
function due to J. Sandor and L. Debnath [On certain inequalities involving the

constant e and their applications J. Math. Anal. Appl. 249 (2000) 569-582]. We
establish here an asymptotic exapansion, leading to a new accurate approximation
formula which provides all exact digits of n!, for every n ≤ 28.
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1 Introduction

J. Sandor and L. Debnath proved in [11] the following double inequality related
to the Stirling’s formula:
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In [3], S. Guo rediscovered this formula and other similar estimations was further
established.

In the recent paper [2], N. Batir refined and extended inequalities (1.1) to the
form
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with the sharp constants α = 1−2πe−2 and β = 1/6. It is also verified by numerical
methods that the approximation with β = 1/6,
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is very performant, for example it is stronger than the Burnside’s formula (see,
e.g., [1]):
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= γn.

The sequence βn defined in (1.2) is known to be one of the most accurate ap-
proximations of large factorials, having a simple form. In fact, one can show that
n! < βn < γn.

2 Main Results

We are interested in finding a performant approximation formula of the form
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by studying the behaviour of the sequence
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which satisfies the approximation (2.1) with equality.
For the sequence an = lnλn, we will use an elementary lemma and the Maple

software to give the following iterated speed of convergence:
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From here it results that there exists a sequence (θn)
n≥1 , convergent to 1, such

that
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then, by succesive computations, we deduce that
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By exponentiating and by replacing in (2.1), we obtain the approximation formula:
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If we make use of the approximation exp t ≈ t + 1, near the origin, then we obtain
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which also proves the sharpness of the constant β = 1/6 in the double inequality
(1.2). Better approximations can be obtained from (2.3) using exp t ≈ 1 + t +
t2/2! + t3/3! + · · · instead exp t ≈ 1 + t.

Furthermore, by replacing θn by 1 in equalities (2.3)-(2.4), we obtain the ap-
proximation formula
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and much performant approximation formula
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(2.6)
For example, by considering only the first terms from (2.5), we have already obtain
a stronger result than (1.2), namely
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The approximation κn from (2.6) is very accurate, as we can see from the following
table:

n! κn

5 5! + 9.4364× 10−11

7 7! + 2.7996× 10−11

10 10! + 1.0118× 10−10

15 15! + 8.5941× 10−8

20 20! + 2.1613× 10−3

23 23! + 2.8327
26 26! + 7042.1
28 28! + 1.7538× 106

If we remember that the last digits of the factorials are zeroes (28! ends with six
zeroes), then it results from this table that the formula κn gives all exact digits of
the factorials, for every n ≤ 28.

3 The Proofs
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The speed of convergence (2.2) will be calculated using the following
Lemma 3.1 (Stolz-Cesaro). Let (an)

n≥1 and (bn)
n≥1 be two sequences of

real numbers convergent to zero, (bn)
n≥1 strictly decreasing, such that exists the

limit
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A similar form of this lemma was recently used by Mortici [4]-[10] to accelerate
some convergences or to construct asymptotic series.

Now, we compute succesively the limits from (2.2) using the Lemma 3.1 and
the identity
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Hence
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The other iterated limits from (2.2) can be obtained similarly. Here, we calculated
the limits (3.1)-(3.2) and their higher order counterparts using the Maple software.

It seems that our ideas and Lemma 3.1 can have many other practical applica-
tions. In this way, elementary methods for asymptotic analysis can be developed,
which will replace the well known methods using convexity or variation of some
involved auxiliary functions.
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