Thai Journal of Mathematics Volume 8 (2010) Number 2 : 221–233

www.math.science.cmu.ac.th/thaijournal Online ISSN 1686-0209

Fine Spectrum of the Generalized Difference Operator Δ_v on Sequence Space l_1

P.D. Srivastava and S. Kumar

Abstract : The purpose of this paper is to determine spectrum and fine spectrum of the operator Δ_v on sequence space l_1 . The operator Δ_v on l_1 is defined by $\Delta_v x = (v_n x_n - v_{n-1} x_{n-1})_{n=0}^{\infty}$ with $x_{-1} = 0$, where $x = (x_n) \in l_1$ and $v = (v_k)$ is either constant or strictly decreasing sequence of positive real numbers satisfying certain conditions. In this paper we have obtained the results on spectrum and point spectrum for the operator Δ_v over the sequence space l_1 . Further, the results on continuous spectrum, residual spectrum and fine spectrum of the operator Δ_v on space l_1 are also derived

Keywords : Spectrum of an operator, Generalized difference operator, Sequence spaces.

2000 Mathematics Subject Classification: 47A10, 47B39, 46A45.

1 Introduction

Let $v = (v_k)$ be either constant or strictly decreasing sequence of positive real numbers satisfying

$$\lim_{k \to \infty} v_k = L > 0 \text{ and} \tag{1.1}$$

$$\sup_{k} v_k \leq 2L. \tag{1.2}$$

We introduce the operator Δ_v on sequence space l_1 as follows;

 $\Delta_v: l_1 \to l_1$ is defined by,

 $\Delta_v x = \Delta_v (x_n) = (v_n x_n - v_{n-1} x_{n-1})_{n=0}^{\infty}$ with $x_{-1} = 0$, where $x \in l_1$.

Copyright \bigodot 2010 by the Mathematical Association of Thailand. All rights reserved.

It is easy to verify that the operator Δ_v can be represented by the matrix

$$\Delta_v = \begin{pmatrix} v_0 & 0 & 0 & \dots \\ -v_0 & v_1 & 0 & \dots \\ 0 & -v_1 & v_2 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

The fine spectrum of the Cesaro operator on sequence space l_p is studied by Gonzalez [5], where 1 . The spectrum of the Cesaro operator on sequencespaces bv_0 and bv is also investigated by Okutoyi [9] and Okutoyi [10], respectively. Spectrum and fine spectrum of the difference operator Δ over sequence spaces l_1 and bv is determined by K. Kayaduman and H. Furkan [7]. The fine spectra of the difference operator Δ over sequence space l_p is determined by Akhmedov and Basar [1], where $1 \leq p < \infty$. Furthermore, the fine spectrum of the operator B(r,s) on the sequence spaces l_1 and bv is examined by H. Furkan, H. Bilgic and K. Kayaduman [3]. Recently, H. Bilgic and H. Furkan [2] studied the spectrum and fine spectrum for the operator B(r, s, t) over sequence spaces l_1 and bv.

In this paper we determine spectrum, point spectrum, continuous spectrum and residual spectrum of the operator Δ_v on sequence space l_1 . The results of this paper not only generalize the corresponding results of [7] but also give results for some more operators.

$\mathbf{2}$ Preliminaries and notation

Let X and Y be Banach spaces and $T: X \to Y$ be a bounded linear operator. The set of all bounded linear operators on X into itself is denoted by B(X). The adjoint $T^{\times}: X^{\star} \to X^{\star}$ of T is defined by

$$(T^{\times}\phi)(x) = \phi(Tx)$$
 for all $\phi \in X^{\star}$ and $x \in X$.

Clearly, T^{\times} is a bounded linear operator on the dual space X^{\star} .

Let $X \neq \{0\}$ be a complex normed space and $T: D(T) \to X$ be a linear operator with domain $D(T) \subseteq X$. With T, we associate the operator T_{α} $(T - \alpha I)$, where α is a complex number and I is the identity operator on D(T). The inverse of T_{α} (if exists) is denoted by T_{α}^{-1} and call it the resolvent operator of T. Many properties of T_{α} and T_{α}^{-1} depend on α , and spectral theory is concerned with those properties. We are interested in the set of all α in the complex plane such that T_{α}^{-1} exists/ T_{α}^{-1} is bounded/ domain of T_{α}^{-1} is dense in X. We need some definitions and known results which will be used in the sequel.

Definition 2.1. ([6], pp. 371) Let $X \neq \{0\}$ be a complex normed space and $T: D(T) \to X$ be a linear operator with domain $D(T) \subset X$. A regular value of T is a complex number α such that

(R1) T_{α}^{-1} exists, (R2) T_{α}^{-1} is bounded, (R3) T_{α}^{-1} is defined on a set which is dense in X.

Resolvent set $\rho(T, X)$ of T is the set of all regular values α of T. Its complement $\sigma(T, X) = \mathbb{C} \setminus \rho(T, X)$ in the complex plane \mathbb{C} is called the *spectrum* of T. Furthermore, the spectrum $\sigma(T, X)$ is partitioned into three disjoint sets namely point spectrum, continuous spectrum and residual spectrum as follows:

Point spectrum $\sigma_p(T, X)$ is the set of all $\alpha \in \mathbb{C}$ such that T_{α}^{-1} does not exist. The element of $\sigma_p(T, X)$ is called *eigenvalue* of T.

Continuous spectrum $\sigma_c(T, X)$ is the set of all $\alpha \in \mathbb{C}$ such that T_{α}^{-1} exists and

satisfies (R3) but not (R2), i.e., range of T_{α} is dense in X and T_{α}^{-1} is unbounded. Residual spectrum $\sigma_r(T, X)$ is the set of all $\alpha \in \mathbb{C}$ such that T_{α}^{-1} exists but do not satisfy (R3), i.e., domain of T_{α}^{-1} is not dense in X. The condition (R2) may or may not holds good.

Goldberg's classification of operator T_{α} (see [4], pp. 58): Let X be a Banach space and $T_{\alpha} \in B(X)$, where α is a complex number. Again, let $R(T_{\alpha})$ and T_{α}^{-1} be denote the range and inverse of the operator T_{α} , respectively. Then following possibilities may occur;

(A) $R(T_{\alpha}) = X$, $(B) \underline{R(T_{\alpha})} \neq \overline{R(T_{\alpha})} = X,$ (C) $\overline{R(T_{\alpha})} \neq X$, and

(1) T_{α} is injective and T_{α}^{-1} is continuous, (2) T_{α} is injective and T_{α}^{-1} is discontinuous, (3) T_{α} is not injective.

Remark 2.1. Combining (A), (B), (C) and (1), (2), (3); we get nine different states. These are labeled by A_1 , A_2 , A_3 , B_1 , B_2 , B_3 , C_1 , C_2 and C_3 . We use $\alpha \in B_2\sigma(T,X)$ means the operator $T_\alpha \in B_2$, i.e., $R(T_\alpha) \neq \overline{R(T_\alpha)} = X$ and T_α is injective but T_{α}^{-1} is discontinuous. Similarly others.

Remark 2.2. If α is a complex number such that $T_{\alpha} \in A_1$ or $T_{\alpha} \in B_1$, then α belongs to the resolvent set $\rho(T, X)$ of T on X. The other classification gives rise to the fine spectrum of T.

Definition 2.2. ([8], pp. 220-221) Let λ , μ be two nonempty subsets of the space w of all real or complex sequences and $A = (a_{nk})$ an infinite matrix of complex numbers a_{nk} , where $n, k \in \mathbb{N}_0 = \{0, 1, 2, \dots\}$. For every $x = (x_k) \in \lambda$ and every integer n we write

$$A_n(x) = \sum_k a_{nk} x_k,$$

where the sum without limits is always taken from k = 0 to $k = \infty$. The sequence $Ax = (A_n(x))$, if it exists, is called the transformation of x by the matrix A. Infinite matrix $A \in (\lambda, \mu)$ if and only if $Ax \in \mu$ whenever $x \in \lambda$.

Lemma 2.1. ([11], pp. 126) The matrix $A = (a_{nk})$ gives rise to a bounded linear operator $T \in B(l_1)$ from l_1 to itself if and only if the supremum of l_1 norms of the columns of A is bounded.

Lemma 2.2. ([4], pp. 59) T has a dense range if and only if T^{\times} is one to one, where T^{\times} denotes the adjoint operator of the operator T.

Lemma 2.3. ([4], pp. 60) The adjoint operator T^{\times} of T is onto if and only if T has a bounded inverse.

3 Spectrum and point spectrum of the operator Δ_v on sequence space l_1

In this section we obtain spectrum and point spectrum of the operator Δ_v on sequence space l_1 . Throughout this paper, the sequence $v = (v_k)$ satisfy conditions (1.1) and (1.2).

Theorem 3.1. The operator $\Delta_v : l_1 \to l_1$ is a bounded linear operator and

$$\|\Delta_v\|_{(l_1,l_1)} = 2 \sup_k (v_k).$$

Proof. Proof is simple. So we omit.

Theorem 3.2. The spectrum of Δ_v on sequence space l_1 is given by

$$\sigma(\Delta_v, l_1) = \left\{ \alpha \in \mathbb{C} : \left| 1 - \frac{\alpha}{L} \right| \le 1 \right\}.$$

Proof. The proof of this theorem is divided into two parts. In the first part, we show that $\sigma(\Delta_v, l_1) \subseteq \left\{ \alpha \in \mathbb{C} : \left| 1 - \frac{\alpha}{L} \right| \leq 1 \right\}$ or equivalent to show that

$$\alpha \in \mathbb{C}$$
 with $\left|1 - \frac{\alpha}{L}\right| > 1$ implies $\alpha \notin \sigma(\Delta_v, l_1)$, i.e., $\alpha \in \rho(\Delta_v, l_1)$.

In the second part, we establish the reverse inequality, i.e.,

$$\left\{ \alpha \in \mathbb{C} : \left| 1 - \frac{\alpha}{L} \right| \le 1 \right\} \subseteq \sigma(\Delta_v, l_1).$$

Let $\alpha \in \mathbb{C}$ with $|1 - \frac{\alpha}{L}| > 1$. Clearly, $\alpha = L$ as well as $\alpha = v_k$ for any k do not satisfied. So $\alpha \neq L$ and $\alpha \neq v_k$ for each $k \in \mathbb{N}_0$. Consequently, $(\Delta_v - \alpha I) = (a_{nk})$ as a triangle and hence has an inverse $(\Delta_v - \alpha I)^{-1} = (b_{nk})$, where

$$(b_{nk}) = \begin{pmatrix} \frac{1}{(v_0 - \alpha)} & 0 & 0 & \cdots \\ \frac{v_0}{(v_0 - \alpha)(v_1 - \alpha)} & \frac{1}{(v_1 - \alpha)} & 0 & \cdots \\ \frac{v_0 v_1}{(v_0 - \alpha)(v_1 - \alpha)(v_2 - \alpha)} & \frac{v_1}{(v_1 - \alpha)(v_2 - \alpha)} & \frac{1}{(v_2 - \alpha)} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

By Lemma 2.1, the operator $(\Delta_v - \alpha I)^{-1} \in (l_1, l_1)$ if $\sup_k \sum_{n=0}^{\infty} |b_{nk}| < \infty$. In order to show $\sup_k \sum_{n=0}^{\infty} |b_{nk}| < \infty$, first we prove that the series $\sum_{n=0}^{\infty} |b_{nk}|$ is convergent for each $k \in \mathbb{N}_0$. Let $S_k = \sum_{n=0}^{\infty} |b_{nk}|$. Then the series $S_0 = \sum_{n=0}^{\infty} |b_{no}|$ $= \left| \frac{1}{v_0 - \alpha} \right| + \sum_{n=1}^{\infty} \left| \frac{v_0 v_1 \cdots v_{n-1}}{(v_0 - \alpha)(v_1 - \alpha) \cdots (v_n - \alpha)} \right|$ (3.1)

is convergent because

$$\lim_{n \to \infty} \left| \frac{b_{n+1,0}}{b_{n0}} \right| = \lim_{n \to \infty} \left| \frac{v_n}{v_{n+1} - \alpha} \right| = \frac{1}{\left| 1 - \frac{\alpha}{L} \right|} < 1.$$

Similarly, we can show that the series $S_k = \sum_{n=0}^{\infty} |b_{nk}|$ is convergent for any $k = 1, 2, 3, \cdots$.

Now we claim that $\sup_k S_k$ is finite. We have

$$S_k = \frac{1}{|v_k - \alpha|} + \frac{|v_k|}{|v_k - \alpha| |v_{k+1} - \alpha|} + \cdots$$
 (3.2)

Let $\beta = \lim_{k \to \infty} \left| \frac{v_k}{v_{k+1} - \alpha} \right|$. Since modulus function is continuous, so

$$\beta = \left| \frac{L}{L - \alpha} \right|,\tag{3.3}$$

which shows that $0 < \beta < 1$ and gives

$$\lim_{k \to \infty} \left| \frac{1}{v_k - \alpha} \right| = \lim_{k \to \infty} \left(\left| \frac{v_{k-1}}{v_k - \alpha} \right| \left| \frac{1}{v_{k-1}} \right| \right) = \frac{\beta}{L}.$$
(3.4)

Taking limit both sides of equation (3.2) and using equations (3.3) and (3.4), we get

$$\lim_{k \to \infty} S_k = \frac{\beta}{L} \left(\frac{1}{1 - \beta} \right) < \infty.$$

Since (S_k) is a sequence of positive real numbers and $\lim_{k\to\infty} S_k < \infty$, so $\sup_k S_k < \infty$. Thus,

$$(\Delta_v - \alpha I)^{-1} \in B(l_1) \text{ for } \alpha \in \mathbb{C} \text{ with } \left|1 - \frac{\alpha}{L}\right| > 1.$$
 (3.5)

Next, we show that domain of the operator $(\Delta_v - \alpha I)^{-1}$ is dense in l_1 equivalent to say that range of the operator $(\Delta_v - \alpha I)$ is dense in l_1 , which follows immediately as the operator $(\Delta_v - \alpha I)$ is onto. Hence we have

$$\sigma\left(\Delta_{v}, l_{1}\right) \subseteq \left\{\alpha \in \mathbb{C} : \left|1 - \frac{\alpha}{L}\right| \le 1\right\}.$$
(3.6)

Conversely, it is required to show

$$\left\{ \alpha \in \mathbb{C} : \left| 1 - \frac{\alpha}{L} \right| \le 1 \right\} \subseteq \sigma(\Delta_v, l_1).$$
(3.7)

First we prove inclusion (3.7) under the assumption that $\alpha \neq L$ as well as $\alpha \neq v_k$ for each $k \in \mathbb{N}_0$, i.e., one of the conditions of Definition 2.1 fails. Let $\alpha \in \mathbb{C}$ with $\left|1 - \frac{\alpha}{L}\right| \leq 1$. Clearly, $(\Delta_v - \alpha I)$ is a triangle and hence $(\Delta_v - \alpha I)^{-1}$ exists. So condition (R1) is satisfied but condition (R2) fails as can be seen below:

Suppose $\alpha \in \mathbb{C}$ with $\left|1 - \frac{\alpha}{L}\right| < 1$. Then by equation (3.1), the series S_0 is divergent because

$$\lim_{n \to \infty} \left| \frac{b_{n+1,0}}{b_{n0}} \right| = \lim_{n \to \infty} \left| \frac{v_n}{v_{n+1} - \alpha} \right| = \frac{1}{\left| 1 - \frac{\alpha}{L} \right|} > 1.$$

So $\sup S_k$ is unbounded. Hence

i

$$(\Delta_v - \alpha I)^{-1} \notin B(l_1) \text{ for } \alpha \in \mathbb{C} \text{ with } \left|1 - \frac{\alpha}{L}\right| < 1.$$
 (3.8)

Next, we consider $\alpha \in \mathbb{C}$ with $|1 - \frac{\alpha}{L}| = 1$, i.e., $|L - \alpha| = L$ which implies $|v_n - \alpha| \leq |v_n|$ for each n, therefore $\frac{1}{|v_n|} \leq \frac{1}{|v_n - \alpha|}$ for each n. Using this inequality and equation (3.1), the series $S_0 \geq \sum_{n=0}^{\infty} \frac{1}{v_n}$ is divergent due to the fact that $v_n > 0$ for all n and $\lim_{n \to \infty} \frac{1}{v_n} = \frac{1}{L} \neq 0$. Thus, $\sup_k S_k$ is unbounded. Hence

$$(\Delta_v - \alpha I)^{-1} \notin B(l_1) \text{ for } \alpha \in \mathbb{C} \text{ with } \left|1 - \frac{\alpha}{L}\right| = 1.$$
 (3.9)

Finally, we prove the inclusion (3.7) under the assumption that $\alpha = L$ as well as $\alpha = v_k$ for all $k \in \mathbb{N}_0$. We have

$$(\Delta_v - v_k I) x = \begin{pmatrix} (v_0 - v_k) x_0 \\ -v_0 x_0 + (v_1 - v_k) x_1 \\ \vdots \\ -v_{k-1} x_{k-1} \\ -v_k x_k + (v_{k+1} - v_k) x_{k+1} \\ \vdots \end{pmatrix}$$

Case(i): If (v_k) is a constant sequence, say $v_k = L$ for all $k \in \mathbb{N}_0$, then $(\Delta_v - v_k I) x = \mathbf{0} \implies x_0 = 0, x_1 = 0, x_2 = 0, \cdots$. This shows that the operator $(\Delta_v - \alpha I)$ is one to one, but $R(\Delta_v - \alpha I)$ is not dense in l_1 . So condition (R3) fails. Hence $L \in \sigma(\Delta_v, l_1)$.

Case(ii): If (v_k) is strictly decreasing sequence, then for fixed k,

$$\Delta_v - v_k I) \, x = \mathbf{0}$$

 $\Rightarrow x_0 = 0, \ x_1 = 0, \ \cdots, \ x_{k-1} = 0, \ x_{n+1} = \left(\frac{v_n}{v_{n+1} - v_k}\right) x_n \text{ for all } n \ge k.$ This shows that $(\Delta_v - v_k I)$ is not injective. So condition (R1) fails. Hence $v_k \in$

 $\begin{aligned} \sigma\left(\Delta_{v},l_{1}\right) \text{ for all } k \in \mathbb{N}_{0}. \\ \text{Again, if } \alpha = L, \text{ then } |v_{n} - \alpha| < |v_{n}| \text{ for each } n, \text{ i.e., } \frac{1}{|v_{n}|} < \frac{1}{|v_{n} - \alpha|} \text{ for each } \end{aligned}$

n. Using this inequality and equation (3.1), the series $S_0 > \sum_{n=0}^{\infty} \frac{1}{v_n}$ is divergent due

to fact that $v_n > 0$ for all n and $\lim_{n \to \infty} \frac{1}{v_n} = \frac{1}{L} \neq 0$. Thus, $\sup_k S_k$ is unbounded. So condition (R2) fails. Hence

$$(\Delta_v - \alpha I)^{-1} \notin B(l_1) \text{ for } \alpha = L.$$
(3.10)

So $L \in \sigma(\Delta_v, l_1)$. Thus, in this case also $v_k \in \sigma(\Delta_v, l_1)$ for all $k \in \mathbb{N}_0$ and $L \in \sigma(\Delta_v, l_1)$. Hence we have

$$\left\{ \alpha \in \mathbb{C} : \left| 1 - \frac{\alpha}{L} \right| \le 1 \right\} \subseteq \sigma \left(\Delta_v, l_1 \right).$$
(3.11)

From inclusions (3.6) and (3.11), we get

$$\sigma(\Delta_v, l_1) = \left\{ \alpha \in \mathbb{C} : \left| 1 - \frac{\alpha}{L} \right| \le 1 \right\}.$$

Theorem 3.3. Point spectrum of the operator Δ_v over l_1 is given by

$$\sigma_p \left(\Delta_v, l_1 \right) = \begin{cases} \emptyset, \text{ if } (v_k) \text{ is a constant sequence.} \\ \{v_0, v_1, v_2, \cdots\}, \text{ if } (v_k) \text{ is a strictly decreasing sequence.} \end{cases}$$

Proof. The proof of this theorem is divided into two cases.

Case(i): Suppose (v_k) is a constant sequence, say $v_k = L$ for all $k \in \mathbb{N}_0$. Consider $\Delta_v x = \alpha x$ for $x \neq \mathbf{0} = (0, 0, \cdots)$ in l_1 , which gives

$$\begin{array}{c}
v_{0}x_{0} = \alpha x_{0} \\
-v_{0}x_{0} + v_{1}x_{1} = \alpha x_{1} \\
-v_{1}x_{1} + v_{2}x_{2} = \alpha x_{2} \\
\vdots \\
-v_{k-1}x_{k-1} + v_{k}x_{k} = \alpha x_{k} \\
\vdots \\
\end{array}$$
(3.12)

Let x_t be the first non-zero entry of the sequence $x = (x_n)$, so we get $-Lx_{t-1} + Lx_t = \alpha x_t$, which implies $\alpha = L$ and from the equation

$$-Lx_t + Lx_{t+1} = \alpha x_{t+1},$$

we get $x_t = 0$, which is a contradiction to our assumption. Therefore,

$$\sigma_p(\Delta_v, l_1) = \emptyset.$$

Case(ii): Suppose (v_k) is a strictly decreasing sequence. Consider $\Delta_v x = \alpha x$ for $x \neq \mathbf{0} = (0, 0, \cdots)$ in l_1 , which gives system of equations (3.12). If $\alpha = v_0$, then

$$\begin{aligned} x_k &= \left(\frac{v_{k-1}}{v_k - v_0}\right) x_{k-1} \text{ for all } k \ge 1 \\ &= \left[\frac{v_{k-1}v_{k-2}\cdots v_0}{(v_k - v_0)(v_{k-1} - v_0)\cdots (v_1 - v_0)}\right] x_0 \text{ for all } k \ge 1. \end{aligned}$$

If we take $x_0 \neq 0$, then get non-zero solution of $(\Delta_v - v_0 I) x = \mathbf{0}$. Similarly, if $\alpha = v_k$ for all $k \geq 1$, then $x_{k-1} = 0$, $x_{k-2} = 0$, \cdots , $x_0 = 0$ and

$$x_{n+1} = \left(\frac{v_n}{v_{n+1} - v_k}\right) x_n \text{ for all } n \ge k$$
$$= \left[\frac{v_n v_{n-1} \cdots v_k}{(v_{n+1} - v_k)(v_n - v_k) \cdots (v_{k+1} - v_k)}\right] x_k \text{ for all } n \ge k.$$

If we take $x_k \neq 0$, then get non-zero solution of $(\Delta_v - v_k I) x = 0$. Hence

$$\sigma_p\left(\Delta_v, l_1\right) = \{v_0, v_1, v_2, \cdots\}.$$

4 Residual and continuous spectrum of the operator Δ_v on sequence space l_1

We need result of point spectrum of the operator Δ_v^{\times} on l_1^{\star} for obtaining residual and continuous spectrum. So first we determine point spectrum of the dual operator Δ_v^{\times} of Δ_v on space l_1^{\star} .

Let $T: l_1 \to l_1$ be a bounded linear operator having matrix representation Aand the dual space of l_1 denoted by l_1^* . Then the adjoint operator $T^{\times}: l_1^* \to l_1^*$ is defined by the transpose of the matrix A.

Theorem 4.1. Point spectrum of the operator Δ_v^{\times} over l_1^{\star} is

$$\sigma_p(\Delta_v^{\times}, l_1^{\star}) = \left\{ \alpha \in \mathbb{C} : \left| 1 - \frac{\alpha}{L} \right| \le 1 \right\}.$$

Fine spectrum of the generalized difference operator Δ_v on sequence space $l_1 229$

Proof. Suppose $\Delta_v^{\times} f = \alpha f$ for $\mathbf{0} \neq f \in l_1^{\star} \cong l_{\infty}$, where

$$\Delta_v^{\times} = \begin{pmatrix} v_0 & -v_0 & 0 & \dots \\ 0 & v_1 & -v_1 & \dots \\ 0 & 0 & v_2 & \dots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \text{ and } f = \begin{pmatrix} f_0 \\ f_1 \\ f_2 \\ \vdots \end{pmatrix}.$$

This gives

$$f_k = \left[\frac{(v_{k-1} - \alpha)(v_{k-2} - \alpha)\cdots(v_0 - \alpha)}{v_{k-1}v_{k-2}\cdots v_0}\right] f_0 \text{ for all } k \ge 1.$$

Hence

$$|f_k| = \left| \frac{(v_{k-1} - \alpha)(v_{k-2} - \alpha) \cdots (v_0 - \alpha)}{v_{k-1} v_{k-2} \cdots v_0} \right| |f_0| \text{ for all } k \ge 1.$$
(4.1)

 But

$$\begin{aligned} |v_{k-1} - \alpha| &\leq (v_{k-1} - L) + |L - \alpha| \\ \Rightarrow \left| \frac{v_{k-1} - \alpha}{v_{k-1}} \right| &\leq 1 \text{ for all } k \geq 1 \text{ provided } \left| 1 - \frac{\alpha}{L} \right| \leq 1. \end{aligned}$$

Using equation (4.1), we get

$$|f_k| \le |f_0|$$
 for all $k \ge 1$. So $\sup_k |f_k| < \infty$.

Hence

$$\left|1 - \frac{\alpha}{L}\right| \le 1 \quad \Rightarrow \quad \sup_{k} |f_k| < \infty.$$

Converse follows from the fact that

$$\begin{split} \sup_{k} |f_{k}| < \infty \quad \Rightarrow \quad \left| \frac{v_{k-1} - \alpha}{v_{k-1}} \right| &\leq 1 \text{ for all } k \geq m, \\ & \text{where } m \text{ is a positive integer.} \\ & \Rightarrow \quad \lim_{k \to \infty} \left| \frac{v_{k-1} - \alpha}{v_{k-1}} \right| \leq 1 \\ & \Rightarrow \quad \left| 1 - \frac{\alpha}{L} \right| \leq 1. \end{split}$$

Hence

$$\sup_{k} |f_k| < \infty \quad \Rightarrow \quad \left| 1 - \frac{\alpha}{L} \right| \le 1.$$

This means that $f \in l_1^{\star}$ if and only if $f_0 \neq 0$ and $\left|1 - \frac{\alpha}{L}\right| \leq 1$. Hence

$$\sigma_p(\Delta_v^{\times}, l_1^{\star}) = \Big\{ \alpha \in \mathbb{C} : \Big| 1 - \frac{\alpha}{L} \Big| \le 1 \Big\}.$$

Theorem 4.2. Residual spectrum $\sigma_r(\Delta_v, l_1)$ of the operator Δ_v over l_1 is

$$\sigma_r(\Delta_v, l_1) = \begin{cases} \left\{ \alpha \in \mathbb{C} : \left| 1 - \frac{\alpha}{L} \right| \le 1 \right\}, \text{ if } (v_k) \text{ is a constant sequence} \\ \left\{ \alpha \in \mathbb{C} : \left| 1 - \frac{\alpha}{L} \right| \le 1 \right\} \setminus \{v_0, v_1, v_2, \cdots\}, \text{ if} \\ (v_k) \text{ is a strictly decreasing sequence.} \end{cases}$$

Proof. The proof of this theorem is divided into two cases. Case(i): Let (v_k) be a constant sequence. For $\alpha \in \mathbb{C}$ with $|1 - \frac{\alpha}{L}| \leq 1$, the operator $(\Delta_v - \alpha I)$ is a triangle except $\alpha = L$ and consequently, the operator $(\Delta_v - \alpha I)$ has an inverse. Further by Theorem 3.3, the operator $(\Delta_v - \alpha I)$ is one to one for $\alpha = L$ and hence has an inverse.

But by Theorem 4.1, the operator $(\Delta_v - \alpha I)^{\times} = \Delta_v^{\times} - \alpha I$ is not one to one for $\alpha \in \mathbb{C}$ with $|1 - \frac{\alpha}{L}| \leq 1$. Hence by Lemma 2.2, the range of the operator $(\Delta_v - \alpha I)$ is not dense in l_1 . Thus,

$$\sigma_r\left(\Delta_v, l_1\right) = \left\{\alpha \in \mathbb{C} : \left|1 - \frac{\alpha}{L}\right| \le 1\right\}.$$

Case(ii): Let (v_k) be a strictly decreasing sequence with $\lim_{k\to\infty} v_k = L$. For $\alpha \in \mathbb{C}$ such that $\left|1 - \frac{\alpha}{L}\right| \leq 1$, the operator $(\Delta_v - \alpha I)$ is a triangle except $\alpha = v_k$ for all $k \in \mathbb{N}_0$ and consequently, the operator $(\Delta_v - \alpha I)$ has an inverse. Further by Theorem 3.3, the operator $(\Delta_v - v_k I)$ is not one to one and hence $(\Delta_v - v_k I)^{-1}$ does not exists for all $k \in \mathbb{N}_0$.

On the basis of argument as given in case(i), it is easy to verify that the range of the operator $(\Delta_v - \alpha I)$ is not dense in l_1 . Thus,

$$\sigma_r\left(\Delta_v, l_1\right) = \left\{\alpha \in \mathbb{C} : \left|1 - \frac{\alpha}{L}\right| \le 1\right\} \setminus \{v_0, v_1, v_2, \cdots\}.$$

Theorem 4.3. Continuous spectrum $\sigma_c(\Delta_v, l_1)$ of the operator Δ_v over l_1 is $\sigma_c(\Delta_v, l_1) = \emptyset$.

Proof. It is known that $\sigma_p(\Delta_v, l_1)$, $\sigma_r(\Delta_v, l_1)$ and $\sigma_c(\Delta_v, l_1)$ are pairwise disjoint sets and union of these sets is $\sigma(\Delta_v, l_1)$. But by Theorems 3.2, 3.3 and 4.2; we get

$$\sigma\left(\Delta_{v}, l_{1}\right) = \sigma_{p}\left(\Delta_{v}, l_{1}\right) \cup \sigma_{r}\left(\Delta_{v}, l_{1}\right).$$

Therefore, $\sigma_c(\Delta_v, l_1) = \emptyset$.

5 Fine spectrum of the operator Δ_v on sequence space l_1

Theorem 5.1. If α satisfies $\left|1 - \frac{\alpha}{L}\right| > 1$, then $(\Delta_v - \alpha I) \in A_1$.

Proof. It is required to show that the operator $(\Delta_v - \alpha I)$ is bijective and has a continuous inverse for $\alpha \in \mathbb{C}$ with $|1 - \frac{\alpha}{L}| > 1$. Since $\alpha \neq L$ and $\alpha \neq v_k$ for each $k \in \mathbb{N}_0$, therefore $(\Delta_v - \alpha I)$ is a triangle. Hence it has an inverse. The inverse of the operator $(\Delta_v - \alpha I)$ is continuous for $\alpha \in \mathbb{C}$ with $|1 - \frac{\alpha}{L}| > 1$ by statement (3.5). Also the equation

$$(\Delta_v - \alpha I) x = y \quad \text{gives} \quad x = (\Delta_v - \alpha I)^{-1} y,$$

i.e., $x_n = ((\Delta_v - \alpha I)^{-1} y)_n, \ n \in \mathbb{N}_0.$

Thus for every $y \in l_1$, we can find $x \in l_1$ such that

$$(\Delta_v - \alpha I)x = y$$
, since $(\Delta_v - \alpha I)^{-1} \in (l_1, l_1)$

This shows that operator $(\Delta_v - \alpha I)$ is onto and hence $(\Delta_v - \alpha I) \in A_1$.

Theorem 5.2. Let (v_k) be a constant sequence, say $v_k = L$ for all $k \in \mathbb{N}_0$. Then $L \in C_1 \sigma(\Delta_v, l_1)$.

Proof. We have

$$\sigma_r\left(\Delta_v, l_1\right) = \left\{\alpha \in \mathbb{C} : \left|1 - \frac{\alpha}{L}\right| \le 1\right\}.$$

Clearly, $L \in \sigma_r (\Delta_v, l_1)$. It is sufficient to show that the operator $(\Delta_v - LI)^{-1}$ is continuous. By Lemma 2.3, it is enough to show that $(\Delta_v - LI)^{\times}$ is onto, i.e., for given $y = (y_n) \in l_{\infty}$, we have to find $x = (x_n) \in l_{\infty}$ such that $(\Delta_v - LI)^{\times} x = y$. Now $(\Delta_v - LI)^{\times} x = y$, i.e.,

$$\begin{array}{rcrcrc} -Lx_1 &=& y_0\\ -Lx_2 &=& y_1\\ &\vdots\\ -Lx_i &=& y_{i-1}\\ &\vdots \end{array}$$

Thus, $-Lx_n = y_{n-1}$ for all $n \ge 1$, which implies $\sup_n |x_n| < \infty$, since $y \in l_\infty$ and $L \ne 0$. This shows that operator $(\Delta_v - LI)^{\times}$ is onto and hence $L \in C_1 \sigma (\Delta_v, l_1)$.

Theorem 5.3. Let (v_k) be a constant sequence, say $v_k = L$ for all $k \in \mathbb{N}_0$ and $\alpha \neq L$, $\alpha \in \sigma_r (\Delta_v, l_1)$. Then $\alpha \in C_2 \sigma (\Delta_v, l_1)$.

Proof. It is sufficient to show that the operator $(\Delta_v - \alpha I)^{-1}$ is discontinuous for $\alpha \neq L$ and $\alpha \in \sigma_r (\Delta_v, l_1)$. The operator $(\Delta_v - \alpha I)^{-1}$ is discontinuous by statements (3.8) and (3.9) for $L \neq \alpha \in \mathbb{C}$ with $|1 - \frac{\alpha}{L}| \leq 1$.

Theorem 5.4. Let (v_k) be a strictly decreasing sequence of positive real numbers and $\alpha \in \sigma_r(\Delta_v, l_1)$. Then $\alpha \in C_2 \sigma(\Delta_v, l_1)$.

Proof. It is sufficient to show that the operator $(\Delta_v - \alpha I)^{-1}$ is discontinuous for $\alpha \in \sigma_r (\Delta_v, l_1)$. The operator $(\Delta_v - \alpha I)^{-1}$ is discontinuous by statements (3.8), (3.9) and (3.10) for $v_k \neq \alpha \in \mathbb{C}$ with $\left|1 - \frac{\alpha}{L}\right| \leq 1$.

References

- [1] A.M. Akhmedov and F. Basar, On the fine spectra of the difference operator Δ over the sequence space l_p $(1 \le p < \infty)$, *Demonstratio Math.*, Vol. 39, No. 3 (2006) 585–595.
- [2] H. Bilgic and H. Furkan, On the fine spectrum of the operator B(r, s, t) over the sequence spaces l_1 and bv, Mathematical and Comp. Modelling, Vol. 45 (2007) 883–891.
- [3] H. Furkan, H. Bilgic and K. Kayaduman, On the fine spectrum of the generalized difference operator B(r, s) over the sequence spaces l_1 and bv, Hokkaido Math. J., Vol. 35, No. 4 (2006) 893–904.
- [4] S. Goldberg, Unbounded linear operators, *Dover Publications, Inc. New York*, 1985.
- [5] M. Gonzalez, The fine spectrum of the Cesaro operator in l_p (1 ,Arch. Math., Vol. 44 (1985) 355–358.
- [6] E. Kreyszig, Introductory functional analysis with applications, John Wiley and Sons Inc., New York, Chichester, Brisbane, Toronato, 1978.
- [7] K. Kayaduman and H. Furkan, The fine spectra of the difference operator Δ over the sequence spaces l₁ and bv, International Mathematical Forum, Vol. 1, No. 24 (2006) 1153–1160.
- [8] I.J. Maddox, Elements of functional analysis, *Cambridge University Press*, 1988.
- [9] J.I. Okutoyi, On the spectrum of C_1 as an operator on bv_0 , J. Austral. Math. Soc. Ser. A, Vol. 48 (1990) 79–86.
- [10] J.T. Okutoyi, On the spectrum of C₁ as an operator on bv, Commun. Fac. Sci. Univ. Ank. Ser. A₁, Vol. 41 (1992) 197–207.
- [11] A. Wilansky, Summability through functional analysis, North-Holland Mathematics Studies, North-Holland, Amsterdam, Vol. 85, 1984.

(Received 3 December 2009)

Fine spectrum of the generalized difference operator Δ_v on sequence space $l_1\,233$

P.D. Srivastava Department of Mathematics Indian Institute of Technology, Kharagpur Kharagpur - 721302, India E-mail: pds@maths.iitkgp.ernet.in

Sudhanshu Kumar Department of Mathematics Indian Institute of Technology, Kharagpur Kharagpur - 721302, India E-mail: sudhanshu_tomar@yahoo.com