Fine Spectrum of the Generalized Difference Operator Δ_{v} on Sequence Space l_{1}

P.D. Srivastava and S. Kumar

Abstract

The purpose of this paper is to determine spectrum and fine spectrum of the operator Δ_{v} on sequence space l_{1}. The operator Δ_{v} on l_{1} is defined by $\Delta_{v} x=\left(v_{n} x_{n}-v_{n-1} x_{n-1}\right)_{n=0}^{\infty}$ with $x_{-1}=0$, where $x=\left(x_{n}\right) \in l_{1}$ and $v=\left(v_{k}\right)$ is either constant or strictly decreasing sequence of positive real numbers satisfying certain conditions. In this paper we have obtained the results on spectrum and point spectrum for the operator Δ_{v} over the sequence space l_{1}. Further, the results on continuous spectrum, residual spectrum and fine spectrum of the operator Δ_{v} on space l_{1} are also derived

Keywords : Spectrum of an operator, Generalized difference operator, Sequence spaces.
2000 Mathematics Subject Classification : 47A10, 47B39, 46A45.

1 Introduction

Let $v=\left(v_{k}\right)$ be either constant or strictly decreasing sequence of positive real numbers satisfying

$$
\begin{align*}
\lim _{k \rightarrow \infty} v_{k} & =L>0 \text { and } \tag{1.1}\\
\sup _{k} v_{k} & \leq 2 L \tag{1.2}
\end{align*}
$$

We introduce the operator Δ_{v} on sequence space l_{1} as follows;
$\Delta_{v}: l_{1} \rightarrow l_{1}$ is defined by,

$$
\Delta_{v} x=\Delta_{v}\left(x_{n}\right)=\left(v_{n} x_{n}-v_{n-1} x_{n-1}\right)_{n=0}^{\infty} \text { with } x_{-1}=0, \text { where } x \in l_{1} .
$$

[^0]It is easy to verify that the operator Δ_{v} can be represented by the matrix

$$
\Delta_{v}=\left(\begin{array}{cccc}
v_{0} & 0 & 0 & \ldots \\
-v_{0} & v_{1} & 0 & \ldots \\
0 & -v_{1} & v_{2} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

The fine spectrum of the Cesaro operator on sequence space l_{p} is studied by Gonzalez [5], where $1<p<\infty$. The spectrum of the Cesaro operator on sequence spaces $b v_{0}$ and $b v$ is also investigated by Okutoyi [9] and Okutoyi [10], respectively. Spectrum and fine spectrum of the difference operator Δ over sequence spaces l_{1} and $b v$ is determined by K. Kayaduman and H. Furkan [7]. The fine spectra of the difference operator Δ over sequence space l_{p} is determined by Akhmedov and Basar [1], where $1 \leq p<\infty$. Furthermore, the fine spectrum of the operator $B(r, s)$ on the sequence spaces l_{1} and $b v$ is examined by H. Furkan, H. Bilgic and K. Kayaduman [3]. Recently, H. Bilgic and H. Furkan [2] studied the spectrum and fine spectrum for the operaor $B(r, s, t)$ over sequence spaces l_{1} and $b v$.

In this paper we determine spectrum, point spectrum, continuous spectrum and residual spectrum of the operator Δ_{v} on sequence space l_{1}. The results of this paper not only generalize the corresponding results of [7] but also give results for some more operators.

2 Preliminaries and notation

Let X and Y be Banach spaces and $T: X \rightarrow Y$ be a bounded linear operator. The set of all bounded linear operators on X into itself is denoted by $B(X)$. The adjoint $T^{\star}: X^{\star} \rightarrow X^{\star}$ of T is defined by

$$
\left(T^{\times} \phi\right)(x)=\phi(T x) \text { for all } \phi \in X^{\star} \text { and } x \in X
$$

Clearly, T^{\star} is a bounded linear operator on the dual space X^{\star}.
Let $X \neq\{\mathbf{0}\}$ be a complex normed space and $T: D(T) \rightarrow X$ be a linear operator with domain $D(T) \subseteq X$. With T, we associate the operator $T_{\alpha}=$ $(T-\alpha I)$, where α is a complex number and I is the identity operator on $D(T)$. The inverse of T_{α} (if exists) is denoted by T_{α}^{-1} and call it the resolvent operator of T. Many properties of T_{α} and T_{α}^{-1} depend on α, and spectral theory is concerned with those properties. We are interested in the set of all α in the complex plane such that T_{α}^{-1} exists/ T_{α}^{-1} is bounded/ domain of T_{α}^{-1} is dense in X. We need some definitions and known results which will be used in the sequel.
Definition 2.1. ([6], pp. 371) Let $X \neq\{0\}$ be a complex normed space and $T: D(T) \rightarrow X$ be a linear operator with domain $D(T) \subset X$. A regular value of T is a complex number α such that
(R1) T_{α}^{-1} exists,
(R2) T_{α}^{-1} is bounded,
(R3) T_{α}^{-1} is defined on a set which is dense in X.

Fine spectrum of the generalized difference operator Δ_{v} on sequence space $l_{1} 223$
Resolvent set $\rho(T, X)$ of T is the set of all regular values α of T. Its complement $\sigma(T, X)=\mathbb{C} \backslash \rho(T, X)$ in the complex plane \mathbb{C} is called the spectrum of T. Furthermore, the spectrum $\sigma(T, X)$ is partitioned into three disjoint sets namely point spectrum, continuous spectrum and residual spectrum as follows:

Point spectrum $\sigma_{p}(T, X)$ is the set of all $\alpha \in \mathbb{C}$ such that T_{α}^{-1} does not exist. The element of $\sigma_{p}(T, X)$ is called eigenvalue of T.

Continuous spectrum $\sigma_{c}(T, X)$ is the set of all $\alpha \in \mathbb{C}$ such that T_{α}^{-1} exists and satisfies (R3) but not (R2), i.e., range of T_{α} is dense in X and T_{α}^{-1} is unbounded.

Residual spectrum $\sigma_{r}(T, X)$ is the set of all $\alpha \in \mathbb{C}$ such that T_{α}^{-1} exists but do not satisfy (R3), i.e., domain of T_{α}^{-1} is not dense in X. The condition (R2) may or may not holds good.

Goldberg's classification of operator T_{α} (see [4], pp. 58): Let X be a Banach space and $T_{\alpha} \in B(X)$, where α is a complex number. Again, let $R\left(T_{\alpha}\right)$ and T_{α}^{-1} be denote the range and inverse of the operator T_{α}, respectively. Then following possibilities may occur;
(A) $R\left(T_{\alpha}\right)=X$,
(B) $R\left(T_{\alpha}\right) \neq \overline{R\left(T_{\alpha}\right)}=X$,
(C) $\overline{R\left(T_{\alpha}\right)} \neq X$,
and
(1) T_{α} is injective and T_{α}^{-1} is continuous,
(2) T_{α} is injective and T_{α}^{-1} is discontinuous,
(3) T_{α} is not injective.

Remark 2.1. Combining (A), (B), (C) and (1), (2), (3); we get nine different states. These are labeled by $A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}, C_{1}, C_{2}$ and C_{3}. We use $\alpha \in B_{2} \sigma(T, X)$ means the operator $T_{\alpha} \in B_{2}$, i.e., $R\left(T_{\alpha}\right) \neq \overline{R\left(T_{\alpha}\right)}=X$ and T_{α} is injective but T_{α}^{-1} is discontinuous. Similarly others.
Remark 2.2. If α is a complex number such that $T_{\alpha} \in A_{1}$ or $T_{\alpha} \in B_{1}$, then α belongs to the resolvent set $\rho(T, X)$ of T on X. The other classification gives rise to the fine spectrum of T.

Definition 2.2. ([8], pp. 220-221) Let λ, μ be two nonempty subsets of the space w of all real or complex sequences and $A=\left(a_{n k}\right)$ an infinite matrix of complex numbers $a_{n k}$, where $n, k \in \mathbb{N}_{0}=\{0,1,2, \cdots\}$. For every $x=\left(x_{k}\right) \in \lambda$ and every integer n we write

$$
A_{n}(x)=\sum_{k} a_{n k} x_{k}
$$

where the sum without limits is always taken from $k=0$ to $k=\infty$. The sequence $A x=\left(A_{n}(x)\right)$, if it exists, is called the transformation of x by the matrix A. Infinite matrix $A \in(\lambda, \mu)$ if and only if $A x \in \mu$ whenever $x \in \lambda$.
Lemma 2.1. ([11], pp. 126) The matrix $A=\left(a_{n k}\right)$ gives rise to a bounded linear operator $T \in B\left(l_{1}\right)$ from l_{1} to itself if and only if the supremum of l_{1} norms of the columns of A is bounded.

Lemma 2.2. ([4], pp. 59) T has a dense range if and only if T^{\times}is one to one, where T^{\times}denotes the adjoint operator of the operator T.

Lemma 2.3. ([4], pp. 60) The adjoint operator T^{\times}of T is onto if and only if T has a bounded inverse.

3 Spectrum and point spectrum of the operator Δ_{v} on sequence space l_{1}

In this section we obtain spectrum and point spectrum of the operator Δ_{v} on sequence space l_{1}. Throughout this paper, the sequence $v=\left(v_{k}\right)$ satisfy conditions (1.1) and (1.2).

Theorem 3.1. The operator $\Delta_{v}: l_{1} \rightarrow l_{1}$ is a bounded linear operator and

$$
\left\|\Delta_{v}\right\|_{\left(l_{1}, l_{1}\right)}=2 \sup _{k}\left(v_{k}\right) .
$$

Proof. Proof is simple. So we omit.
Theorem 3.2. The spectrum of Δ_{v} on sequence space l_{1} is given by

$$
\sigma\left(\Delta_{v}, l_{1}\right)=\left\{\alpha \in \mathbb{C}:\left|1-\frac{\alpha}{L}\right| \leq 1\right\}
$$

Proof. The proof of this theorem is divided into two parts. In the first part, we show that $\sigma\left(\Delta_{v}, l_{1}\right) \subseteq\left\{\alpha \in \mathbb{C}:\left|1-\frac{\alpha}{L}\right| \leq 1\right\}$ or equivalent to show that

$$
\alpha \in \mathbb{C} \text { with }\left|1-\frac{\alpha}{L}\right|>1 \text { implies } \alpha \notin \sigma\left(\Delta_{v}, l_{1}\right) \text {, i.e., } \alpha \in \rho\left(\Delta_{v}, l_{1}\right) \text {. }
$$

In the second part, we establish the reverse inequality, i.e.,

$$
\left\{\alpha \in \mathbb{C}:\left|1-\frac{\alpha}{L}\right| \leq 1\right\} \subseteq \sigma\left(\Delta_{v}, l_{1}\right)
$$

Let $\alpha \in \mathbb{C}$ with $\left|1-\frac{\alpha}{\mathrm{L}}\right|>1$. Clearly, $\alpha=L$ as well as $\alpha=v_{k}$ for any k do not satisfied. So $\alpha \neq L$ and $\alpha \neq v_{k}$ for each $k \in \mathbb{N}_{0}$. Consequently, $\left(\Delta_{v}-\alpha I\right)=\left(a_{n k}\right)$ as a triangle and hence has an inverse $\left(\Delta_{v}-\alpha I\right)^{-1}=\left(b_{n k}\right)$, where

$$
\left(b_{n k}\right)=\left(\begin{array}{cccc}
\frac{1}{\left(v_{0}-\alpha\right)} & 0 & 0 & \cdots \\
\frac{v_{0}}{\left(v_{0}-\alpha\right)\left(v_{1}-\alpha\right)} & \frac{1}{\left(v_{1}-\alpha\right)} & 0 & \cdots \\
\frac{v_{0} v_{1}}{\left(v_{0}-\alpha\right)\left(v_{1}-\alpha\right)\left(v_{2}-\alpha\right)} & \frac{v_{1}}{\left(v_{1}-\alpha\right)\left(v_{2}-\alpha\right)} & \frac{1}{\left(v_{2}-\alpha\right)} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Fine spectrum of the generalized difference operator Δ_{v} on sequence space $l_{1} 225$
By Lemma 2.1, the operator $\left(\Delta_{v}-\alpha I\right)^{-1} \in\left(l_{1}, l_{1}\right)$ if $\sup _{k} \sum_{n=0}^{\infty}\left|b_{n k}\right|<\infty$. In order to show $\sup _{k} \sum_{n=0}^{\infty}\left|b_{n k}\right|<\infty$, first we prove that the series $\sum_{n=0}^{\infty}\left|b_{n k}\right|$ is convergent for each $k \in \mathbb{N}_{0}$.
Let $S_{k}=\sum_{n=0}^{\infty}\left|b_{n k}\right|$. Then the series

$$
\begin{align*}
S_{0} & =\sum_{n=0}^{\infty}\left|b_{n o}\right| \\
& =\left|\frac{1}{v_{0}-\alpha}\right|+\sum_{n=1}^{\infty}\left|\frac{v_{0} v_{1} \cdots v_{n-1}}{\left(v_{0}-\alpha\right)\left(v_{1}-\alpha\right) \cdots\left(v_{n}-\alpha\right)}\right| \tag{3.1}
\end{align*}
$$

is convergent because

$$
\lim _{n \rightarrow \infty}\left|\frac{b_{n+1,0}}{b_{n 0}}\right|=\lim _{n \rightarrow \infty}\left|\frac{v_{n}}{v_{n+1}-\alpha}\right|=\frac{1}{\left|1-\frac{\alpha}{L}\right|}<1
$$

Similarly, we can show that the series $S_{k}=\sum_{n=0}^{\infty}\left|b_{n k}\right|$ is convergent for any $k=$ $1,2,3, \cdots$.
Now we claim that $\sup _{k} S_{k}$ is finite. We have

$$
\begin{equation*}
S_{k}=\frac{1}{\left|v_{k}-\alpha\right|}+\frac{\left|v_{k}\right|}{\left|v_{k}-\alpha\right|\left|v_{k+1}-\alpha\right|}+\cdots \tag{3.2}
\end{equation*}
$$

Let $\beta=\lim _{k \rightarrow \infty}\left|\frac{v_{k}}{v_{k+1}-\alpha}\right|$. Since modulus function is continuous, so

$$
\begin{equation*}
\beta=\left|\frac{L}{L-\alpha}\right| \tag{3.3}
\end{equation*}
$$

which shows that $0<\beta<1$ and gives

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left|\frac{1}{v_{k}-\alpha}\right|=\lim _{k \rightarrow \infty}\left(\left|\frac{v_{k-1}}{v_{k}-\alpha}\right|\left|\frac{1}{v_{k-1}}\right|\right)=\frac{\beta}{L} \tag{3.4}
\end{equation*}
$$

Taking limit both sides of equation (3.2) and using equations (3.3) and (3.4), we get

$$
\lim _{k \rightarrow \infty} S_{k}=\frac{\beta}{L}\left(\frac{1}{1-\beta}\right)<\infty
$$

Since $\left(S_{k}\right)$ is a sequence of positive real numbers and $\lim _{k \rightarrow \infty} S_{k}<\infty$, so $\sup _{k} S_{k}<\infty$. Thus,

$$
\begin{equation*}
\left(\Delta_{v}-\alpha I\right)^{-1} \in B\left(l_{1}\right) \text { for } \alpha \in \mathbb{C} \text { with }\left|1-\frac{\alpha}{L}\right|>1 \tag{3.5}
\end{equation*}
$$

Next, we show that domain of the operator $\left(\Delta_{v}-\alpha I\right)^{-1}$ is dense in l_{1} equivalent to say that range of the operator $\left(\Delta_{v}-\alpha I\right)$ is dense in l_{1}, which follows immediately as the operator $\left(\Delta_{v}-\alpha I\right)$ is onto. Hence we have

$$
\begin{equation*}
\sigma\left(\Delta_{v}, l_{1}\right) \subseteq\left\{\alpha \in \mathbb{C}:\left|1-\frac{\alpha}{L}\right| \leq 1\right\} \tag{3.6}
\end{equation*}
$$

Conversely, it is required to show

$$
\begin{equation*}
\left\{\alpha \in \mathbb{C}:\left|1-\frac{\alpha}{L}\right| \leq 1\right\} \subseteq \sigma\left(\Delta_{v}, l_{1}\right) \tag{3.7}
\end{equation*}
$$

First we prove inclusion (3.7) under the assumption that $\alpha \neq L$ as well as $\alpha \neq v_{k}$ for each $k \in \mathbb{N}_{0}$, i.e., one of the conditions of Definition 2.1 fails. Let $\alpha \in \mathbb{C}$ with $\left|1-\frac{\alpha}{L}\right| \leq 1$. Clearly, $\left(\Delta_{v}-\alpha I\right)$ is a triangle and hence $\left(\Delta_{v}-\alpha I\right)^{-1}$ exists. So condition (R1) is satisfied but condition (R2) fails as can be seen below:

Suppose $\alpha \in \mathbb{C}$ with $\left|1-\frac{\alpha}{L}\right|<1$. Then by equation (3.1), the series S_{0} is divergent because

$$
\lim _{n \rightarrow \infty}\left|\frac{b_{n+1,0}}{b_{n 0}}\right|=\lim _{n \rightarrow \infty}\left|\frac{v_{n}}{v_{n+1}-\alpha}\right|=\frac{1}{\left|1-\frac{\alpha}{L}\right|}>1
$$

So $\sup _{k} S_{k}$ is unbounded. Hence

$$
\begin{equation*}
\left(\Delta_{v}-\alpha I\right)^{-1} \notin B\left(l_{1}\right) \text { for } \alpha \in \mathbb{C} \text { with }\left|1-\frac{\alpha}{L}\right|<1 \tag{3.8}
\end{equation*}
$$

Next, we consider $\alpha \in \mathbb{C}$ with $\left|1-\frac{\alpha}{L}\right|^{\prime}=1$, i.e., $|L-\alpha|=L$ which implies $\left|v_{n}-\alpha\right| \leq\left|v_{n}\right|$ for each n, therefore $\frac{1}{\left|v_{n}\right|} \leq \frac{1}{\left|v_{n}-\alpha\right|}$ for each n. Using this inequality and equation (3.1), the series $S_{0} \geq \sum_{n=0}^{\infty} \frac{1}{v_{n}}$ is divergent due to the fact that $v_{n}>0$ for all n and $\lim _{n \rightarrow \infty} \frac{1}{v_{n}}=\frac{1}{L} \neq 0$. Thus, $\sup _{k} S_{k}$ is unbounded. Hence

$$
\begin{equation*}
\left(\Delta_{v}-\alpha I\right)^{-1} \notin B\left(l_{1}\right) \text { for } \alpha \in \mathbb{C} \text { with }\left|1-\frac{\alpha}{L}\right|=1 \tag{3.9}
\end{equation*}
$$

Finally, we prove the inclusion (3.7) under the assumption that $\alpha=L$ as well as $\alpha=v_{k}$ for all $k \in \mathbb{N}_{0}$. We have

$$
\left(\Delta_{v}-v_{k} I\right) x=\left(\begin{array}{c}
\left(v_{0}-v_{k}\right) x_{0} \\
-v_{0} x_{0}+\left(v_{1}-v_{k}\right) x_{1} \\
\vdots \\
-v_{k-1} x_{k-1} \\
-v_{k} x_{k}+\left(v_{k+1}-v_{k}\right) x_{k+1} \\
\vdots
\end{array}\right)
$$

Fine spectrum of the generalized difference operator Δ_{v} on sequence space $l_{1} 227$
Case(i): If $\left(v_{k}\right)$ is a constant sequence, say $v_{k}=L$ for all $k \in \mathbb{N}_{0}$, then

$$
\left(\Delta_{v}-v_{k} I\right) x=\mathbf{0} \quad \Rightarrow x_{0}=0, x_{1}=0, x_{2}=0, \cdots
$$

This shows that the operator $\left(\Delta_{v}-\alpha I\right)$ is one to one, but $R\left(\Delta_{v}-\alpha I\right)$ is not dense in l_{1}. So condition (R3) fails. Hence $L \in \sigma\left(\Delta_{v}, l_{1}\right)$.

Case(ii): If $\left(v_{k}\right)$ is strictly decreasing sequence, then for fixed k,

$$
\left(\Delta_{v}-v_{k} I\right) x=\mathbf{0}
$$

$\Rightarrow x_{0}=0, x_{1}=0, \cdots, x_{k-1}=0, x_{n+1}=\left(\frac{v_{n}}{v_{n+1}-v_{k}}\right) x_{n}$ for all $n \geq k$.
This shows that $\left(\Delta_{v}-v_{k} I\right)$ is not injective. So condition (R1) fails. Hence $v_{k} \in$ $\sigma\left(\Delta_{v}, l_{1}\right)$ for all $k \in \mathbb{N}_{0}$.

Again, if $\alpha=L$, then $\left|v_{n}-\alpha\right|<\left|v_{n}\right|$ for each n, i.e., $\frac{1}{\left|v_{n}\right|}<\frac{1}{\left|v_{n}-\alpha\right|}$ for each n. Using this inequality and equation (3.1), the series $S_{0}>\sum_{n=0}^{\infty} \frac{1}{v_{n}}$ is divergent due to fact that $v_{n}>0$ for all n and $\lim _{n \rightarrow \infty} \frac{1}{v_{n}}=\frac{1}{L} \neq 0$. Thus, $\sup _{k} S_{k}$ is unbounded. So condition (R2) fails. Hence

$$
\begin{equation*}
\left(\Delta_{v}-\alpha I\right)^{-1} \notin B\left(l_{1}\right) \text { for } \alpha=L \tag{3.10}
\end{equation*}
$$

So $L \in \sigma\left(\Delta_{v}, l_{1}\right)$. Thus, in this case also $v_{k} \in \sigma\left(\Delta_{v}, l_{1}\right)$ for all $k \in \mathbb{N}_{0}$ and $L \in \sigma\left(\Delta_{v}, l_{1}\right)$. Hence we have

$$
\begin{equation*}
\left\{\alpha \in \mathbb{C}:\left|1-\frac{\alpha}{L}\right| \leq 1\right\} \subseteq \sigma\left(\Delta_{v}, l_{1}\right) \tag{3.11}
\end{equation*}
$$

From inclusions (3.6) and (3.11), we get

$$
\sigma\left(\Delta_{v}, l_{1}\right)=\left\{\alpha \in \mathbb{C}:\left|1-\frac{\alpha}{L}\right| \leq 1\right\}
$$

Theorem 3.3. Point spectrum of the operator Δ_{v} over l_{1} is given by

$$
\sigma_{p}\left(\Delta_{v}, l_{1}\right)=\left\{\begin{array}{l}
\emptyset, \text { if }\left(v_{k}\right) \text { is a constant sequence. } \\
\left\{v_{0}, v_{1}, v_{2}, \cdots\right\}, \text { if }\left(v_{k}\right) \text { is a strictly decreasing sequence. }
\end{array}\right.
$$

Proof. The proof of this theorem is divided into two cases.
Case(i): Suppose $\left(v_{k}\right)$ is a constant sequence, say $v_{k}=L$ for all $k \in \mathbb{N}_{0}$. Consider $\Delta_{v} x=\alpha x$ for $x \neq \mathbf{0}=(0,0, \cdots)$ in l_{1}, which gives

$$
\begin{align*}
v_{0} x_{0} & =\alpha x_{0} \\
-v_{0} x_{0}+v_{1} x_{1} & =\alpha x_{1} \\
-v_{1} x_{1}+v_{2} x_{2} & =\alpha x_{2} \\
& \vdots \tag{3.12}\\
-v_{k-1} x_{k-1}+v_{k} x_{k} & =\alpha x_{k}
\end{align*}
$$

Let x_{t} be the first non-zero entry of the sequence $x=\left(x_{n}\right)$, so we get $-L x_{t-1}+$ $L x_{t}=\alpha x_{t}$, which implies $\alpha=L$ and from the equation

$$
-L x_{t}+L x_{t+1}=\alpha x_{t+1}
$$

we get $x_{t}=0$, which is a contradiction to our assumption. Therefore,

$$
\sigma_{p}\left(\Delta_{v}, l_{1}\right)=\emptyset
$$

Case(ii): Suppose $\left(v_{k}\right)$ is a strictly decreasing sequence. Consider $\Delta_{v} x=\alpha x$ for $x \neq \mathbf{0}=(0,0, \cdots)$ in l_{1}, which gives system of equations (3.12).
If $\alpha=v_{0}$, then

$$
\begin{aligned}
x_{k} & =\left(\frac{v_{k-1}}{v_{k}-v_{0}}\right) x_{k-1} \text { for all } k \geq 1 \\
& =\left[\frac{v_{k-1} v_{k-2} \cdots v_{0}}{\left(v_{k}-v_{0}\right)\left(v_{k-1}-v_{0}\right) \cdots\left(v_{1}-v_{0}\right)}\right] x_{0} \text { for all } k \geq 1
\end{aligned}
$$

If we take $x_{0} \neq 0$, then get non-zero solution of $\left(\Delta_{v}-v_{0} I\right) x=\mathbf{0}$.
Similarly, if $\alpha=v_{k}$ for all $k \geq 1$, then $x_{k-1}=0, x_{k-2}=0, \cdots, x_{0}=0$ and

$$
\begin{aligned}
x_{n+1} & =\left(\frac{v_{n}}{v_{n+1}-v_{k}}\right) x_{n} \text { for all } n \geq k \\
& =\left[\frac{v_{n} v_{n-1} \cdots v_{k}}{\left(v_{n+1}-v_{k}\right)\left(v_{n}-v_{k}\right) \cdots\left(v_{k+1}-v_{k}\right)}\right] x_{k} \text { for all } n \geq k
\end{aligned}
$$

If we take $x_{k} \neq 0$, then get non-zero solution of $\left(\Delta_{v}-v_{k} I\right) x=\mathbf{0}$. Hence

$$
\sigma_{p}\left(\Delta_{v}, l_{1}\right)=\left\{v_{0}, v_{1}, v_{2}, \cdots\right\}
$$

4 Residual and continuous spectrum of the operator Δ_{v} on sequence space l_{1}

We need result of point spectrum of the operator Δ_{v}^{\times}on l_{1}^{\star} for obtaining residual and continuous spectrum. So first we determine point spectrum of the dual operator Δ_{v}^{\times}of Δ_{v} on space l_{1}^{\star}.

Let $T: l_{1} \rightarrow l_{1}$ be a bounded linear operator having matrix representation A and the dual space of l_{1} denoted by l_{1}^{\star}. Then the adjoint operator $T^{\times}: l_{1}^{\star} \rightarrow l_{1}^{\star}$ is defined by the transpose of the matrix A.

Theorem 4.1. Point spectrum of the operator Δ_{v}^{\times}over l_{1}^{\star} is

$$
\sigma_{p}\left(\Delta_{v}^{\times}, l_{1}^{\star}\right)=\left\{\alpha \in \mathbb{C}:\left|1-\frac{\alpha}{L}\right| \leq 1\right\} .
$$

Fine spectrum of the generalized difference operator Δ_{v} on sequence space $l_{1} 229$
Proof. Suppose $\Delta_{v}^{\times} f=\alpha f$ for $0 \neq f \in l_{1}^{\star} \cong l_{\infty}$, where

$$
\Delta_{v}^{\times}=\left(\begin{array}{cccc}
v_{0} & -v_{0} & 0 & \ldots \\
0 & v_{1} & -v_{1} & \ldots \\
0 & 0 & v_{2} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right) \text { and } f=\left(\begin{array}{c}
f_{0} \\
f_{1} \\
f_{2} \\
\vdots
\end{array}\right)
$$

This gives

$$
f_{k}=\left[\frac{\left(v_{k-1}-\alpha\right)\left(v_{k-2}-\alpha\right) \cdots\left(v_{0}-\alpha\right)}{v_{k-1} v_{k-2} \cdots v_{0}}\right] f_{0} \quad \text { for all } k \geq 1
$$

Hence

$$
\begin{equation*}
\left|f_{k}\right|=\left|\frac{\left(v_{k-1}-\alpha\right)\left(v_{k-2}-\alpha\right) \cdots\left(v_{0}-\alpha\right)}{v_{k-1} v_{k-2} \cdots v_{0}}\right|\left|f_{0}\right| \text { for all } k \geq 1 \tag{4.1}
\end{equation*}
$$

But

$$
\begin{aligned}
\left|v_{k-1}-\alpha\right| & \leq\left(v_{k-1}-L\right)+|L-\alpha| \\
\Rightarrow\left|\frac{v_{k-1}-\alpha}{v_{k-1}}\right| & \leq 1 \text { for all } k \geq 1 \text { provided }\left|1-\frac{\alpha}{L}\right| \leq 1
\end{aligned}
$$

Using equation (4.1), we get

$$
\left|f_{k}\right| \leq\left|f_{0}\right| \text { for all } k \geq 1 . \text { So } \sup _{k}\left|f_{k}\right|<\infty
$$

Hence

$$
\left|1-\frac{\alpha}{L}\right| \leq 1 \quad \Rightarrow \quad \sup _{k}\left|f_{k}\right|<\infty
$$

Converse follows from the fact that

$$
\begin{aligned}
\sup _{k}\left|f_{k}\right|<\infty & \Rightarrow\left|\frac{v_{k-1}-\alpha}{v_{k-1}}\right| \leq 1 \text { for all } k \geq m \\
& \quad \text { where } m \text { is a positive integer. } \\
& \Rightarrow \lim _{k \rightarrow \infty}\left|\frac{v_{k-1}-\alpha}{v_{k-1}}\right| \leq 1 \\
& \Rightarrow\left|1-\frac{\alpha}{L}\right| \leq 1
\end{aligned}
$$

Hence

$$
\sup _{k}\left|f_{k}\right|<\infty \quad \Rightarrow \quad\left|1-\frac{\alpha}{L}\right| \leq 1
$$

This means that $f \in l_{1}^{\star}$ if and only if $f_{0} \neq 0$ and $\left|1-\frac{\alpha}{L}\right| \leq 1$. Hence

$$
\sigma_{p}\left(\Delta_{v}^{\times}, l_{1}^{\star}\right)=\left\{\alpha \in \mathbb{C}:\left|1-\frac{\alpha}{L}\right| \leq 1\right\} .
$$

Theorem 4.2. Residual spectrum $\sigma_{r}\left(\Delta_{v}, l_{1}\right)$ of the operator Δ_{v} over l_{1} is

$$
\sigma_{r}\left(\Delta_{v}, l_{1}\right)=\left\{\begin{array}{l}
\left\{\alpha \in \mathbb{C}:\left|1-\frac{\alpha}{L}\right| \leq 1\right\}, \text { if }\left(v_{k}\right) \text { is a constant sequence. } \\
\left\{\alpha \in \mathbb{C}:\left|1-\frac{\alpha}{L}\right| \leq 1\right\} \backslash\left\{v_{0}, v_{1}, v_{2}, \cdots\right\}, \text { if } \\
\left(v_{k}\right) \text { is a strictly decreasing sequence. }
\end{array}\right.
$$

Proof. The proof of this theorem is divided into two cases.
Case(i): Let $\left(v_{k}\right)$ be a constant sequence. For $\alpha \in \mathbb{C}$ with $\left|1-\frac{\alpha}{L}\right| \leq 1$, the operator $\left(\Delta_{v}-\alpha I\right)$ is a triangle except $\alpha=L$ and consequently, the operator $\left(\Delta_{v}-\alpha I\right)$ has an inverse. Further by Theorem 3.3, the operator $\left(\Delta_{v}-\alpha I\right)$ is one to one for $\alpha=L$ and hence has an inverse.

But by Theorem 4.1, the operator $\left(\Delta_{v}-\alpha I\right)^{\times}=\Delta_{v}^{\times}-\alpha I$ is not one to one for $\alpha \in \mathbb{C}$ with $\left|1-\frac{\alpha}{L}\right| \leq 1$. Hence by Lemma 2.2 , the range of the operator $\left(\Delta_{v}-\alpha I\right)$ is not dense in l_{1}. Thus,

$$
\sigma_{r}\left(\Delta_{v}, l_{1}\right)=\left\{\alpha \in \mathbb{C}:\left|1-\frac{\alpha}{L}\right| \leq 1\right\}
$$

Case(ii): Let $\left(v_{k}\right)$ be a strictly decreasing sequence with $\lim _{k \rightarrow \infty} v_{k}=L$. For $\alpha \in \mathbb{C}$ such that $\left|1-\frac{\alpha}{L}\right| \leq 1$, the operator $\left(\Delta_{v}-\alpha I\right)$ is a triangle except $\alpha=v_{k}$ for all $k \in$ \mathbb{N}_{0} and consequently, the operator $\left(\Delta_{v}-\alpha I\right)$ has an inverse. Further by Theorem 3.3 , the operator $\left(\Delta_{v}-v_{k} I\right)$ is not one to one and hence $\left(\Delta_{v}-v_{k} I\right)^{-1}$ does not exists for all $k \in \mathbb{N}_{0}$.

On the basis of argument as given in case(i), it is easy to verify that the range of the operator $\left(\Delta_{v}-\alpha I\right)$ is not dense in l_{1}. Thus,

$$
\sigma_{r}\left(\Delta_{v}, l_{1}\right)=\left\{\alpha \in \mathbb{C}:\left|1-\frac{\alpha}{L}\right| \leq 1\right\} \backslash\left\{v_{0}, v_{1}, v_{2}, \cdots\right\}
$$

Theorem 4.3. Continuous spectrum $\sigma_{c}\left(\Delta_{v}, l_{1}\right)$ of the operator Δ_{v} over l_{1} is $\sigma_{c}\left(\Delta_{v}, l_{1}\right)=\emptyset$.

Proof. It is known that $\sigma_{p}\left(\Delta_{v}, l_{1}\right), \sigma_{r}\left(\Delta_{v}, l_{1}\right)$ and $\sigma_{c}\left(\Delta_{v}, l_{1}\right)$ are pairwise disjoint sets and union of these sets is $\sigma\left(\Delta_{v}, l_{1}\right)$. But by Theorems 3.2, 3.3 and 4.2; we get

$$
\sigma\left(\Delta_{v}, l_{1}\right)=\sigma_{p}\left(\Delta_{v}, l_{1}\right) \cup \sigma_{r}\left(\Delta_{v}, l_{1}\right)
$$

Therefore, $\quad \sigma_{c}\left(\Delta_{v}, l_{1}\right)=\emptyset$.

5 Fine spectrum of the operator Δ_{v} on sequence space l_{1}

Theorem 5.1. If α satisfies $\left|1-\frac{\alpha}{L}\right|>1$, then $\left(\Delta_{v}-\alpha I\right) \in A_{1}$.

Fine spectrum of the generalized difference operator Δ_{v} on sequence space $l_{1} 231$
Proof. It is required to show that the operator $\left(\Delta_{v}-\alpha I\right)$ is bijective and has a continuous inverse for $\alpha \in \mathbb{C}$ with $\left|1-\frac{\alpha}{L}\right|>1$. Since $\alpha \neq L$ and $\alpha \neq v_{k}$ for each $k \in \mathbb{N}_{0}$, therefore $\left(\Delta_{v}-\alpha I\right)$ is a triangle. Hence it has an inverse. The inverse of the operator $\left(\Delta_{v}-\alpha I\right)$ is continuous for $\alpha \in \mathbb{C}$ with $\left|1-\frac{\alpha}{L}\right|>1$ by statement (3.5). Also the equation

$$
\begin{array}{r}
\left(\Delta_{v}-\alpha I\right) x=y \quad \text { gives } \quad x=\left(\Delta_{v}-\alpha I\right)^{-1} y \\
\quad \text { i.e., } \quad x_{n}=\left(\left(\Delta_{v}-\alpha I\right)^{-1} y\right)_{n}, n \in \mathbb{N}_{0}
\end{array}
$$

Thus for every $y \in l_{1}$, we can find $x \in l_{1}$ such that

$$
\left(\Delta_{v}-\alpha I\right) x=y, \text { since }\left(\Delta_{v}-\alpha I\right)^{-1} \in\left(l_{1}, l_{1}\right)
$$

This shows that operator $\left(\Delta_{v}-\alpha I\right)$ is onto and hence $\left(\Delta_{v}-\alpha I\right) \in A_{1}$.
Theorem 5.2. Let $\left(v_{k}\right)$ be a constant sequence, say $v_{k}=L$ for all $k \in \mathbb{N}_{0}$. Then $L \in C_{1} \sigma\left(\Delta_{v}, l_{1}\right)$.

Proof. We have

$$
\sigma_{r}\left(\Delta_{v}, l_{1}\right)=\left\{\alpha \in \mathbb{C}:\left|1-\frac{\alpha}{L}\right| \leq 1\right\} .
$$

Clearly, $L \in \sigma_{r}\left(\Delta_{v}, l_{1}\right)$. It is sufficient to show that the operator $\left(\Delta_{v}-L I\right)^{-1}$ is continuous. By Lemma 2.3, it is enough to show that $\left(\Delta_{v}-L I\right)^{\times}$is onto, i.e., for given $y=\left(y_{n}\right) \in l_{\infty}$, we have to find $x=\left(x_{n}\right) \in l_{\infty}$ such that $\left(\Delta_{v}-L I\right)^{\times} x=y$. Now $\left(\Delta_{v}-L I\right)^{\times} x=y$, i.e.,

$$
\begin{aligned}
-L x_{1} & =y_{0} \\
-L x_{2} & =y_{1} \\
& \vdots \\
-L x_{i} & =y_{i-1} \\
& \vdots
\end{aligned}
$$

Thus, $-L x_{n}=y_{n-1}$ for all $n \geq 1$, which implies $\sup _{n}\left|x_{n}\right|<\infty$, since $y \in l_{\infty}$ and $L \neq 0$. This shows that operator $\left(\Delta_{v}-L I\right)^{\times}$is onto and hence $L \in C_{1} \sigma\left(\Delta_{v}, l_{1}\right)$.

Theorem 5.3. Let $\left(v_{k}\right)$ be a constant sequence, say $v_{k}=L$ for all $k \in \mathbb{N}_{0}$ and $\alpha \neq L, \alpha \in \sigma_{r}\left(\Delta_{v}, l_{1}\right)$. Then $\alpha \in C_{2} \sigma\left(\Delta_{v}, l_{1}\right)$.

Proof. It is sufficient to show that the operator $\left(\Delta_{v}-\alpha I\right)^{-1}$ is discontinuous for $\alpha \neq L$ and $\alpha \in \sigma_{r}\left(\Delta_{v}, l_{1}\right)$. The operator $\left(\Delta_{v}-\alpha I\right)^{-1}$ is discontinuous by statements (3.8) and (3.9) for $L \neq \alpha \in \mathbb{C}$ with $\left|1-\frac{\alpha}{L}\right| \leq 1$.

Theorem 5.4. Let $\left(v_{k}\right)$ be a strictly decreasing sequence of positive real numbers and $\alpha \in \sigma_{r}\left(\Delta_{v}, l_{1}\right)$. Then $\alpha \in C_{2} \sigma\left(\Delta_{v}, l_{1}\right)$.

Proof. It is sufficient to show that the operator $\left(\Delta_{v}-\alpha I\right)^{-1}$ is discontinuous for $\alpha \in \sigma_{r}\left(\Delta_{v}, l_{1}\right)$. The operator $\left(\Delta_{v}-\alpha I\right)^{-1}$ is discontinuous by statements (3.8), (3.9) and (3.10) for $v_{k} \neq \alpha \in \mathbb{C}$ with $\left|1-\frac{\alpha}{L}\right| \leq 1$.

References

[1] A.M. Akhmedov and F. Basar, On the fine spectra of the difference operator Δ over the sequence space $l_{p}(1 \leq p<\infty)$, Demonstratio Math., Vol. 39, No. 3 (2006) 585-595.
[2] H. Bilgic and H. Furkan, On the fine spectrum of the operator $B(r, s, t)$ over the sequence spaces l_{1} and $b v$, Mathematical and Comp. Modelling, Vol. 45 (2007) 883-891.
[3] H. Furkan, H. Bilgic and K. Kayaduman, On the fine spectrum of the generalized difference operator $B(r, s)$ over the sequence spaces l_{1} and $b v$, Hokkaido Math. J., Vol. 35, No. 4 (2006) 893-904.
[4] S. Goldberg, Unbounded linear operators, Dover Publications, Inc. New York, 1985.
[5] M. Gonzalez, The fine spectrum of the Cesaro operator in $l_{p}(1<p<\infty)$, Arch. Math., Vol. 44 (1985) 355-358.
[6] E. Kreyszig, Introductory functional analysis with applications, John Wiley and Sons Inc., New York, Chichester, Brisbane, Toronato, 1978.
[7] K. Kayaduman and H. Furkan, The fine spectra of the difference operator Δ over the sequence spaces l_{1} and bv, International Mathematical Forum, Vol. 1, No. 24 (2006) 1153-1160.
[8] I.J. Maddox, Elements of functional analysis, Cambridge University Press, 1988.
[9] J.I. Okutoyi, On the spectrum of C_{1} as an operator on $b v_{0}$, J. Austral. Math. Soc. Ser. A, Vol. 48 (1990) 79-86.
[10] J.T. Okutoyi, On the spectrum of C_{1} as an operator on bv, Commun. Fac. Sci. Univ. Ank. Ser. A_{1}, Vol. 41 (1992) 197-207.
[11] A. Wilansky, Summability through functional analysis, North-Holland Mathematics Studies, North-Holland, Amsterdam, Vol. 85, 1984.
(Received 3 December 2009)

Fine spectrum of the generalized difference operator Δ_{v} on sequence space $l_{1} 233$
P.D. Srivastava

Department of Mathematics
Indian Institute of Technology, Kharagpur
Kharagpur - 721302, India
E-mail: pds@maths.iitkgp.ernet.in

Sudhanshu Kumar
Department of Mathematics
Indian Institute of Technology, Kharagpur
Kharagpur - 721302, India
E-mail: sudhanshu_tomar@yahoo.com

[^0]: Copyright (c) 2010 by the Mathematical Association of Thailand. All rights reserved.

