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1 Introduction and preliminaries

In 1940, S. M. Ulam [18] posed the following problem concerning the stability
of functional equations: Give conditions in order for a linear mapping near an
approximately linear mapping to exist. The problem for the case of approximately
additive mappings was solved by D. H. Hyers [2] when G1 and G2 are Banach
spaces and the result of Hyers was generalized by Th. M. Rassias (see [14]).
Since then, the stability problems of functional equations have been extensively
investigated by several mathematicians (cf. [3], [4], [5], [13] and [14]).

C. Alsina and R. Ger [1] remarked that the differential equation y′ = y has the
Hyers-Ulam stability. More explicitly, they proved that if a differentiable function
y : I → R satisfies |y′(t) − y(t)| ≤ ε for all t ∈ I, then there exists a differentiable
function g : I → R satisfying g′(t) = g(t) for any t ∈ I such that |y(t)− g(t)| ≤ 3ε

for every t ∈ I.
The above result of C. Alsina and R. Ger has been generalized by T. Miura,

S.-E. Takahasi and H. Choda [12], by T. Miura [9], and also by S.-E. Takahasi,
T. Miura and S. Miyajima [16]. Indeed, they dealt with the Hyers-Ulam stability
of the differential equation y′(t) = λy(t), while C. Alsina and R. Ger investigated
the differential equation y′(t) = y(t).

Furthermore, the result of Hyers-Ulam stability for first-order linear differential
equations has been generalized by T. Miura, S. Miyajima and S. -E. Takahasi [11],
by S.-E. Takahasi, H. Takagi, T. Miura and S. Miyajima [17], and also by S.-
M. Jung ([4], [5], [8]). They dealt with the nonhomogeneous linear differential
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equation of first order

y′ + p(t)y + q(t) = 0.

S.-M. Jung [8] studied the generalized Hyers-Ulam stability of differential equa-
tions of the form ty′(t) + αy(t) + βtrx0 = 0. Recently, G. Wang, M. Zhou and
L. Sun [19] discussed the Hyers-Ulam stability of the first-order nonhomogeneous
linear differential equation.

Motivated by the works of [16] and [19], in this paper, we will investigate the
Hyers-Ulam stability of the following linear differential equations of second order:

y′′ = λ2y (1.1)

where y ∈ C2(I) = C2(a, b),−∞ < a < b < +∞, λ > 0.
We say that Eq. (1.1) has the Hyers-Ulam stability if there exists a constant

K > 0 with the following property: for every ε > 0, y ∈ C2(I), if

|y′′ − λ2y| ≤ ε,

then there exists some z ∈ C2(I) satisfying

z′′ − λ2z = 0

such that |y(x)− z(x)| ≤ Kε. We call such K a Hyers-Ulam stability constant for
Eq. (1.1).

2 Main Results

Now, the main result of this work is given in the following theorem.

Theorem 2.1. If a twice continuously differentiable function y : I → R satisfies
the differential inequality

|y′′ − λ2y| ≤ ε

for all t ∈ I and for some ε > 0, then there exists a solution v : I → R of the Eq.
(1) such that

|y(x) − v(x)| ≤ Kε

Where K > 0 is a constant.

Proof. Let ε > 0 and y : I → R be a twice continuously differentiable function
such that

|y′′ − λ2y| ≤ ε

We will show that there exists a constant K independent of ε and v such that
|y − v| ≤ Kε for some v ∈ C2(I) satisfying v′′ − λ2v = 0.

If we set

g(x) = y′(x) − λy(x),
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then
g′(x) = y′′(x) − λy′(x)

thus
|g′(x) + λg(x)|

= |y′′(x) − λy′(x) + λ(y′(x) − λy(x))|

= |y′′ − λ2y| ≤ ε

Equivalently, g satisfies

−ǫ ≤ g′(x) + λg(x) ≤ ǫ

Multiplying the formula by the function eλ(x−a), we obtain

−ǫeλ(x−a) ≤ g′(x)eλ(x−a) − λg(x)eλ(x−a) ≤ ǫeλ(x−a)

For the case 0 < λ ≤ 1, there exists M > 0 such that Mλ > 1, so without loss
of generality, we may assume that λ > 1, thus

−λǫeλ(x−a) ≤ g′(x)eλ(x−a) − λg(x)eλ(x−a) ≤ λǫeλ(x−a) (2.1)

For some fixed c ∈ (a, b) with g(c) < ∞ and any x ∈ (c, b), integrating (2.1)
from c to x, we get

−ε(eλ(x−a) − eλ(c−a)) ≤ g(x)eλ(x−a) − g(c)eλ(c−a) ≤ ε(eλ(x−a) − eλ(c−a))

so

−εeλ(x−a) ≤ g(x)eλ(x−a) − (g(c) − ε)eλ(c−a) ≤ εeλ(x−a)

Multiplying the formula by the function e−λ(x−a), we get

−ε ≤ g(x) − (g(c) − ε)eλ(c−a)e−λ(x−a) ≤ ε

−ε ≤ g(x) − (g(c) − ε)eλ(c−x) ≤ ε

Let z(x) = (g(c) − ε)eλ(c−x), then z(x) satisfies

z′(x) + λz(x) = 0

and
|g(x) − z(x)| ≤ ε

For any x ∈ (x, c), the proof is very similar to the above, so we omit it.

Since g(x) = y′(x) − λy(x), we have
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−ǫ ≤ y′(x) − λy(x) − z(x) ≤ ǫ (2.2)

By an argument similar to the above, we can show that there exists u(x) =

(g(c) − ǫ)eλ(x−c) − eλ(x−a)
∫

b

x
z(s)e−λ(s−a)ds such that

|y(x) − u(x)| ≤ ǫ

and u ∈ C2(I) satisfying

u′(x) − λu(x) − z(x) = 0

so
z(x) = u′(x) − λu(x)

by
z′(x) + λz(x) = 0

We obtain
u′′(x) − λu′(x) + λ(u′(x) − λu(x)) = 0

Hence
u′′(x) − λ2u(x) = 0

which completes the proof.
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