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Abstract : For the numerical simulations of the ocean wave model, the coor-
dinates for the operation of wave prediction model need to be studied due to
the high resolutions affecting the domain boundaries. In the present study, the
two coordinates for the wave energy balance equations required for operation and
computation are proposed. The two–dimensional models, the spherical coordinate
and Cartesian coordinate propagations with deep and shallow water conditions,
are used to test the operation of the wave model from the eye storm generation
at the Pacific Ocean entering into the South China Sea (SCS) and the Gulf of
Thailand (GoT) respectively. The results suggest that the spherical coordinate
propagations with deep water conditions are acceptable with similar values of the
observational data.
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1 Introduction

In the design of computational coordinates to study the storm waves, it is
important to compute the regional wave conditions. The ocean waves propagate
from the eye storm generation at the Pacific Ocean entering into the South China
Sea (SCS) and the Gulf of Thailand (GoT) and change their heights, lengths and
directions according to the particular bathymetry and the presence of currents and
structures [19]. Shoaling, refraction, diffraction, reflection and wave breaking may
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all occur. Since the ocean waves are random, accurate prediction of their trans-
formation by these combined processes is difficult. Several theories and models
have been applied to study the regional waves such as the GoT (Figure 1) and
each theory and model has certain advantages and limitations with respect to its
applicability.

The purpose of the present work is to study the formulation of the wave en-
ergy balance equations and its applications in the two–coordinates. The two–
coordinates; the spherical and Cartesian coordinates are applied to study in the
GoT in a case study of Typhoon Linda 1997 by the third generation WAve Model
Cycle 4 (WAMC4)[14, 5]. The spherical coordinates in the coarse grid domain
(CGD) and fine grid domain (FGD) with deep water conditions are adopted from
researches of Vongvisessomjai [16, 17] and Meteorological Division, Hydrographic
Department, Royal Thai Navy, Sattahip, Chonburi, Thailand. In the present
study, the two–coordinates of the WAMC4 model are exhibited the spherical co-
ordinate in the CGD with the Cartesian coordinate in the FGD under the shallow
water condition as the first experiment. For the second experiment, the spherical
coordinate in the CGD with the spherical coordinate in the FGD are studied under
the deep water condition. The CGD covering from 95◦E to 155◦E in longitude
and from 20◦S to 40◦N in latitude and the FGD covering from 99◦E to 111◦E in
longitude and from 2◦N to 14◦N in latitude are applied to both experiments. The
both experiments with the nested grid technique are calculated by the WAMC4
model which is shown in Figure 1. The outline of this work is as follows: Section 2
gives a description of the numerical models; Section 3 presents the implementation
of the models and experimental designs; Section 4 shows the results of experiments;
and Section 5 presents the discussions and conclusion.

2 The Numerical Models

The numerical models used in the present study have been used operationally
in this section. The WAve Model Cycle 4 (WAMC4) is now one of the most
extensively tested third–generation wave model in the world and its performance
on global, regional and coastal scales [12] is well known [14, 5, 3]. In this section, a
review of the numerical schemes and their numerical characteristics are described.

2.1 The Wave Model

The WAMC4 model solves the energy balance equation in the regional
scale with terms of the discrete energy density1, F (θ, f ;x, t), where t represents
time, x represents the geographical space in Cartesian (x, y) or spherical (λ, φ)
coordinates, and (θ, f) represent the spectral space (direction and frequency, re-
spectively). The wave direction θ represents the wave direction measured clockwise
from the true north. Excluding the intrinsic frequency, σ, as a coordinate allows
the model to overcome the problem of high frequency waves propagating on strong
opposite currents (e.g. the absence of diffraction and currents for the coastal scale).
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Figure 1: Two experiments of the two coordinates calculated by the nested
grid technique of the WAMC4 model.

The WAMC4 model is initially developed to forecast wave conditions on global
or regional scales, so it allows the use of spherical or Cartesian coordinates. The
governing equation in Cartesian coordinates (x, y) reads,

∂F

∂t
+

∂cg,xF

∂x
+

∂cg,yF

∂y
+

∂cθF

∂θ
= Stot (2.1)

where the propagation speed in the different spaces; cg,x, cg,y, and cθ are given
by [13, 6],

cg,x = ẋ =
dx

dt
=

√

gd, (2.2)

cg,y = ẏ =
dy

dt
=

√

gd, (2.3)

cθ = θ̇ =
dθ

dt
=

1

k

[∂f

∂d

∂d

∂m

]

. (2.4)

In the equations (2.2), (2.3) and (2.4) for the shallow water condition, g and
d represent the gravitational acceleration and the total water depth, k and m

1 It is worth to remark that the letter F is used to denote the discrete representation
of the wave energy density, E.
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represent the wave number and the space coordinate in the θ direction, respectively.
The governing equation for the WAMC4 model on the spherical coordinates

(λ, φ) reads,

∂F

∂t
+

∂cg,λF

∂λ
+ (cos φ)−1 ∂cg,φ(cos φ)F

∂φ
+

∂cθF

∂θ
= Stot (2.5)

where the propagation speed in the different spaces; cg,λ, cg,φ, and cθ are given
by,

cg,λ = λ̇ =
dλ

dt
= (cg sin θ)(R cosφ)−1, (2.6)

cg,φ = φ̇ =
dφ

dt
= (cg cos θ)R−1, (2.7)

cθ = θ̇ =
dθ

dt
= (cg sin θ tanφ)R−1. (2.8)

Here cg = g/2ω = g/2(2πf) = g/4πf denotes the group velocity of the deep water
condition, g represents the gravitational acceleration, ω represents the angular
frequency, f represents the frequency, and R represents the radius of the earth,
respectively.

At the right hand side of the equations (2.1) and (2.5), Stot is the function
representing the source and sink functions, and the conservative non–linear transfer
of energy between wave components. For the present applications, the surface wave
model included the standard WAMC4 formulations for the Stot terms; wind input
Sin, non–linear quadruplet wave–wave interactions Snl, whitecapping dissipation
Sds, and bottom friction dissipation Sbf . For the complete explanation on the
physics included in Stot, the reader is referred to Komen et al., [3] and references
in there.

The wind input formulation is based on the resonant interaction between the
wave induced pressure fluctuations and the waves (Miles’ theory). This source of
energy is represented as,

Sin = γF (2.9)

where γ is the growth rate of the waves, also called Miles’ wave growth mech-
anism. In WAMC4 model, this term is based on the theory proposed by Janssen
[11]. According to Janssen [11], the interphase atmosphere–ocean represents a cou-
pled system where the growth rate of waves depends on the wind, whose profile
depends on the sea state. In WAMC4 model, γ is expressed as,

γ = max
[

0, (ρa/ρw)βX2
]

; X = (u∗/c) cosϑ (2.10)

where ρa is the density of air, ρw is the density of sea water, ϑ is the relative
direction between wind and waves, u∗ =

√

τ/ρa is the friction velocity where τ is
the wind stress, c is the phase velocity of the waves, and β (the Miles’ parameter)
is given by,

β = (1.2/κ2)ν ln4ν ; ν =
gze

(κcp)2
exp(κ/X) (2.11)
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where ze represents the effective roughness length, cp is the wave propagation
speed and κ = 0.41 is the von Kármán constant. The nonlinear resonant interac-
tion between the quadruplet of wave components is included in the WAM through
an approximation to the exact expression,

Sexact
in (k4) =

∫

ω4ςδ(k1 + k2 − k3 − k4)δ(ω1 + ω2 − ω3 − ω4)

×[n1n2(n3 + n4) − n3n4(n1 + n2)]dk1dk2dk3dk4, (2.12)

where nj = F (kj)/ωj is the action density and the coefficient ς is the coupling
coefficient. The approximation included in the WAM (DIA method, Hasselmann
et al., [15]) reduces the space of resonant quadruplets to a two–dimensional plane
where the discrete interaction of a symmetric pair of configurations is only used
(see Figures 3.1 and 3.2 in van Vledder [4]).

On finite–depth waters, the computation of Snl is carried out in similar way
as on the deep waters, but including a scaling factor:

Snl = Υ(k̄H)Snl. (2.13)

In equation (2.13), k̄ = [E−1
tot

∫

F (f, θ)k−1/2dfdθ]−2 is the mean of wave number,
Etot is the total of wave energy density and the scaling factor Υ reads,

Υ(χ) = 1 +
5.5

χ

(

1 − 5χ

6

)

exp
(

−5χ

4

)

, (2.14)

with χ = (3/4)k̄H .
The term representing the energy dissipation by wave breaking on the deep

waters (also called the whitecapping) is based on a extension of the formulation
proposed by Komen et al., [2]. In Komen’s formulation, the existence of an equilib-
rium solution of the energy balance equation during fully developed sea condition
is assumed. Once the Janssen’s theory for the wave growth by sea–atmosphere
coupling was implemented, the Komen’s formulation had to be extended in order
to obtain the proper balance during fully developed sea conditions. In WAMC4
model, the term Sds is evaluated as,

Sds = −Cd1ω̄k̄4E2
tot

[

(1 − Cd2)(k/k̄) + Cd2(k/k̄)2
]

F, (2.15)

where Etot is the total energy, Cd1 = 4.5, and Cd2 = 0.5.
In shallow the water, the both equations need to be extended to include the

additional source function Sbf representing the energy loss due to bottom fric-
tion and percolation. The bottom friction dissipation term, Sbf , is represented
according to the formulation proposed during JONSWAP (Hasselmann et al., [8]),

Sbf = − Γ

g2

ω2

sinh2 kD
F. (2.16)

with Γ = 0.038, ω is the angular frequency (ω2 = gk tanh kD), g is the grav-
itational acceleration, k is the wave number and D is the finite depth dispersion
relation.
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Figure 2: Discrete (a) spectral space possesses 25 frequencies with (b)
standard directional resolution 30 degrees in 12 directions.

2.2 Numerical scheme

In WAMC4 model, the spectrum F is represented by a discrete number
of frequency bins, ω = 2πf , traveling in a discrete number of directions, θ. The
standard directional resolution is 30 degrees in 12 directions (∆θ = 30), with an
azimuthal distribution, whereas the discrete spectral space possesses 25 frequen-
cies, ranging from 0.041Hz to 0.41Hz. The directional components are defined at
the directional fragments (staggered points) as shown in Figure 2. The reason of
this definition is connected with the advection term. The frequency distribution
is logarithmic,

fn+1 = 1.1fn , n = 0, 1, 2, 3, . . .24. (2.17)

so that,

∆f/f = 0.1. (2.18)

In the frequency space, the energy distribution is computed according to the
physics included in the equations (2.1) and (2.5). Beyond the prognostic region, a
diagnostic part is added to the spectrum. The energy distribution in the diagnostic
region is given by,

F (f > fhf , θ) = F (fhf , θ)
( f

fhf

)−5

. (2.19)

The dynamic limit for the prognostic region is computed by,

fhf = min{fmax, max(2.5f̄ , 4fPM )}, (2.20)
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where fmax = (1.1)24fmin, f̄ is the mean frequency, and fPM is the peak fre-
quency of the corresponding Pierson–Moskowitz spectrum. The model uses two
time steps; one of them is computed according to the Courant–Friedrichs–Lewy
(CFL) stability condition, typically assumed as a time step for the propagation,
∆tp ≤ (

√
∆x + ∆y)/cg(max), and a time step for the source term, ∆ts, which is

restricted to be shorter than or equal to the propagation time step. A zero en-
ergy flux condition is imposed at coastlines and the possibility of imposing a time
dependent condition at open boundaries is also included.

2.3 Wave Propagation

The advection of wave energy is computed by using a forward in time, a
first–order upwind differences (explicit) scheme in control volume form. At this
stage, the equation (2.1) is solved as an action conservation equation (as mentioned
above, Stot is evaluated in the different step). The differences scheme is expressed
as,

[Fn+1 − Fn

∆tp

]

i,j,k

= −
[(cg,xF )i+1/2 − (cg,xF )i−1/2

∆x

]

n

j,k

−
[(cg,yF )j+1/2 − (cg,yF )j−1/2

∆y

]

n

i,k

−
[(cθF )k+1/2 − (cθF )k−1/2

∆θ

]

n

i,j
, (2.21)

where (i, j) denote the position in longitudinal and latitudinal directions, respec-
tively, and (k) denotes the spectral–space position (direction). The resolution of
the discrete representation of F is given by ∆(x, y, θ).

The fluxes on the control volume faces are given by,

[

(cζF )
]n

r+1/2
= 0.5

{[

(cζ)r+1/2 − |(cζ)r+1/2|
]

Fn
r+1

+
[

(cζ)r+1/2 + |(cζ)r+1/2|
]

Fn
r

}

, (2.22)
[

(cζF )
]n

r−1/2
= 0.5

{[

(cζ)r−1/2 − |(cζ)r−1/2|
]

Fn
r

+
[

(cζ)r−1/2 + |(cζ)r−1/2|
]

Fn
r−1

}

, (2.23)

with ζ represents the coordinate (x, y, θ) of wave propagation speeds (cg,x, cg,y, cθ)
and r its corresponding index (i, j, k). The control volume face velocities, (cζ)r+1/2

and (cζ)r−1/2, whose expressions are given by the equations (2.2)–(2.4), are com-
puted as

(cζ)r+1/2 = 0.5
[

(cζ)r+1 + (cζ)r

]

, (2.24)

(cζ)r−1/2 = 0.5
[

(cζ)r + (cζ)r−1

]

. (2.25)
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Figure 3: Staggered C–type grid used by the hydrodynamic model [19].
The WAMC4 model uses an A–type grid, in such a way that the governing
equation for the wave evolution is computed at points corresponding to
elevation values in the hydrodynamic model.

Central differences are used to solve the spatial derivatives of u, v, and d in the
equations (2.2)–(2.4) which is neglected the effect of current (u, v) on a staggered
C–grid (see Figure 3), and these terms are not computed at points beside the coast.
It is worth noticing, u is the velocity in x–longitude direction, v is the velocity in
y–latitude direction, and d is the total water depth (d = η +H) where η is the sea
surface elevation and H is the local depth at the mean sea level (MSL).

2.4 Source term integration

The evolution of the source term is computed by a semi–implicit second order
method (Leapfrog scheme). After the solution of the equation (2.21), the new
spectrum at the points (i, j, k) is modified by the source terms according to,

Fn+1
i,j,k = Fn

i,j,k + ∆ts[(1 − α)Sn
i,j,k + αSn+1

i,j,k ], (2.26)

where i and j denote the position in geographical space, k represents the position
in the wave direction space and α is in the range of 0 to 1. None of the source
terms Sn+1

i,j,k depend linearly on Fn+1
i,j,k . Therefore, the Taylor’s series expansion is

introduced,

Sn+1
i,j,k = Sn

i,j,k +
∂Sn

i,j,k

∂Fi,j,k
∆Fi,j,k + ..., (2.27)

where the functional derivative in the equation (2.27) can be expressed as a matrix
with a diagonal part, Λn

i,j,k, and a non–diagonal residual. By considering only the
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diagonal matrix Λn
i,j,k, the equation (2.26) can be expressed as,

Fn+1
i,j,k = Fn

i,j,k + ∆tsS
n
i,j,k[1 − α∆tsΛ

n
i,j,k]−1. (2.28)

In the standard WAMC4 formulation, α is set as 0.5. A limiter on the increments
in wave energy is imposed (see discussion in Monbaliu et al., [7]). The limiter is
introduced that

(∆sF )n
max = 3 × 10−7gũ∗

afcf
−4∆ts, (2.29)

where g is the gravity acceleration, fc = fmax is the cut–off frequency, and

ũ∗
a = max(u∗

a, gf∗
PM/f). (2.30)

with u∗
a the air friction velocity and f∗

PM = 5.6 × 10−3s−1 the dimensionless
Pierson–Moskowitz peak frequency.

As mentioned above, the numerical scheme implemented in the original WAMC4
code is an explicit one, in such a way that the stability of the numerical scheme
is determined by the Courant–Friedrichs–Lewy (CFL) condition. More details of
the information about the theory and the formulation of spherical coordinates of
the WAM model can be found in the WAMDI Group [14].

3 Model Settings and Experimental Designs

3.1 Model Settings

The computational storm waves of from the eye storm generation at the Pacific
Ocean entering into the SCS and the GoT were configured with high resolutions.
In order to resolve the regional sea waves in the GoT and its surrounding water,
two nested domains (Figure 1) with the inside domain (FGD) imbedded into the
outside domain (CGD) by one way nested grid were employed for this study. The
CGD was set up to cover the storm generations from 95◦E to 155◦E in longi-
tude and from 20◦S to 40◦N in latitude (0.5◦ × 0.5◦ spatial grid size), which gave
121×121 points for both latitude and longitude. The FGD was covered from 99◦E
to 111◦E in longitude and from 2◦N to 14◦N in latitude (0.25◦×0.25◦ spatial grid
size), which gave 49×49 points for both latitude and longitude. The propagation
and source time step of the CGD were 1800 s and 1800 s respectively while those
of the FGD were 600 s and 600 s respectively.

The bottom topography was obtained from GEODAS (available online from
http://www.ngdc.noaa.gov/mgg/gdas). The original version (1993), ETOPO5 [9],
on a 5–minute latitude/longitude grid (1 minute of latitude = 1 nautical mile, or
1.853 km) was updated in June 2005 for the acceptably deep water. It has been
applied in the CGD. The latest version (on July 28, 2008), ETOPO1 [1], on a 1–
minute latitude/longitude grid for the high resolution was available in Ice Surface
(top of Antarctic and Greenland ice sheets) and Bedrock (base of the ice sheets)
versions. The ETOPO1 (Bedrock version) was chosen to apply in the FGD. The
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details of the coupled topographies and nested grid domains were described by Xia
et al., [10].

The WAMC4 model required the input wind fields and bathymetry data for
each nested grid. The wind fields at a height of 10 m were obtained from the
U.S. Navy Global Atmospheric Prediction System (NOGAPS) which is a global
atmospheric forecast model [18] with 1◦ × 1◦ data resolution and the linear inter-
polation was used to generate the wind data to the grid points. The bathymetry
data was extracted from ETOPO5 in the updated version and ETOPO1 [1].

The results of WAMC4 model were exposed in every hour of Typhoon Linda
passing through the GoT. The stability of model was computed according to the
CFL stability condition.

3.2 Experimental Designs

In order to compute the storm wave on the surface wave layer, two experi-
ments were conducted in this study (Table 1). The WAMC4 model run by the
nested grid which modified the spherical coordinate propagation with deep water
(shallow water flag condition) in the CGD and Cartesian coordinate propagation
with shallow water (shallow water flag condition) in the FGD was referred to as
Exp.I. In Exp.II, the WAMC4 model run with deep water condition in the spheri-
cal coordinate propagation was provided to the FGD and the same condition with
Exp.I was used for the CGD.

Table 1: Details and reference codes of the numerical experiments

Experimental code
Numerical experiments with water flag conditions

Coarse Grid Domain (CGD) Fine Grid Domain (FGD)

Exp.I Spherical coordinates in Deep water Cartesian coordinates in Shallow water

Exp.II Spherical coordinates in Deep water Spherical coordinates in Deep water

4 Results of Experiments

The simulations of storm wave and propagation were analyzed from a set of
model experiments: Exp.I and Exp.II as described in Table 1.

The computation of wave height generated by Typhoon Linda using the WAMC4
model (Exp.I) was firstly considered. The maximum significant wave heights re-
lated with the maximum wind fields in the CGD and FGD during the passage of
Typhoon Linda are shown in Figures 4–6. The WAMC4 model of both experi-
ments was run with the same wind field (wind speed), domain (wind fetch) and
the same time (duration) but different coordinate propagation and flag conditions.
Figures 5(a) and (b) showed the wave height at the same location with different
coordinate propagations and flag conditions in Exp.II. The effect of coordinate
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propagation and flag condition (deep water) on wave height can be easily consid-
ered from Figures 5(b) and 6(b), which showed the wave height increased with
increasing water depth. In addition, Super Typhoon Keith 1997 was found in the
CGD used in this study.

To quantify the effects of extreme of wave height and the difference between
the maximum wave heights computed by the WAMC4 model at four locations of
buoy in the GoT region (Figure 7 and Table 2) were calculated. The differences of
wave heights at each station were presented in Table 3. The results showed that
the wave heights at stations I, II and III were similarly different while station IV
showed a markedly different wave height.

Table 2: Computational and observation points for the WAMC4 model
simulations

Station code Station name Station point Computational point

I Ko Chang 102.20◦E 12.00◦N 102.25◦E 12.00◦N

II Rayong 101.22◦E 12.44◦N 101.25◦E 12.50◦N

III Huahin 100.17◦E 12.44◦N 100.25◦E 12.50◦N

IV Satun based weather 101.42◦E 9.28◦N 101.50◦E 9.25◦N

Table 3: Comparison of the maximum wave height (m) of the WAMC4
model with the observations

Station code Station name Exp.I (m) Exp.II (m) Observation (m)

I Ko Chang 1.67 2.22 2.50

II Rayong 1.54 2.52 2.97

III Huahin 1.60 2.67 4.06

IV Satun based weather 2.30 2.42 12.48
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(a) (b)

Figure 4: The maximum wind field in (a) the CGD and (b) the FGD.

(a) (b)

Figure 5: The maximum significant wave height of Exp.I in (a) the CGD
and (b) the FGD.
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(a) (b)

Figure 6: The maximum significant wave height of Exp.II in (a) the CGD
and (b) the FGD.

Figure 7: The observations in the study domain at buoy locations.
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5 Discussions and Conclusion

The comparison of storm waves on the water surface layer of two experiments
(Table 3) in the Typhoon Linda case exhibited that the wave height played a more
significant role in determining the two–coordinates for energy balance equations by
the WAMC4 model. The role of wave height can be clearly considered in Figure
8. Figure 8 and Table 3 showed the slight difference of wave height between
Exp.I, Exp.II and observations (accept three in four stations for Exp.II) with
typhoon distribution during Typhoon Linda entering into the GoT. The summary
of WAMC4 model in four stations of Exp.II is shown in Figure 9. At Satun based
weather station, the maximum wave height of approximately 12.5 m (Rogue wave
at deep water) was affected by strong wind and wind gust. Additional studies will
be investigated in the future with a focus on how storm waves affect other domain
in the GoT. The effects of storm wave on the water surface layer should be more
comprehensively examined with more typhoon case simulations. Additionally, the
observational data are needed to calibrate and validate the models.

K o C h a n g R a y o n g H u a h i n S a t u n024 681 01 21 4 T h e c o m p a r i s o n o f m a x i m u m s i g n i f i c a n t w a v e h e i g h t o f W A M C 4 m o d e l w i t h o b s e r v a t i o n s
Si gnifi cantW aveH ei ght( m) E x p . IE x p . I IO b s e r v a t i o n

Figure 8: The comparison maximum of wave heights at each station.
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(a) (b)

(c) (d)

Figure 9: The summary of Exp.II of WAMC4 model in four stations (a)
Ko Chang buoy, (b) Rayong buoy, (c) Huahin buoy and (d) Satun based
weather station.
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