
Thai Journal of Mathematics
Volume 8 (2010) Number 1 : 185–192

www.math.science.cmu.ac.th/thaijournal

Online ISSN 1686-0209

Some Conditions on Non-Normal Operators
which Imply Normality

M.H.M. Rashid

Abstract : In this paper, we prove the following assertions:

(i) Let A,B, X ∈ B(H) be such that A∗ is p-hyponormal or log-hyponormal,
B is a dominant and X is invertible. If XA = BX, then there is a unitary
operator U such that AU = UB and hence A and B are normal.

(ii) Let T = A + iB ∈ B(H) be the cartesian decomposition of T with AB is
p-hyponormal. If A or B is positive, then T is normal.

(iii) Let A, V, X ∈ B(H) be such that V,X are isometries and A∗ is p-hyponormal.
If V X = XA, then A is unitary.

(iv) Let A,B ∈ B(H) be such that A + B ≥ ±X. Then for every paranormal
operator X ∈ B(H) we have

‖AX + XB‖ ≥ ‖X‖2.
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1 Introduction

Let H be infinite dimensional complex Hilbert, and let B(H) denote the alge-
bra of all bounded linear operators acts on H . Let ‖.‖ denote the spectral norm,
and 〈., .〉 be an inner product in H. For T ∈ B(H), we denote the spectrum and
the point spectrum of T by σ(T ), σp(T ).
An operator A ∈ B(H) is called positive if 〈Ax, x〉 ≥ 0 for all non-zero vectors
x ∈ H , isometry if ‖Ax‖ = ‖x‖ for all a non-zero vector x ∈ H , unitary if
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A∗A = AA∗ = I , where I is the identity operator, normal if AA∗ = A∗A, hypo-
normal if QA ≥ 0, where QA = A∗A−AA∗. We say that A is M -hyponormal for
M > 0 if (A − λI)(A − λI)∗ ≤ M(A − λI)∗(A − λI) for all λ ∈ C, dominant if
ran(A − λI) ⊂ ran(A − λI)∗ for all λ ∈ C, where ran(T ) is the range of T and
normaloid if ‖T‖ = r(T ), where r(T ) is the spectral radius of T .
In [1], an operator T is called p-hyponormal if |T |2p ≥ |T ∗|2p for 0 < p ≤ 1,
where |T | is the square roots of T ∗T , that is, |T | = (T ∗T )

1
2 . We also say that T

is co-hyponormal , co-p-hyponormal, co-M -hyponormal and co-dominant if T ∗ is
hyponormal, p-hyponormal, M -hyponormal and dominant, respectively.
The well-known Fuglede-Putnam Theorem asserts that if A and B are normal
and AX = XB for some operator X ∈ B(H), then A∗X = XB∗. (See [3]). In
past years several authors have extended this theorem for non-normal operators,
Yoshino [15], proved that if A∗ is M -hyponormal, B is dominant and CA = BC
for some C ∈ B(H), then CA∗ = B∗C.
Recently, Uchiyama and Tanahashi [14] proved that if A, B∗ are p-hyponormal(resp.
log-hyponormal) and AX = XB, then A∗X = XB∗.

2 Main Results

The next theorems explain what conditions imply normality for p-hyponormal
operators.

Theorem 2.1. Let A,B,X ∈ B(H) be such that A∗ is a p-hyponormal or a log-
hyponormal, B is a dominant and X is an invertible. If XA = BX, then there is
a unitary U such that AU = UB and hence A and B are normal.

Proof. Since XA = BX, it follows from Fuglede-Putnam theorem for p-hyponormal
[14, theorem 3] that B∗X = XA∗ and so X∗B = AX∗.
Now

AX∗X = X∗BX = X∗XA.

Let X = UP be the polar decomposition of X. Since X is an invertible, it follows
that P is invertible and U is unitary. Since AP 2 = P 2A and P is positive, it
follows that AP = PA. Thus BUP = UPA implies BUP = UAP . But P is an
invertible, we have BU = UA. Therefore A, B are unitary equivalent. So, A is
dominant and B∗ is p-hyponormal. Hence A,B are normal.

As a consequence of theorem 2.1, we have immediately

Corollary 2.2. Let A,B, X ∈ B(H) be such that A∗ is a p-hyponormal or a
log-hyponormal, B is a dominant. If X is an invertible positive operator, then
XA = BX implies A = B.

Theorem 2.3. Let T = A + iB ∈ B(H) be the cartesian decomposition of T with
AB is p-hyponormal. If A or B is positive, then T is normal.
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Proof. Assume first that A is positive. Let S = AB, then SA = AS∗. Then
it follows from Fuglede-Putnam theorem for p-hyponormal [14, corollary 2] that
S∗A = AS, that is, BA2 = A2B. But A is positive, then AB = BA, i.e., T is
normal
Now, if B is positive, then apply the same argument to −iT = B − iA.

Theorem 2.4. Let T = A + iB be the cartesian decomposition of T . If T ∗ is
hyponormal operator and AB is p-hyponormal operator, then T is normal operator.

Proof. Let Q = AB, then QA = AQ∗ = ABA. Then by Fuglede-Putnam’s
theorem for p-hyponormal operators, we have Q∗A = AQ, i.e., BA2 = A2B.
Now

(Q + Q∗)A = A(Q + Q∗)

and

(Q−Q∗)A = A(Q∗ −Q).

Since T ∗ is hyponormal, we have

TT ∗ − T ∗T = 2i(BA−AB) = 2i(Q∗ −Q) ≥ 0.

Let Y = 2i(BA−AB) then Y ≥ 0 and Y A = −AY . Now

Y 2A = Y (Y A)
= Y (−AY )
= −Y AY

= −(−AY )Y

= AY 2.

But Y is positive, then Y A = AY = 0. Hence, A(AB −BA) = (AB −BA)A = 0
implies that σ(AB − BA) = {0}. Therefore AB − BA is quasinilpotent skew-
hermitian. Thus AB −BA = 0. So T is normal.

Theorem 2.5. Let A, V, X ∈ B(H) be such that V,X are are isometries and A∗

is p-hyponormal. If V X = XA, then A is unitary.

Proof. Since V X = XA, then by Fuglede-Putnam theorem [14, corollary 2], we
have V ∗X = XA∗. Now multiplying the first equation by V ∗, we get X = V ∗XA,
then X(I − A∗A) = 0 implies that X∗X(I − A∗A) = 0. Hence A∗A = I, so A
is an isometry. Therefore A and A∗ are p-hyponormal. So A is normal isometry.
Hence A is unitary.

The following theorem show that if A,B ∈ B(H) are hyponormal and A∗B =
BA∗, the sum and product of A and B are hyponormal.
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Theorem 2.6. Let A,B ∈ B(H) be such that A, B are hyponormal and A∗B =
BA∗. Then
(a) A + B is hyponormal.
(b) AB is hyponormal.

Proof. Since A∗B = BA∗, then B∗A = AB∗. Now

(a) (A + B)∗(A + B)− (A + B)(A + B)∗ = (A∗A + A∗B + B∗A + B∗B)
− (AA∗ + AB∗ + BA∗ + BB∗)
= (A∗A−AA∗) + (B∗B −BB∗).

Using the fact that, the sum of two positive operators is positive operator. The
result follows.

(b) (AB)∗(AB)− (AB)(AB)∗ = B∗A∗AB −ABB∗A∗

= B∗A∗AB −B∗AA∗B + B∗AA∗B −ABB∗A∗

= B∗(A∗A−AA∗)B + A(B∗B −BB∗)A∗

= B∗QAB + AQBA∗,

where QA = A∗A− AA∗ ≥ 0 and QB = B∗BBB∗ ≥ 0. The result holds by using
the fact that if X ≥ 0, then E∗XE ≥ 0 and EXE∗ ≥ 0.

Recall that [9], an operator T is paranormal operator if ‖T 2x‖ ≥ ‖Tx‖2 for
every unit vector x ∈ H.

Lemma 2.7. ([5, 6]) If T is paranormal operator, then T is normaloid.

Theorem 2.8. Let P,Q ∈ B(H). Let C = PQ − QP . If P is normaloid, then
‖I − C‖ ≥ 1.

Proof. Since P is normaloid, it follows that r(P ) = ‖P‖. So there is a λ ∈ σ(P )
such that |λ| = ‖P‖. Hence there is a sequence of unit vectors {xn} in H such
that (P − λI)xn → 0, the normaloidity of P implies (P ∗ − λI)xn → 0. Now

‖I − C‖ ≥ |〈(I − C)xn, xn〉| = |1− 〈Cxn, xn〉| ≥ 1− |〈Cxn, xn〉|.
The result follows if we show that 〈Cxn, xn〉 → 0.
But

〈Cxn, xn〉 = 〈((P − λI)Q−Q(P − λI))xn, xn〉
= 〈Qxn, (P − λI)∗xn〉 − 〈(P − λI)xn, Q∗xn〉

So
|〈Cxn, xn〉| ≤ ‖Q‖(‖(P − λI)∗xn‖+ ‖(P − λI)xn‖) → 0.
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Theorem 2.9. Let A,B ∈ B(H) be self-adjoint such that A + B ≥ a ≥ 0. Then
for every normaloid X ∈ B(H) we have

‖AX + XB‖ ≥ a‖X‖.
Proof. Since X is normaloid, it follows that r(X) = ‖X‖. So there is a λ ∈ σ(X)
such that |λ| = ‖X‖. Hence there is a sequence of unit vectors {xn} in H such
that (X − λI)xn → 0, the normaloidity of X implies (X∗ − λI)xn → 0.
Now

‖AX + XB‖ ≥ |〈(AX + XB)xn, xn〉|
= |〈A(X − λI)xn, xn〉+ 〈(X − λI)Bxn, xn〉+ λ〈(A + B)xn, xn〉|
= |〈(X − λI)xn, Axn〉+ 〈Bxn, (X∗ − λ)xn〉+ λ〈(A + B)xn, xn〉|
≥ |λ||〈(A + B)xn, xn〉| − terms which goes to zero as n →∞
≥ |λ|a− terms which goes to zero as n →∞.

Hence
‖AX + XB‖ ≥ a‖X‖.

Theorem 2.10. ( [7])Let A, B ∈ B(H) be self-adjoint such that A + B ≥ ±X.
Then for every self-adjoint X ∈ B(H) we have

‖AX + XB‖ ≥ ‖X‖2.
Lemma 2.11. If A ∈ B(H) is self-adjoint then ±A ≤ |A|
Proof. Let A = U |A| be the polar decomposition of A. Since A is self-adjoint then
A = U |A| = |A|U∗ and

(U |A|U∗)2 = U |A|U∗U |A|U∗

= U |A|2U∗

= A2 = |A|2,
and so U |A|U∗ = |A|.
Now for any x ∈ H we have

| 〈Ax, x〉 |2 = | 〈U |A|x, x〉 |2
= | 〈|A|x,U∗x〉 |2
≤ 〈|A|x, x〉 〈|A|U∗x,U∗x〉 (by the Generalized Cauchy Schwartz

inequality)
= 〈|A|x, x〉 〈U |A|U∗x, x〉
= 〈|A|x, x〉 〈|A|x, x〉
= 〈|A|x, x〉2 .

Hence | 〈Ax, x〉 | ≤ 〈|A|x, x〉.
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Corollary 2.12. ([7])Let A, B ∈ B(H) be self-adjoint such that A+B ≥ |X| and
A + B ≥ |X∗|. Then

max(‖AX + XB‖ , ‖AX∗ + X∗B‖) ≥ ‖X‖2 .

Proof. On H ⊕ H, let T =
(

A 0
0 0

)
, S =

(
B 0
0 B

)
and Y =

(
0 X

X∗ 0

)

then Y is self-adjoint and |Y | =
( |X∗| 0

0 |X|
)

. From A+B ≥ |X| and A+B ≥
|X∗|, we obtain that T + S ≥ |Y | and hence T + S ≥ ±Y by Lemma 2.11. Now
by applying Theorem 2.10 to T, S and Y to get

‖TY + Y S‖ =
∥∥∥∥
(

0 AX + XB
AX∗ + X∗B 0

)∥∥∥∥
= max(‖AX + XB‖ , ‖AX∗ + X∗B‖)
≥ ‖Y ‖2

= ‖X‖2 .

Theorem 2.13. Let A,B ∈ B(H) be self-adjoint such that A + B ≥ a ≥ 0. Then
for every normaloid X ∈ B(H) we have

‖XAX∗ + X∗BX‖ ≥ a‖X‖2.

Proof. Since X is normaloid, it follows from lemma 2.7 that r(X) = ‖X‖. So
there is a sequence of unit vectors {xn} in H such that (X − t)xn → 0, where
|t| = ‖X‖, and so (X − t)∗xn → 0.
Now

‖XAX∗ + X∗BX‖ ≥ |〈(XAX∗ + X∗BX)xn, xn〉|
= | 〈AX∗xn, (X − t)∗xn〉+ t 〈A(X − t)∗xn, xn〉+ |t|2 〈Axn, xn〉
+ 〈BXxn, (X − t)xn〉+ t 〈B(X − t)xn, xn〉+ |t|2 〈Bxn, xn〉 |
≥ a|t|2 − terms which goes to zero as n →∞.

Letting n →∞, we get

‖XAX∗ + X∗BX‖ ≥ a‖X‖2.

We point out here that Theorem 2.13 is not true if the assumption on X that
is normaloid is removed. For example, consider

X =
(

0 1
0 0

)
, A =

(
1 0
0 0

)
, B =

(
0 0
0 1

)
,
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which act on a two-dimensional Hilbert space.
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