# Some Conditions on Non-Normal Operators which Imply Normality 

M.H.M. Rashid

Abstract : In this paper, we prove the following assertions:
(i) Let $A, B, X \in \mathbf{B}(\mathcal{H})$ be such that $A^{*}$ is $p$-hyponormal or log-hyponormal, $B$ is a dominant and $X$ is invertible. If $X A=B X$, then there is a unitary operator $U$ such that $A U=U B$ and hence $A$ and $B$ are normal.
(ii) Let $T=A+i B \in \mathbf{B}(\mathcal{H})$ be the cartesian decomposition of $T$ with $A B$ is $p$-hyponormal. If $A$ or $B$ is positive, then $T$ is normal.
(iii) Let $A, V, X \in \mathbf{B}(\mathcal{H})$ be such that $V, X$ are isometries and $A^{*}$ is $p$-hyponormal. If $V X=X A$, then $A$ is unitary.
(iv) Let $A, B \in \mathbf{B}(\mathcal{H})$ be such that $A+B \geq \pm X$. Then for every paranormal operator $X \in \mathbf{B}(\mathcal{H})$ we have

$$
\|A X+X B\| \geq\|X\|^{2}
$$

Keywords : Hyponormal operators, Fuglede-Putnam Theorem, and Commutator.
2000 Mathematics Subject Classification : 47A10, 47B20

## 1 Introduction

Let $\mathcal{H}$ be infinite dimensional complex Hilbert, and let $\mathbf{B}(\mathcal{H})$ denote the algebra of all bounded linear operators acts on $\mathcal{H}$. Let $\|$.$\| denote the spectral norm,$ and $\langle.,$.$\rangle be an inner product in \mathcal{H}$. For $T \in \mathbf{B}(\mathcal{H})$, we denote the spectrum and the point spectrum of $T$ by $\sigma(T), \sigma_{p}(T)$.
An operator $A \in \mathbf{B}(\mathcal{H})$ is called positive if $\langle A x, x\rangle \geq 0$ for all non-zero vectors $x \in \mathcal{H}$, isometry if $\|A x\|=\|x\|$ for all a non-zero vector $x \in \mathcal{H}$, unitary if
$A^{*} A=A A^{*}=I$, where $I$ is the identity operator, normal if $A A^{*}=A^{*} A$, hyponormal if $Q_{A} \geq 0$, where $Q_{A}=A^{*} A-A A^{*}$. We say that $A$ is $M$-hyponormal for $M>0$ if $(A-\lambda I)(A-\lambda I)^{*} \leq M(A-\lambda I)^{*}(A-\lambda I)$ for all $\lambda \in \mathbb{C}$, dominant if $\operatorname{ran}(A-\lambda I) \subset \operatorname{ran}(A-\lambda I)^{*}$ for all $\lambda \in \mathbb{C}$, where $\operatorname{ran}(T)$ is the range of $T$ and normaloid if $\|T\|=r(T)$, where $r(T)$ is the spectral radius of $T$.
In [1], an operator $T$ is called $p$-hyponormal if $|T|^{2 p} \geq\left|T^{*}\right|^{2 p}$ for $0<p \leq 1$, where $|T|$ is the square roots of $T^{*} T$, that is, $|T|=\left(T^{*} T\right)^{\frac{1}{2}}$. We also say that $T$ is co-hyponormal, co- $p$-hyponormal, co- $M$-hyponormal and co-dominant if $T^{*}$ is hyponormal, $p$-hyponormal, $M$-hyponormal and dominant, respectively.
The well-known Fuglede-Putnam Theorem asserts that if $A$ and $B$ are normal and $A X=X B$ for some operator $X \in \mathbf{B}(\mathcal{H})$, then $A^{*} X=X B^{*}$. (See [3]). In past years several authors have extended this theorem for non-normal operators, Yoshino [15], proved that if $A^{*}$ is $M$-hyponormal, $B$ is dominant and $C A=B C$ for some $C \in \mathbf{B}(\mathcal{H})$, then $C A^{*}=B^{*} C$.
Recently, Uchiyama and Tanahashi [14] proved that if $A, B^{*}$ are $p$-hyponormal(resp. log-hyponormal) and $A X=X B$, then $A^{*} X=X B^{*}$.

## 2 Main Results

The next theorems explain what conditions imply normality for $p$-hyponormal operators.

Theorem 2.1. Let $A, B, X \in \mathbf{B}(\mathcal{H})$ be such that $A^{*}$ is a p-hyponormal or a loghyponormal, $B$ is a dominant and $X$ is an invertible. If $X A=B X$, then there is $a$ unitary $U$ such that $A U=U B$ and hence $A$ and $B$ are normal.

Proof. Since $X A=B X$, it follows from Fuglede-Putnam theorem for $p$-hyponormal [14, theorem 3] that $B^{*} X=X A^{*}$ and so $X^{*} B=A X^{*}$.
Now

$$
A X^{*} X=X^{*} B X=X^{*} X A
$$

Let $X=U P$ be the polar decomposition of $X$. Since $X$ is an invertible, it follows that $P$ is invertible and $U$ is unitary. Since $A P^{2}=P^{2} A$ and $P$ is positive, it follows that $A P=P A$. Thus $B U P=U P A$ implies $B U P=U A P$. But $P$ is an invertible, we have $B U=U A$. Therefore $A, B$ are unitary equivalent. So, $A$ is dominant and $B^{*}$ is $p$-hyponormal. Hence $A, B$ are normal.

As a consequence of theorem 2.1, we have immediately
Corollary 2.2. Let $A, B, X \in \mathbf{B}(\mathcal{H})$ be such that $A^{*}$ is a p-hyponormal or a $\log$-hyponormal, $B$ is a dominant. If $X$ is an invertible positive operator, then $X A=B X$ implies $A=B$.

Theorem 2.3. Let $T=A+i B \in \mathbf{B}(\mathcal{H})$ be the cartesian decomposition of $T$ with $A B$ is p-hyponormal. If $A$ or $B$ is positive, then $T$ is normal.

Proof. Assume first that $A$ is positive. Let $S=A B$, then $S A=A S^{*}$. Then it follows from Fuglede-Putnam theorem for $p$-hyponormal [14, corollary 2] that $S^{*} A=A S$, that is, $B A^{2}=A^{2} B$. But $A$ is positive, then $A B=B A$, i.e., $T$ is normal
Now, if $B$ is positive, then apply the same argument to $-i T=B-i A$.
Theorem 2.4. Let $T=A+i B$ be the cartesian decomposition of $T$. If $T^{*}$ is hyponormal operator and $A B$ is p-hyponormal operator, then $T$ is normal operator.

Proof. Let $Q=A B$, then $Q A=A Q^{*}=A B A$. Then by Fuglede-Putnam's theorem for $p$-hyponormal operators, we have $Q^{*} A=A Q$, i.e., $B A^{2}=A^{2} B$.
Now

$$
\left(Q+Q^{*}\right) A=A\left(Q+Q^{*}\right)
$$

and

$$
\left(Q-Q^{*}\right) A=A\left(Q^{*}-Q\right)
$$

Since $T^{*}$ is hyponormal, we have

$$
T T^{*}-T^{*} T=2 i(B A-A B)=2 i\left(Q^{*}-Q\right) \geq 0
$$

Let $Y=2 i(B A-A B)$ then $Y \geq 0$ and $Y A=-A Y$. Now

$$
\begin{aligned}
Y^{2} A & =Y(Y A) \\
& =Y(-A Y) \\
& =-Y A Y \\
& =-(-A Y) Y \\
& =A Y^{2}
\end{aligned}
$$

But $Y$ is positive, then $Y A=A Y=0$. Hence, $A(A B-B A)=(A B-B A) A=0$ implies that $\sigma(A B-B A)=\{0\}$. Therefore $A B-B A$ is quasinilpotent skewhermitian. Thus $A B-B A=0$. So $T$ is normal.

Theorem 2.5. Let $A, V, X \in \mathbf{B}(\mathcal{H})$ be such that $V, X$ are are isometries and $A^{*}$ is p-hyponormal. If $V X=X A$, then $A$ is unitary.

Proof. Since $V X=X A$, then by Fuglede-Putnam theorem [14, corollary 2], we have $V^{*} X=X A^{*}$. Now multiplying the first equation by $V^{*}$, we get $X=V^{*} X A$, then $X\left(I-A^{*} A\right)=0$ implies that $X^{*} X\left(I-A^{*} A\right)=0$. Hence $A^{*} A=I$, so $A$ is an isometry. Therefore $A$ and $A^{*}$ are $p$-hyponormal. So $A$ is normal isometry. Hence $A$ is unitary.

The following theorem show that if $A, B \in \mathbf{B}(\mathcal{H})$ are hyponormal and $A^{*} B=$ $B A^{*}$, the sum and product of $A$ and $B$ are hyponormal.

Theorem 2.6. Let $A, B \in \mathbf{B}(\mathcal{H})$ be such that $A, B$ are hyponormal and $A^{*} B=$ $B A^{*}$. Then
(a) $A+B$ is hyponormal.
(b) $A B$ is hyponormal.

Proof. Since $A^{*} B=B A^{*}$, then $B^{*} A=A B^{*}$. Now
(a) $(A+B)^{*}(A+B)-(A+B)(A+B)^{*}=\left(A^{*} A+A^{*} B+B^{*} A+B^{*} B\right)$

$$
\begin{aligned}
& -\left(A A^{*}+A B^{*}+B A^{*}+B B^{*}\right) \\
& =\left(A^{*} A-A A^{*}\right)+\left(B^{*} B-B B^{*}\right)
\end{aligned}
$$

Using the fact that, the sum of two positive operators is positive operator. The result follows.
(b) $(A B)^{*}(A B)-(A B)(A B)^{*}=B^{*} A^{*} A B-A B B^{*} A^{*}$

$$
\begin{aligned}
& =B^{*} A^{*} A B-B^{*} A A^{*} B+B^{*} A A^{*} B-A B B^{*} A^{*} \\
& =B^{*}\left(A^{*} A-A A^{*}\right) B+A\left(B^{*} B-B B^{*}\right) A^{*} \\
& =B^{*} Q_{A} B+A Q_{B} A^{*}
\end{aligned}
$$

where $Q_{A}=A^{*} A-A A^{*} \geq 0$ and $Q_{B}=B^{*} B_{B} B^{*} \geq 0$. The result holds by using the fact that if $X \geq 0$, then $E^{*} X E \geq 0$ and $E X E^{*} \geq 0$.

Recall that [9, an operator $T$ is paranormal operator if $\left\|T^{2} x\right\| \geq\|T x\|^{2}$ for every unit vector $x \in \mathcal{H}$.

Lemma 2.7. ([5, [6]) If $T$ is paranormal operator, then $T$ is normaloid.
Theorem 2.8. Let $P, Q \in \mathbf{B}(\mathcal{H})$. Let $C=P Q-Q P$. If $P$ is normaloid, then $\|I-C\| \geq 1$.

Proof. Since $P$ is normaloid, it follows that $r(P)=\|P\|$. So there is a $\lambda \in \sigma(P)$ such that $|\lambda|=\|P\|$. Hence there is a sequence of unit vectors $\left\{x_{n}\right\}$ in $\mathcal{H}$ such that $(P-\lambda I) x_{n} \rightarrow 0$, the normaloidity of $P$ implies $\left(P^{*}-\bar{\lambda} I\right) x_{n} \rightarrow 0$. Now

$$
\|I-C\| \geq\left|\left\langle(I-C) x_{n}, x_{n}\right\rangle\right|=\left|1-\left\langle C x_{n}, x_{n}\right\rangle\right| \geq 1-\left|\left\langle C x_{n}, x_{n}\right\rangle\right|
$$

The result follows if we show that $\left\langle C x_{n}, x_{n}\right\rangle \rightarrow 0$.
But

$$
\begin{aligned}
\left\langle C x_{n}, x_{n}\right\rangle & =\left\langle((P-\lambda I) Q-Q(P-\lambda I)) x_{n}, x_{n}\right\rangle \\
& =\left\langle Q x_{n},(P-\lambda I)^{*} x_{n}\right\rangle-\left\langle(P-\lambda I) x_{n}, Q^{*} x_{n}\right\rangle
\end{aligned}
$$

So

$$
\left|\left\langle C x_{n}, x_{n}\right\rangle\right| \leq\|Q\|\left(\left\|(P-\lambda I)^{*} x_{n}\right\|+\left\|(P-\lambda I) x_{n}\right\|\right) \rightarrow 0
$$

Theorem 2.9. Let $A, B \in \mathbf{B}(\mathcal{H})$ be self-adjoint such that $A+B \geq a \geq 0$. Then for every normaloid $X \in \mathbf{B}(\mathcal{H})$ we have

$$
\|A X+X B\| \geq a\|X\|
$$

Proof. Since $X$ is normaloid, it follows that $r(X)=\|X\|$. So there is a $\lambda \in \sigma(X)$ such that $|\lambda|=\|X\|$. Hence there is a sequence of unit vectors $\left\{x_{n}\right\}$ in $\mathcal{H}$ such that $(X-\lambda I) x_{n} \rightarrow 0$, the normaloidity of $X$ implies $\left(X^{*}-\bar{\lambda} I\right) x_{n} \rightarrow 0$.
Now

$$
\begin{aligned}
\|A X+X B\| & \geq\left|\left\langle(A X+X B) x_{n}, x_{n}\right\rangle\right| \\
& =\left|\left\langle A(X-\lambda I) x_{n}, x_{n}\right\rangle+\left\langle(X-\lambda I) B x_{n}, x_{n}\right\rangle+\lambda\left\langle(A+B) x_{n}, x_{n}\right\rangle\right| \\
& =\left|\left\langle(X-\lambda I) x_{n}, A x_{n}\right\rangle+\left\langle B x_{n},\left(X^{*}-\bar{\lambda}\right) x_{n}\right\rangle+\lambda\left\langle(A+B) x_{n}, x_{n}\right\rangle\right| \\
& \geq|\lambda|\left|\left\langle(A+B) x_{n}, x_{n}\right\rangle\right|-\text { terms which goes to zero as } n \rightarrow \infty \\
& \geq|\lambda| a-\text { terms which goes to zero as } n \rightarrow \infty .
\end{aligned}
$$

Hence

$$
\|A X+X B\| \geq a\|X\|
$$

Theorem 2.10. ([7])Let $A, B \in \mathbf{B}(\mathcal{H})$ be self-adjoint such that $A+B \geq \pm X$. Then for every self-adjoint $X \in \mathbf{B}(\mathcal{H})$ we have

$$
\|A X+X B\| \geq\|X\|^{2}
$$

Lemma 2.11. If $A \in \mathbf{B}(\mathcal{H})$ is self-adjoint then $\pm A \leq|A|$
Proof. Let $A=U|A|$ be the polar decomposition of $A$. Since $A$ is self-adjoint then $A=U|A|=|A| U^{*}$ and

$$
\begin{aligned}
\left(U|A| U^{*}\right)^{2} & =U|A| U^{*} U|A| U^{*} \\
& =U|A|^{2} U^{*} \\
& =A^{2}=|A|^{2},
\end{aligned}
$$

and so $U|A| U^{*}=|A|$.
Now for any $x \in \mathcal{H}$ we have

$$
\begin{aligned}
&|\langle A x, x\rangle|^{2}=|\langle U| A| x, x\rangle\left.\right|^{2} \\
&\left.=|\langle | A| x, U^{*} x\right\rangle\left.\right|^{2} \\
& \leq\langle | A|x, x\rangle\langle | A\left|U^{*} x, U^{*} x\right\rangle \\
&\text { inequality }) \\
&=\langle | A|x, x\rangle\langle U| A\left|U^{*} x, x\right\rangle \\
&=\langle | A|x, x\rangle\langle | A|x, x\rangle \\
&=\langle | A|x, x\rangle^{2} .
\end{aligned}
$$

$$
\leq\langle | A|x, x\rangle\langle | A\left|U^{*} x, U^{*} x\right\rangle \quad \text { (by the Generalized Cauchy Schwartz }
$$

Hence $|\langle A x, x\rangle| \leq\langle | A|x, x\rangle$.

Corollary 2.12. ([7])Let $A, B \in \mathbf{B}(\mathcal{H})$ be self-adjoint such that $A+B \geq|X|$ and $A+B \geq\left|X^{*}\right|$. Then

$$
\max \left(\|A X+X B\|,\left\|A X^{*}+X^{*} B\right\|\right) \geq\|X\|^{2}
$$

Proof. On $\mathcal{H} \oplus \mathcal{H}$, let $T=\left(\begin{array}{cc}A & 0 \\ 0 & 0\end{array}\right), S=\left(\begin{array}{cc}B & 0 \\ 0 & B\end{array}\right)$ and $Y=\left(\begin{array}{cc}0 & X \\ X^{*} & 0\end{array}\right)$ then $Y$ is self-adjoint and $|Y|=\left(\begin{array}{cc}\left|X^{*}\right| & 0 \\ 0 & |X|\end{array}\right)$. From $A+B \geq|X|$ and $A+B \geq$ $\left|X^{*}\right|$, we obtain that $T+S \geq|Y|$ and hence $T+S \geq \pm Y$ by Lemma 2.11. Now by applying Theorem 2.10 to $T, S$ and $Y$ to get

$$
\begin{aligned}
\|T Y+Y S\| & =\left\|\left(\begin{array}{cc}
0 & A X+X B \\
A X^{*}+X^{*} B & 0
\end{array}\right)\right\| \\
& =\max \left(\|A X+X B\|,\left\|A X^{*}+X^{*} B\right\|\right) \\
& \geq\|Y\|^{2} \\
& =\|X\|^{2}
\end{aligned}
$$

Theorem 2.13. Let $A, B \in \mathbf{B}(\mathcal{H})$ be self-adjoint such that $A+B \geq a \geq 0$. Then for every normaloid $X \in \mathbf{B}(\mathcal{H})$ we have

$$
\left\|X A X^{*}+X^{*} B X\right\| \geq a\|X\|^{2}
$$

Proof. Since $X$ is normaloid, it follows from lemma 2.7 that $r(X)=\|X\|$. So there is a sequence of unit vectors $\left\{x_{n}\right\}$ in $\mathcal{H}$ such that $(X-t) x_{n} \rightarrow 0$, where $|t|=\|X\|$, and so $(X-t)^{*} x_{n} \rightarrow 0$.
Now

$$
\begin{aligned}
\left\|X A X^{*}+X^{*} B X\right\| & \geq\left|\left\langle\left(X A X^{*}+X^{*} B X\right) x_{n}, x_{n}\right\rangle\right| \\
& =\left|\left\langle A X^{*} x_{n},(X-t)^{*} x_{n}\right\rangle+t\left\langle A(X-t)^{*} x_{n}, x_{n}\right\rangle+|t|^{2}\left\langle A x_{n}, x_{n}\right\rangle\right. \\
& +\left\langle B X x_{n},(X-t) x_{n}\right\rangle+\bar{t}\left\langle B(X-t) x_{n}, x_{n}\right\rangle+|t|^{2}\left\langle B x_{n}, x_{n}\right\rangle \mid \\
& \geq a|t|^{2}-\text { terms which goes to zero as } n \rightarrow \infty .
\end{aligned}
$$

Letting $n \rightarrow \infty$, we get

$$
\left\|X A X^{*}+X^{*} B X\right\| \geq a\|X\|^{2}
$$

We point out here that Theorem 2.13 is not true if the assumption on $X$ that is normaloid is removed. For example, consider

$$
X=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad B=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

which act on a two-dimensional Hilbert space.
Acknowledgement(s) : The authors would like to thank the referee for his valuable suggestions for improving the original manuscript.

## References

[1] A.Aluthge, On $p$-hyponormal Operators for $0<p \leq 1$, Integral Equations Operator Theory, 13(1990), 307-315.
[2] T.Ando, On Hyponormal Operators, Proc. Amer.Math. Soc., 14(1963), 290291.
[3] J.Conway, A course in Functional analysis, Second Edition, Springer-Verlag, New york, 1990.
[4] B.P.Duggal, On dominant operators, Arch. Math. (Basel) 46(1986),353-359.
[5] T. Furuta, On the class of paranormal operators, Proc. Japan Acad., 43(1967), 594-598.
[6] V. Istratescu, T. Saito and T. Yoshino, On a class of operators, Tohoku Math. J., 18(1966), 410-413
[7] F. Kittaneh, Inequalities for the Schatten p-norm. IV, Communications in Mathematical Physics, 106(1986), 581-585
[8] F.Kittaneh, Inequalities for the schatten p-norm, Glasgow Math. J., 29(1987), 99-104.
[9] M.Ito, Several properties on class $A$ including $p$-hyponormal and loghyponormal operator, Math. Ineq. Appl., 2(1999), no. 4, 569-578.
[10] J.G.Stampfli, Hyponormal Operators, Pacific J. Math., 12(1962), 1453-1458.
[11] J.G.Stampfli, Hyponormal operators and spectral density, Trans. Amer. Math. Soc., 117(1965), 469-476.
[12] K. Takahashi, On the converse of the Fuglede-Putnam theorem, Acta Sci. Math. (Szeged), 43(1981), 123-125
[13] K.Tanahashi, A.Uchiyama, On the Riesz idempotent of class $A$ operators, Math. Ineq. Appl., 2(2002), 291-298.
[14] A.Uchiyama, K.Tanahashi, Fuglede-Putnam's theorem for $p$-hyponormal or log-hyponormal operators, Glasgow Math. J., 44(2002), 397-410.
[15] T.Yoshino,Remark on the generalized Putnam-Fuglede theorem, Proc. Amer Math. Soc., 43(1985), 571-572.
(Received 5 June 2009)

M.H.M. Rashid<br>Department of Mathematics \& Statistics,<br>Faculty of Science P.O.Box(7),<br>Mu'tah University,<br>Mu'tah-Jordan.<br>e-mail : malik_okasha@yahoo.com

