

Some Inequalities Related to a New Sequence Space which Include c

C. Çakan and C. Aydin

Abstract: The sequence space c_A including the space c has recently been defined in [10] and its some properties have been investigated. In the present paper, we have studied some inequalities related to the this sequence space analogously to those that given in [2, 6, 7].

Keywords : Sequence spaces, statistically convergence, matrix transformations, core theorems.

2000 Mathematics Subject Classification : 40C05, 40J05, 46A45.

1 Introduction

Let ℓ_{∞} and c be the spaces of all real bounded and convergent sequences, respectively.

Let us define the matrix $A^r = (a_{nk}^r)$ by

$$a_{nk}^r = \begin{cases} \frac{1+r^k}{1+n}, & \text{for } 0 \le k \le n\\ 0, & \text{for } k > n. \end{cases}$$

Using the convergence domain of the matrix A^r , the new sequence spaces a_c^r including the space c has been constructed in [1] and its some properties has been investigated. Using the definition of the sequence space a_c^r some inclusion theorems which like to Knoop's Core Theorem were proved in [4] and [5].

Let $A = (a_{nk})$ be a lower triangular matrix defined by $a_{nk} = a_n b_k$, where a_n depends only on n and b_k only on k, $0 \le k \le n$. Recently, as a generalization of the sequence space a_c^r , the sequence space c_A has been defined by

$$c_A = \left\{ x = (x_k) : \{ t_n(x) \} \in c, t_n(x) = \frac{1}{a_n} \sum_{k=0}^n b_k x_k \right\}$$

and its some topological properties have been studied in [10]. Also; it is shown that c_A is isomorphic to c whenever A is regular. Throughout the paper we consider the regular matrices A. Also, $(c_0)_A$ has been defined by

$$c_A = \Big\{ x = (x_k) : \{ t_n(x) \} \in c_0 \Big\}.$$

Let E be a subset of $\mathbb{N} = \{0, 1, 2, ...\}$. Natural density δ of E is defined by

$$\delta(E) = \lim_{n \to \infty} \frac{1}{n} |\{k \le n : k \in E\}|,$$

where the vertical bars indicate the number of elements in the enclosed set. A sequence $x = (x_k)$ is said to be statistically convergent to the number l if for every ε , $\delta\{k : |x_k - l| \ge \varepsilon\} = 0$, [8]. Statistical limit superior and inferior of a real sequence was defined in [9].

Let $T = (t_{nk})$ be an infinite matrix of real numbers and $x = (x_k)$ a real sequence such that

$$Tx = (T_n(x)) = \left(\sum_k t_{nk} x_k\right)$$
 exists for each n .

Then the sequence $Tx = (T_n(x))$ is called T- transform of x. For two sequence spaces X and Y we say that the matrix T map X into Y if Tx exits and belongs to Y for all $x \in E$. By (X, Y), we denote the set of all matrices which map X into Y.

In what follows, for any $\lambda \in \mathbb{R}$, we write $\lambda^- = \max\{-\lambda, 0\}$ and $\lambda^+ = \max\{0, \lambda\}$. Then, it is clear that $\lambda = \lambda^+ - \lambda^-$ and $|\lambda| = \lambda^+ + \lambda^-$.

The aim of this paper is to establish some inequalities like to those that studied in [2, 6, 7] by using the definition of the sequence space c_A .

2 Lemmas

In this section, we present some lemmas which will be useful to the proof of our main results.

Lemma 2.1 [2, Th.1(c)] Let $\mathcal{A} = (a_{nk}(i))$ be conservative. Then, for some constant $\lambda \geq |\chi|$ and for all $x \in \ell_{\infty}$,

$$\limsup_{n} \sup_{i} \sup_{k} \sum_{k} \left(a_{nk}(i) - a_{k} \right) x_{k} \le \frac{\lambda + \chi}{2} L(x) - \frac{\lambda - \chi}{2} l(x)$$

if and only if

$$\limsup_{n} \sup_{i} \sup_{k} |a_{nk}(i) - a_{k}| \le \lambda, \tag{1}$$

where χ is the characteristic of \mathcal{A} .

Lemma 2.2 [2, Lemma 1] Let $\mathcal{A} = (a_{nk}(i))$ be conservative and $\lambda \geq 0$. Then (1) holds if and only if

$$\limsup_{n} \sup_{i} \sup_{k} \sum_{k} (a_{nk}(i) - a_{k})^{+} \le \frac{\lambda + \chi}{2}$$

and

$$\limsup_{n} \sup_{i} \sup_{k} (a_{nk}(i) - a_{k})^{-} \le \frac{\lambda - \chi}{2}$$

Lemma 2.3 [2, Lemma 2] Let $||\mathcal{A}|| < \infty$ and $\lim_{n \to \infty} \sup_{i=1}^{n} a_{nk}(i) = 0$. Then, there exists a $y \in \ell_{\infty}$ with $||y|| \leq 1$ such that

$$\limsup_{n} \sup_{i} \sup_{k} \sum_{k} a_{nk}(i) y_{k} = \limsup_{n} \sup_{i} \sum_{k} |a_{nk}(i)|.$$

Lemma 2.4 Let X be any sequence space. Then, $T \in (X, c_A)$ if and only if $D \in (X, c)$, where D is defined as in the proof.

Proof. Let $x \in X$ and consider the equality

$$\frac{1}{a_n} \sum_{i=0}^n b_i \sum_{k=0}^m t_{ik} x_k = \sum_{k=0}^m \frac{1}{a_n} \sum_{i=0}^n b_i t_{ik} x_k; \ (m, n \in \mathbb{N})$$

which yields as $m \to \infty$ that

$$\frac{1}{a_n} \sum_{i=0}^n b_i (Tx)_i = (Dx)_n; \ (n \in \mathbb{N}),$$

where $D = (d_{nk})$ is defined by

$$d_{nk} = \begin{cases} \frac{1}{a_n} \sum_{i=0}^n b_i t_{ik}, & \text{for } 0 \le k \le n\\ 0, \text{ for } & \text{for } k > n, \end{cases}$$
(2)

for all $k, n \in \mathbb{N}$. Therefore, since c_A is isomorphic to c, one can easily see that $T \in (X, c_A)$ if and only if $D \in (X, c)$ and this completes the proof.

One can easily deduce from Lemma 2.4 that $T \in (c, c_A)$ if and only if

$$\sup_{n} \sum_{k} |d_{nk}| < \infty, \ \lim_{n} d_{nk} = \alpha_k$$

for each k and $\lim_{n} \sum_{k} d_{nk} = \alpha$. If $T \in (c, c_A)$, the number $\chi(T) = \alpha - \sum_{k} \alpha_k$ is defined and it is said to be characteristic number of T with respect to A.

Now, we may give our main results.

3 Main Results

Theorem 3.1 Let $T \in (c, c_A)$. Then, for some constant $\lambda \ge |\chi(T)|$ and for all $x \in \ell_{\infty}$,

$$\limsup_{n} \sum_{k} (d_{nk} - \alpha_k) x_k \le \frac{\lambda + \chi(T)}{2} L(x) - \frac{\lambda - \chi(T)}{2} l(x)$$
(3)

if and only if

$$\limsup_{n} \sum_{k} |d_{nk} - \alpha_k| \le \lambda, \tag{4}$$

where d_{nk} is defined by (2), $L(x) = \limsup x$, and $l(x) = \liminf x$.

Proof. Let (3) holds. Define the matrix $C = (c_{nk})$ by $c_{nk} = d_{nk} - \alpha_k$ for all $n, k \in \mathbb{N}$. Then, the matrix C satisfies the conditions of Lemma 2.3. Hence, for a $y \in \ell_{\infty}$ with $||y|| \leq 1$, we have

$$\limsup_{n} \sup_{k} \sum_{k} c_{nk} y_k = \limsup_{n} \sum_{k} |c_{nk}|.$$
 (5)

So, from (3), we get that

$$\limsup_{n} \sum_{k} |c_{nk}| \leq \frac{\lambda + \chi(T)}{2} L(y) - \frac{\lambda - \chi(T)}{2} l(y)$$
$$\leq \left[\frac{\lambda + \chi(T)}{2} + \frac{\lambda - \chi(T)}{2} \right] \|y\|$$
$$\leq \lambda$$

which shows the necessity of the condition (4).

Conversely, suppose that (4) holds. For any $x \in \ell_{\infty}$, we can write $l(x) - \varepsilon \le x_k \le L(x) + \varepsilon$ whenever $k \ge k_0$. Now, we can write

$$\sum_{k} c_{nk} x_{k} = \sum_{k < k_{0}} c_{nk} x_{k} + \sum_{k \ge k_{0}} c_{nk}^{+} x_{k} - \sum_{k \ge k_{0}} c_{nk}^{-} x_{k}.$$

Hence, from the Lemma 2.2 and the fact that $T \in (c, c_A)$, we get that

$$\limsup_{n} \sum_{k} c_{nk} x_{k} \leq \frac{\lambda + \chi(T)}{2} [L(x) + \varepsilon] - \frac{\lambda - \chi(T)}{2} [l(x) - \varepsilon] \qquad (6)$$
$$= \frac{\lambda + \chi(T)}{2} L(x) - \frac{\lambda - \chi(T)}{2} l(x) + \lambda \varepsilon.$$

Since ε is arbitrary, the proof is completed.

Theorem 3.2 Let $T \in (c, c_A)$. Then, for some constant $\lambda \ge |\chi(T)|$ and for all $x \in \ell_{\infty}$,

$$\limsup_{n} \sum_{k} (d_{nk} - \alpha_k) x_k \le \frac{\lambda + \chi(T)}{2} \beta(x) + \frac{\lambda - \chi(T)}{2} \alpha(-x)$$
(7)

if and only if (4) holds and

$$\lim_{n} \sum_{k \in E} |d_{nk} - \alpha_k| = 0 \tag{8}$$

for every $E \subset \mathbb{N}$ with $\delta(E) = 0$, where $\beta(x) = st - \limsup x$ and $\alpha(x) = st - \liminf x$.

Proof. Let (7) holds. Then, since $\beta(x) \leq L(x)$ and $\alpha(-x) \leq -l(x)$, the necessity of the condition (4) follows from Theorem 3.1.

To show the necessity of the condition (8), for any $E \subset \mathbb{N}$ with $\delta(E) = 0$, define the matrix $B = (b_{nk})$ by

$$b_{nk} = \begin{cases} d_{nk} - \alpha_k, & \text{for } k \in E \\ 0, & \text{for } k \notin E \end{cases}$$

for all $k, n \in \mathbb{N}$. Then, since $T \in (c, c_A)$, we can write (5) for *B*. Now; for the same *E*, let us choose the sequence (y_k) as

$$y_k = \begin{cases} 1, & \text{for } k \in E \\ 0, & \text{for } k \notin E. \end{cases}$$

Then; clearly y is a statistically null sequence and so, $\beta(y) = \alpha(y) = st - \lim y = 0$. Hence, by the assumption and the equation (5), we get that

$$\limsup_{n} \sum_{k \in E} |b_{nk}| \le \frac{\lambda + \chi(T)}{2} \,\beta(y) + \frac{\lambda - \chi(T)}{2} \,\alpha(-y) = 0$$

which implies (8).

Conversely; suppose that (4) and (8) hold. For any $x \in \ell_{\infty}$, let us define $E_1 = \{k : x_k > \beta(x) + \varepsilon\}$ and $E_2 = \{k : x_k < \alpha(x) - \varepsilon\}$. Then, $\delta(E_1) = \delta(E_2) = 0$, [9]. Hence the set $E = E_1 \cap E_2$ has also zero density and

$$\alpha(x) - \varepsilon \le x_k \le \beta(x) + \varepsilon \tag{9}$$

whenever $k \notin E$. Now; it can be written that

$$\sum_{k} (d_{nk} - \alpha_k) x_k = \sum_{k \in E} (d_{nk} - \alpha_k) x_k + \sum_{k \notin E} (d_{nk} - \alpha_k)^+ x_k - \sum_{k \notin E} (d_{nk} - \alpha_k)^- x_k.$$

Thus, since (8) implies that the first sum on the right hand-side is zero, we get from a special case of Lemma 2.2 that

$$\limsup_{n} \sum_{k} (d_{nk} - a_k) x_k \le \frac{\lambda + \chi}{2} \beta(x) + \frac{\lambda - \chi}{2} \alpha(-x) + \lambda \varepsilon.$$

Since ε is arbitrary, this step completes the proof.

To the construction of next theorem, we need to define two new sublinear functionals on ℓ_{∞} . Let us denote these functionals by $L_A(x)$, $l_A(x)$ and write

$$L_A(x) = \limsup_n \frac{1}{a_n} \sum_{i=0}^n b_i t_{ik} x_k, \quad l_A(x) = \liminf_n \frac{1}{a_n} \sum_{i=0}^n b_i t_{ik} x_k.$$

Now, we have the following interesting result which will be useful to the proof of next theorem.

Theorem 3.3 $L_A(x) = W_A(x)$ for all $x \in \ell_{\infty}$, where $W_A(x) = \inf_{z \in (c_0)_A} L(x+z)$. **Proof.** By the Lemma 1 of [3], it is enough to show that $L_A(x) \leq W_A(x)$ for all

 $x \in \ell_{\infty}$. Since A is regular, we have that $L_A(x) \leq L(x)$ for any $x \in \ell_{\infty}$. Then, we get

$$\inf_{z \in (c_0)_A} L_A(x+z) \le \inf_{z \in (c_0)_A} L(x+z) = W_A(x).$$

On the other hand, by the definition of the space $(c_0)_A$, $L_A(z) = 0$ and so,

$$\inf_{z \in (c_0)_A} L_A(x+z) \ge L_A(x) + \inf_{z \in (c_0)_A} L(x+z) = L_A(x).$$

Thus, the result follows.

Theorem 3.4 Let $T \in (c, c_A)$. Then, for some constant $\lambda \geq |\chi(T)|$ and for all $x \in \ell_{\infty}$,

$$\limsup_{n} \sum_{k} (\tilde{t}_{mk}^n - \alpha_k) x_k \le \frac{\lambda + \chi(T)}{2} L_A(x) + \frac{\lambda - \chi(T)}{2} l_A(-x)$$
(10)

if and only if

$$\limsup_{n} \sup_{k} \sum_{k} |\tilde{t}_{mk}^{n} - \alpha_{k}| \le \lambda, \tag{11}$$

where $\tilde{T}^n = (\tilde{t}^n_{mk})$ is defined by

$$\tilde{t}_{mk}^n = \begin{cases} \Delta_k \left(\frac{t_{nk}}{b_k}\right) \frac{1}{a_k}, & \text{for } 0 \le k < m, \\ \frac{t_{nm}}{a_m b_m}, & \text{for } k = m, \\ 0, & \text{for } k > n. \end{cases}$$

for all $k, m \in \mathbb{N}$ and for every fixed $n \in \mathbb{N}$.

Proof. Suppose that (10) holds. Then, by the regularity of A, $L_A(x) \leq L(x)$ and $l_A(-x) \leq l(-x)$ for any $x \in \ell_{\infty}$. Therefore, the necessity (11) follows from a special case of Lemma 2.1.

Conversely, let (11) and $x \in \ell_{\infty}$. Then, we can write (6) with \tilde{t}_{mk}^n in place of d_{nk} . Thus, by taking infimum for $z \in (c_0)_A$ in (6), we have

$$\inf_{z \in (c_0)_A} \left\{ \limsup_n \sum_k (\tilde{t}_{mk}^n - \alpha_k)(x_k + z_k) \right\} \le \frac{\lambda + \chi(T)}{2} \inf_{z \in (c_0)_A} L_A(x+z) + \frac{\lambda - \chi(T)}{2} \inf_{z \in (c_0)_A} l_A(-x-z) = \frac{\lambda + \chi(T)}{2} W_A(x) + \frac{\lambda - \chi(T)}{2} w_A(-x).$$

Some Inequalities Related to a New Sequence Space Which Include c

On the other hand, by the definition of $(c_0)_A$, $\tilde{T}^n z \in c_0$ and so,

$$\inf_{z \in (c_0)_A} \left\{ \limsup_n \sum_k (\tilde{t}_{mk}^n - \alpha_k)(x_k + z_k) \right\} \ge \limsup_n \sum_k (\tilde{t}_{mk}^n - \alpha_k)x_k + \inf_{z \in (c_0)_A} \limsup_n \sum_k (\tilde{t}_{mk}^n - \alpha_k)z_k$$
$$= \limsup_n \sum_k (\tilde{t}_{mk}^n - \alpha_k)x_k.$$

So, by combining the last inequalities and Theorem 3.3, we complete the proof. \Box

Acknowledgement

We would like to express our close thanks to Professor Feyzi Başar, İnönü University, Faculty of Education, Department of Mathematics, Malatya-Turkey, for his valuable suggestions and reading the paper.

References

- C. Aydın and F. Başar, On the new sequence spaces which include the spaces c₀ and c, Hokkaido Math. J., 33(2004), 383-398.
- [2] G. Das, Sublinear functionals and a class of conservative matrices, Bull. Inst. Math. Acad. Sinica, 15(1987), 89-106.
- [3] S. L. Devi, Banach limits and infinite matrices, J. London Math. Soc. Ser. 2, 12(1976), 397-401.
- [4] C. Çakan and C. Aydın, Some results related to the cores of complex sequences and the sequence sapce a_c^r , Thai J. Math., $\mathbf{2}(1)(2004)$, 115-122.
- [5] C. Çakan and C. Aydın, On the K_r -core of complex sequences and the absolute equivalence of summability matrices, *Math. & Comp. Appl.*, **9**(3)(2004), 409-416.
- [6] C. Çakan, and H. Çoşkun, A class of *I*-conservative matrices, *Internat. J. Math. Math. Sci.*, 21(2005), 3443-3452.
- [7] H. Çoşkun and C. Çakan, A class of statistical and σ-conservative matrices, Czechoslovak Math. J., 55(130)(2005), 791-801.
- [8] H. Fast, Sur la convergence statisque, Colloq. Math., 2(1951), 241-244.
- [9] J. A. Fridy and C. Orhan, Statistical limit superior and inferior, Proc. Amer. Math. Soc., 125(1997), 3625-3631.
- [10] B. E. Rhoades, Some sequence space which include c_0 and c, Hokkaido Math. J., (submitted).

(Received 24 June 2005)

Celal Çakan Faculty of Education İnönü University 44280-Malatya, Turkey. e-mail : ccakan@inonu.edu.tr

Cafer Aydin Faculty of Art and Science Kahramanmaraş Sütçü İmam University Kahramanmaraş, Turkey. e-mail : caydin@ksu.edu.tr