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On the Almost Sure Convergence Rates for
Pairwise Negative Quadrant Dependent

Random Variables1
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Abstract : For sequences of pairwise negative quadrant dependent random vari-
ables, we obtain the almost sure convergence rate n−1/2(log n)3/2(log log n)1/ξ with
any 0 < ξ < 2 of

∑n
i=1(Xi − EXi)/n → 0 a.s. by a maximal moment inequality,

which improves the relevant results in Wu (2002) and Wang et al. (2008). In
addition, the faster convergence rate n−1/2(log n)1/2 is also obtained by the ex-
ponential inequality established in this paper, which reaches the available one for
independent random variables in terms of Berstein type inequality. Further, we
give the corresponding precise asymptotic with respect to the rate n−1/2(log n)1/2.
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1 Introduction

Definition 1.1 The pair (X, Y ) is said to be negative quadrant dependent
(NQD) if for any x, y ∈ R,

P (X ≤ x, Y ≤ y) ≤ P (X ≤ x)P (Y ≤ y).

A sequence of random variables is said to be pairwise negative quadrant dependent
(pairwise NQD) if Xi and Xj are NQD for any i, j ∈ N and i 6= j.

The definition above was given by Lehmann (1966). Obviously, sequences of
pairwise NQD random variables are a family of very wide scope, which includes
pairwise independent random variable sequences. Many known types of negative
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dependence such as negative upper (lower) orthant dependence and negative asso-
ciation (NA) etc. have developed on the basis of NQD notation. Among them the
negative associated (NA) class with many applications in multivariate analysis is
the special case of pairwise NQD sequences.

The limit theorems for pairwise NQD sequences have been investigated by
some scholars, such as, Matula (1992) obtained the Kolmogorov strong law of large
numbers for pairwise NQD random variable sequences with the same distribution,
Wang et al. (1998) investigated the Marcinkiewicz weak law of large numbers, Wu
(2002) gave the three series theorem of pairwise NQD sequences and proved the
Marcinkiewicz strong law of large numbers, Chen (2005) discussed Kolmogorov-
Chung strong law of large numbers for the non-identically distributed pairwise
NQD sequences under mild conditions and, Li and Wang (2008) explored the
central limit theorem for pairwise NQD random variables by Stein’s method. In
this paper, by the maximal moment inequality in Lemma 3.2 given later, we obtain
the almost sure convergence rate n−1/2(log n)3/2(log log n)1/ξ with any 0 < ξ < 2
of

∑n
i=1(Xi − EXi)/n → 0 a.s., which improves the corresponding results in Wu

(2002) and Wang et al. (2008). And by establishing an exponential inequality
for pairwise NQD sequences, the faster convergence rate n−1/2(log n)1/2 is also
derived, which reaches the available one for independent random variables in terms
of Berstein type inequality. Further, we give the corresponding precise asymptotic
with respect to the rate n−1/2(log n)1/2.

Throughout this paper, we always suppose that C denotes a positive constant
which only depends on some given numbers and may vary from one place to
another, [x] denotes the integer part of x, an ¿ bn means an ≤ Cbn and Sn =:∑n

i=1 Xi. And this paper is organized as follows. Section 2 contains our main
results. Section 3 contains some lemmas. And the proofs of Theorems 2.1, 2.2 and
2.3 are contained by the Sections 4, 5 and 6, respectively.

2 Main Results

In this section, we show the main results as follow.
Theorem 2.1 Let {Xi, i ≥ 1} be a pairwise NQD sequence of random variables

with EXi = 0 and supi≥1 E|Xi|v < ∞ for some 1 < v ≤ 2. Then, we have for any
0 < ξ < 2,

Sn/
(
n(log log n)2/ξ log3 n

)1/v

→ 0 a.s. (2.1)

In particular, we have

Sn/
(
n(log log n)2/ξ log3 n

)1/2

→ 0 a.s. (2.2)

for the case v = 2.
Remark 3.1.1 (1) Wu (2002) presented a strong law of large numbers for

pairwise NQD random variables (see Corollary 3 therein). For convenience of
comparison, we write the result below.
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Theorem A Let {Xi, i ≥ 1} be a pairwise NQD sequence of random variables
with EXi = 0 and supi≥1 E|Xi|v ≤ C for 1 < v ≤ 2. Then

Sn

n1/v (log n)(3+δ)/v
→ 0 a.s., (2.3)

where δ > 0.
In terms of (2.3), the almost sure convergence rate of

n∑

i=1

(Xi − EXi)/n → 0 a.s. is n
1
v−1 (log n)

3+δ
v ,

which is slower than the corresponding one n
1
v−1 (log n)

3
v (log log n)

2
vξ obtained

by (2.1) because of (log log n)
2

vξ < (log n)
δ
v for n large enough. In addition, the

method of the proof of our result is different from the relevant one of the proof of
Theorem A.

(2) For the case of v = 2, the convergence rate derived by (2.2) is

n−
1
2 (log n)

3
2 (log log n)

1
ξ

with 0 < ξ < 2, which is obviously faster than the relevant one n
1
p̃−1 with 1 ≤ p̃ < 2

which Wang et al. (2008) obtained in Theorem 2.3.1.
Theorem 2.2 Let {Xi, i ≥ 1} be a sequence of strictly stationary and pairwise

NQD random variables which satisfies EXi = 0 and supi≥1 E(eα|Xi|) ≤ M < ∞
for some α > 1. Then, we have

Sn/(n log n)1/2 → 0 a.s. (2.4)

Remark 2.2 By Theorem 2.2, we obtain the almost sure convergence rate
n−1/2(log n)1/2, which is faster than the corresponding one n−

1
2 (log n)

3
2 (log log n)

1
ξ

with 0 < ξ < 2 and reaches the available one obtained in terms of Berstein
type inequality. The price we pay out, however, is that the moment condition
supi≥1 E(eα|Xi|) ≤ M < ∞ for some α > 1 is stronger than the relevant one
supi≥1 E|Xi|2 < ∞ in Theorem 2.1.

In the following theorem, the precise asymptotic is obtained with respect to
the rate n−1/2(log n)1/2 in Theorem 2.2.

Theorem 2.3 Let {Xi, i ≥ 1} be a sequence of strictly stationary and pairwise
NQD random variables which satisfies EXi = 0 and 0 < EX2

1 =: σ2 < ∞. If

(σ
√

n)−1
n∑

i=1

EXif
(
S(i)

n /(σ
√

n)
)

= 0

for every bounded absolutely continuous function f(·), where S
(i)
n =

∑n
i=1 Xi−Xi,

and the Lindeberg condition that

for any ε > 0,
1

σ2n

n∑

i=1

EX2
i I{|Xi| > εσ

√
n} → 0 as n →∞
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is satisfied. Then for −1 < β < 0, we obtain

lim
ε↘0

ε2(β+1)
∞∑

n=1

(log n)β

n
P

(
|Sn| ≥ εσ

√
n log n

)
=

E|N |2(β+1)

β + 1
, (2.5)

where N stands for the standard normal random variable.

3 Some Lemmas

In this section, we give some lemmas which will be frequently used later.
Lemma 3.1 (Lehmann 1966) Let X and Y be NQD random variables, then
(1) EXY ≤ EXEY,
(2) P (X > x, Y > y) ≤ P (X > x)P (Y > y),
(3) If r(·) and s(·) are non-decreasing, then r(X) and s(Y ) are still NQD

random variables.
Lemma 3.2 Let {Xi, i ≥ 1} be a pairwise NQD sequence with EXi = 0 and

supi≥1 EX2
i < ∞. Then for any n ≥ 1, we have

E|Sn|2 ≤ n sup
i≥1

EX2
i (3.1)

and
E max

1≤j≤n
|Sj |2 ≤ n (log 2n/log 2)2 sup

i≥1
EX2

i (3.2)

Proof By the definition of pairwise negative quadrant dependence, we have

E|Sn|2 =
n∑

i=1

n∑

j=1

Cov(Xi, Xj)

=
n∑

i=1

EX2
i + 2

n−1∑

i=1

n∑

j=i+1

Cov(Xi, Xj)

≤
n∑

i=1

EX2
i ≤ n sup

i≥1
EX2

i ,

which yields (3.1). Combining Theorem 2.4.1 in Stout (1974) and the result stated
earlier yields the desired result (3.2). The proof is completed.

Lemma 3.3 (Li and Wang 2008) Let {Xi, i ≥ 1} be a pairwise NQD sequence
with EXi = 0. If

B−1
n

n∑

i=1

EXif
(
S(i)

n /Bn

)
= 0

for every bounded absolutely continuous function f(·), where Bn =
√∑n

i=1 EX2
i

and S
(i)
n =

∑n
i=1 Xi −Xi, and the Lindeberg condition that

for any ε > 0,
1

B2
n

n∑

i=1

EX2
i I{|Xi| > εBn} → 0 as n →∞
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is satisfied. Then
Sn

Bn
→ N(0, 1) in distribution as n →∞.

4 Proof of Theorem 2.1

In this section, we will show the proof of Theorem 2.1 as follows.
Proof of Theorem 2.1 Set bn =

(
n(log log n)2/ξ log3 n

)1/v
, Xi1 = −bnI(Xi <

−bn) + XiI(|Xi| ≤ bn) + bnI(Xi > bn) and Sj1 =
∑j

i=1(Xi1 − EXi1). Obviously,
we know that the sequence {Xi1, i ≥ 1} is still pairwise NQD by Lemma 3.1. In
what follows we will prove first that

∞∑
n=1

n−1P ( max
1≤j≤n

|Sj | > εbn) < ∞ (4.1)

for any ε > 0. For this purpose, the first thing we need to do is to show that

b−1
n max

1≤j≤n

∣∣∣∣∣
j∑

i=1

EXi1

∣∣∣∣∣ → 0. (4.2)

Since

E|Xi|I(|Xi| > bn) + bnP (|Xi| > bn)
≤ b1−v

n E|Xi|vI(|Xi| > bn) + b1−v
n E|Xi|v

¿ b1−v
n ,

we have, by EXi = 0,

b−1
n max

1≤j≤n

∣∣∣∣∣
j∑

i=1

EXi1

∣∣∣∣∣

≤ b−1
n

n∑

i=1

(E|Xi|I(|Xi| > bn) + bnP (Xi < −bn) + bnP (Xi > bn))

¿ nb−v
n → 0.

Hence, (4.2) holds. From this, it follows that for sufficiently large n

P

(
max

1≤j≤n
|Sj | > εbn

)

≤ P

(
max

1≤i≤n
|Xi| > bn

)
+ P

(
max

1≤j≤n

∣∣∣∣∣
j∑

i=1

Xi1

∣∣∣∣∣ > εbn

)

≤ P

(
max

1≤i≤n
|Xi| > bn

)
+ P

(
max

1≤j≤n
|Sj1| > εbn − max

1≤j≤n

∣∣∣∣∣
j∑

i=1

EXi1

∣∣∣∣∣

)

≤
n∑

i=1

P (|Xi| > bn) + P

(
max

1≤j≤n
|Sj1| > εbn/2

)
. (4.3)



176 Thai J. Math. 8(1) (2010)/ G.-D. Xing

Thus, we need only to prove that

I :=
∞∑

n=1

n−1
n∑

i=1

P (|Xi| > bn) < ∞,

II :=
∞∑

n=1

n−1P

(
max

1≤j≤n
|Sj1| > εbn/2

)
< ∞. (4.4)

By Markov inequality, it follows that

I =
∞∑

n=1

n−1
n∑

i=1

P (|Xi| > bn)

≤
∞∑

n=1

n−1
n∑

i=1

b−v
n E|Xi|v

¿
∞∑

n=1

b−v
n < ∞.

By Lemma 3.2, we have

II =
∞∑

n=1

n−1P

(
max

1≤j≤n
|Sj1| > εbn/2

)

≤ C

∞∑
n=2

n−1b−2
n E max

1≤j≤n
|Sj1|2

≤ C

∞∑
n=2

n−1nb−2
n log2 n sup

1≤i≤n
EX2

i1

≤ C

∞∑
n=2

b−2
n log2 n sup

1≤i≤n

(
EX2

i I(|Xi| ≤ bn) + b2
nP (|Xi| > bn)

)

≤ C

∞∑
n=2

b−2
n log2 n sup

1≤i≤n

(
EX2

i I(|Xi| ≤ bn)
)

+ C

∞∑
n=2

(
n(log log n)2/ξ log n

)−1

≤ C

∞∑
n=2

b−v
n log2 n sup

i≥1
(E|Xi|vI(|Xi| ≤ bn)) + C

≤ C

∞∑
n=2

(
n(log log n)2/ξ log n

)−1

+ C

< ∞.
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Combing (4.3) and (4.4) yields the result (4.1). Since

1
2

∞∑

ei=1

P

(
max

1≤j≤2ei
|Sj | ≥ ε

(
2ei+1

(
log log 2ei+1

)2/ξ

log3 2ei+1

)1/v
)

≤
∞∑

ei=0

2
ei+1−1∑

n=2ei

n−1P ( max
1≤j≤n

|Sj | ≥ εbn)

=
∞∑

n=1

n−1P ( max
1≤j≤n

|Sj | ≥ εbn)

< ∞,

we can get by Borel-Cantelli lemma,

lim
ei→∞

max1≤j≤2ei |Sj |
(

2ei+1
(
log log 2ei+1

)2/ξ

log3 2ei+1

)1/v
= 0 a.s.

Using

|Sn

bn
| ≤ max

2ei−1≤n<2ei
|Sn

bn
|

≤ 2
1
v

max1≤j≤2ei |Sj |
(

2ei+1
(
log log 2ei+1

)2/ξ

log3 2ei+1

)1/v

(
(̃i + 1) log3(̃i + 1)
(̃i− 1) log3(̃i− 1)

)1/v

,

then |Sn

bn
| → 0, a.s. Hence,

Sn

bn
→ 0, a.s. (4.5)

This completes the proof.

5 Proof of Theorem 2.2

To prove Theorem 2.2, some notations are needed. Let cn, n ≥ 1, be a se-
quence of nonnegative real numbers such that cn →∞ . Also, for convenience, we
define Xni by Xni = Xi for 1 ≤ i ≤ n and Xni = 0 for i > n. Let

X1,i,n = −cnI(−∞,−cn)(Xni) + XniI[−cn,cn](Xni) + cnI(cn,+∞)(Xni),

X2,i,n = (Xni − cn)I(cn,+∞)(Xni), X3,i,n = (Xni + cn)I(−∞,−cn)(Xni) (5.1)

for each n, i ≥ 1, where IA represents the characteristic function of the set A.
Consider now a sequence of natural numbers pn such that for each n ≥ 1, pn < n/2
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and set rn = [n/(2pn)] + 1. Define then,

Yq,j,n =
2(j−1)pn+pn∑

i=2(j−1)pn+1

(Xq,i,n − E(Xq,i,n)) , Zq,j,n

=
2jpn∑

i=2(j−1)pn+pn+1

(Xq,i,n − E(Xq,i,n)) , (5.2)

for q = 1, 2, 3 and j = 1, 2, · · · , rn and

Sq,n,od =
rn∑

j=1

Yq,j,n, Sq,n,ev =
rn∑

j=1

Zq,j,n. (5.3)

Clearly, n ≤ 2rnpn < 2n. Next, we show the following propositions used later.

Proposition 5.1 Let {Xi, i ≥ 1} be a sequence of pairwise NQD random
variables with supi≥1 EX2

i < ∞. If 0 < 2λpncn ≤ 1 for λ > 0, then on account of
definitions (5.1), (5.2) and (5.3), we have

E (exp(λS1,n,od)) ≤ exp
(
C1λ

2n
)
, (5.4)

E (exp(λS1,n,ev)) ≤ exp
(
C1λ

2n
)
, (5.5)

where C1 = supi≥1 EX2
i < ∞.

Proof Since EY1,j,n = 0 and 0 < 2λpncn ≤ 1, we have

E(exp(λY1,j,n)) =
∞∑

w=0

E(λY1,j,n)w

w!

= 1 +
∞∑

w=2

E(λY1,j,n)w

w!

≤ 1 + E(λY1,j,n)2
∞∑

w=2

1
w!

≤ 1 + λ2EY 2
1,j,n

≤ exp(λ2EY 2
1,j,n). (5.6)



On the almost sure convergence rates for pairwise . . . 179

Therefore, in terms of (5.6), (3.1), supi≥1 EX2
i < ∞ and rnpn < n,

rn∏

j=1

E(exp(λY1,j,n)) ≤ exp


λ2

rn∑

j=1

EY 2
1,j,n




≤ exp


λ2

rn∑

j=1

pn sup
i≥1

VarX1,i,n




≤ exp


λ2

rn∑

j=1

pn sup
i≥1

EX2
1,i,n




≤ exp


λ2

rn∑

j=1

pn sup
i≥1

EX2
i




≤ exp
(
C1λ

2n
)
, (5.7)

where C1 = supi≥1 EX2
i < ∞. Also, we have

E (exp(λS1,n,od)) ≤
rn∏

j=1

E (exp(λY1,j,n)) (5.8)

by the proof of (8) in Lu and Zhao (2007). Hence, combining (5.7) and (5.8) yields
the desired result (5.4). Similarly, we can get (5.5) by the proof above. The proof
is completed.

Proposition 5.2 Let {Xi, i ≥ 1} be a sequence of pairwise NQD random
variables satisfying supi≥1 EX2

i < ∞. If 0 < 2λpncn ≤ 1 for λ > 0, then for any
ε > 0, we have

P (|S1,n,od| > nε/2) ≤ 2 exp
{
− nε2

16C1

}
(5.9)

and

P (|S1,n,ev| > nε/2) ≤ 2 exp
{
− nε2

16C1

}
. (5.10)

Proof Applying Markov inequality and Proposition 5.1, we obtain

P (|S1,n,od| > nε/2) = P (S1,n,od > nε/2) + P (−S1,n,od > nε/2)

= P
(
eλS1,n,od > eλnε/2

)
+ P

(
e−λS1,n,od > eλnε/2

)

≤ 2 exp
(
C1λ

2n− λnε/2
)
.

Optimizing the exponent in the last term of this upper-bound, we take λ =
ε/(4C1), so that this exponent becomes equal to −nε2/(16C1), as desired. The
proof is completed.

Taking
εn = 4

√
(αC1 log n)/n for some α > 0, (5.11)
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then we can get the following result controlling the bounded terms.
Proposition 5.3 Let {Xi, i ≥ 1} be a sequence of pairwise NQD random

variables satisfying supi≥1 EX2
i < ∞. Suppose that εn is as in (5.11) and pn ≤√

C1n/(4αc2
n log n). Then we have

P

(∣∣∣∣∣
n∑

i=1

(X1,i,n − EX1,i,n)

∣∣∣∣∣ > nεn

)
≤ 4 exp(−α log n). (5.12)

Proof It is obvious that

P

(∣∣∣∣∣
n∑

i=1

(X1,i,n − EX1,i,n)

∣∣∣∣∣ > nε

)
≤ P (|S1,n,od| > nε/2) + P (|S1,n,ev| > nε/2) .

(5.13)
Also, by the proof of Proposition 5.2, the optimizing value of λ is

λ = εn/(4C1) =
√

α log n/(C1n), (5.14)

which implies that 2λpncn ≤ 1 can follow from pn ≤
√

C1n/(4αc2
n log n). So,

combining (5.13) and (5.14), we can get (5.12) by Proposition 5.2. The proof is
completed.

To control the unbounded terms, we give the following results.
Proposition 5.4 Let {Xi, i ≥ 1} be a sequence of pairwise NQD random

variables which satisfies supi≥1 E(etXi) ≤ M < ∞ for some t > 0. Then,

P

(∣∣∣∣∣
n∑

i=1

(Xq,i,n − EXq,i,n)

∣∣∣∣∣ > nε

)
≤ 2Me−tcn

nt2ε2
, q = 2, 3. (5.15)

Proof Firstly, let us estimate EX2
q,i,n. Without loss of generality, set q = 2.

We assume F (x) = P (Xi > x). Then, by Markov inequality and supi≥1 E(etXi) ≤
M < ∞ for some t > 0, it follows that

F (x) ≤ e−txE(etXi) ≤ Me−tx.

Writing the mathematical expectation as a Stieltjes integral and integrating by
parts we have

EX2
2,i,n = −

∫

(cn,+∞)

(x− cn)2 F (dx)

≤ 2M

∫

(cn,+∞)

(x− cn) e−txdx

≤ 2M
e−tcn

t2
(5.16)
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by the inequality stated earlier. Hence, using (5.16) and (3.1), we have

P

(∣∣∣∣∣
n∑

i=1

(X2,i,n − EX2,i,n)

∣∣∣∣∣ > nε

)

≤ E |∑n
i=1(X2,i,n − EX2,i,n)|2

n2ε2

≤ 2Me−tcn

nt2ε2
,

which completes the proof of the proposition.
Applying Proposition 5.4, we can get immediately the following result by tak-

ing values for t, cn and ε.
Corollary 5.1 Let {Xi, i ≥ 1} be a sequence of pairwise NQD random vari-

ables which satisfies supi≥1 E(etXi) ≤ M < ∞ for some t > 0. Then for n ≥ 3,

P

(∣∣∣∣∣
n∑

i=1

(Xq,i,n − EXq,i,n)

∣∣∣∣∣ > nεn

)
≤ M

8C1α3 log n
exp(−α log n), q = 2, 3.

(5.17)
provided t = α, cn = log n and εn = 4

√
(αC1 log n)/n.

A combination of Proposition 5.3 with Corollary 5.1 yields
Proposition 5.5 Let {Xi, i ≥ 1} be a sequence of pairwise NQD random

variables which satisfies EXi = 0 and supi≥1 E(eα|Xi|) ≤ M < ∞ for some α > 0.

Suppose that εn is as in (5.11) and pn ≤
√

C1n/(4α log3 n). Then for n ≥ 3,

P (|Sn| > 3nεn) ≤
(

4 +
M

4C1α3 log n

)
exp(−α log n). (5.18)

By Proposition 5.5, we can give

Proof of Theorem 2.2 Taking pn =
[√

C1n/(4α log3 n)
]
,

εn = 4
√

(αC1 log n)/n and α > 1 in (5.18), the desired result (2.4) can be obtained
by Borel-Cantelli lemma.

6 Proof of Theorem 2.3

Without loss of generality, set σ = 1 in what follows. In order to prove
Theorem 2.3, the following propositions are needed.

Proposition 6.1 For any β > −1, we have

lim
ε↘0

ε2(β+1)
∞∑

n=1

(log n)β

n
P

(
|N | ≥ ε

√
log n

)
=

E|N |2(β+1)

β + 1
, (6.1)

where N stands for the standard normal random variable.
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Proof Note that P (|N | ≥ x) = 2P (N ≥ x) for any x > 0, it suffices to show
that

lim
ε↘0

ε2(β+1)
∞∑

n=1

(log n)β

n
P

(
N ≥ ε

√
log n

)
=

E|N |2(β+1)

2(β + 1)
.

It is easy to observe that

lim
ε↘0

ε2(β+1)
∞∑

n=1

(log n)β

n
P

(
N ≥ ε

√
log n

)

≤ lim
ε↘0

ε2(β+1)

∫ ∞

e

(log x)β

x
P

(
N ≥ ε

√
log x

)
dx

=
E|N |2(β+1)

2(β + 1)
,

which implies (6.1). The proof is complete.
Proposition 6.2 Under the conditions of Theorem 2.3, we obtain for −1 <

β < 0

lim
ε↘0

ε2(β+1)
∞∑

n=1

(log n)β

n

∣∣∣P
(
|Sn| ≥ ε

√
n log n

)
− P

(
|N | ≥ ε

√
log n

)∣∣∣ = 0. (6.2)

Proof Let J(ε) = exp
(

M
− 1

β

ε2

)
, where M > 4 and 0 < ε < 1/4. Obviously,

∞∑
n=1

(log n)β

n

∣∣∣P
(
|Sn| ≥ ε

√
n log n

)
− P

(
|N | ≥ ε

√
log n

)∣∣∣

≤
∑

n≤J(ε)

(log n)β

n

∣∣∣P
(
|Sn| ≥ ε

√
n log n

)
− P

(
|N | ≥ ε

√
log n

)∣∣∣

+
∑

n>J(ε)

(log n)β

n
P

(
|Sn| ≥ ε

√
n log n

)
+

∑

n>J(ε)

(log n)β

n
P

(
|N | ≥ ε

√
log n

)

:= I1 + I2 + I3,

thus it is sufficient to prove that

lim
ε↘0

ε2(β+1)I1 = 0, lim
ε↘0

ε2(β+1)I2 = 0 and lim
ε↘0

ε2(β+1)I3 = 0, (6.3)

respectively. We consider firstly I1. Set ∆n = supx |P (|Sn| ≥ x
√

n)− P (|N | ≥ x)|.
Noticing Lemma 3.3, we have ∆n → 0 as n →∞. From this result, it follows that

lim
ε↘0

ε2(β+1)I1

≤ lim
ε↘0

ε2(β+1)
∑

n≤J(ε)

(log n)β

n
∆n

≤ lim
ε↘0

M− β+1
β

1

(log J(ε))β+1

∑

n≤J(ε)

(log n)β

n
∆n → 0,
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which implies that limε↘0 ε2(β+1)I1 = 0. Turn to I2, we have by Lemma 3.2,

lim
ε↘0

ε2(β+1)I2

≤ lim
ε↘0

ε2(β+1)
∑

n>J(ε)

(log n)β

n

ES2
n

ε2n log n

≤ lim
ε↘0

ε2(β+1)
∑

n>J(ε)

(log n)β

n

nEX2
1

ε2n log n

≤ C lim
ε↘0

ε2β
∑

n>J(ε)

(log n)β

n log n

≤ C lim
ε↘0

ε2β

∫ ∞

J(ε)

(log x)β

x log x
dx

= −C

β
M−1 → 0 as M →∞,

uniformly for 0 < ε < 1/4. Hence, limε↘0 ε2(β+1)I2 → 0 when M → ∞. On the
other hand, noting that M > 4 and 0 < ε < 1/4 imply J(ε)− 1 ≥

√
J(ε), we can

obtain

lim
ε↘0

ε2(β+1)I3

≤ lim
ε↘0

ε2(β+1)

∫ ∞

J(ε)

(log x)β

x
P

(
|N | ≥ ε

√
log x

)
dx

≤ lim
ε↘0

ε2(β+1)

∫ ∞

J(ε)−1

(log x)β

x
P

(
|N | ≥ ε

√
log x

)
dx

≤ lim
ε↘0

ε2(β+1)

∫ ∞
√

J(ε)

(log x)β

x
P

(
|N | ≥ ε

√
log x

)
dx

≤ C lim
ε↘0

∫ ∞

ε
√

M−1/β/(2ε2)

y2β+1P (|N | ≥ y) dy

≤ C

∫ ∞
√

M−1/β/2

y2β+1P (|N | ≥ y) dy → 0 as M →∞,

uniformly for 0 < ε < 1/4. Thus we have limε↘0 ε2(β+1)I3 → 0 when M → ∞.
Combining the earlier results together yields (6.3). The proof is completed.

Now, we can give
Proof of Theorem 2.3 Combining Propositions 6.1 and 6.2 yields the desired

result (2.5).
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