Thai Journal of Mathematics Volume 8 (2010) Number 1 : 161–170

www.math.science.cmu.ac.th/thaijournal Online ISSN 1686-0209

Graded Modules which Satisfy the Gr-Radical Formula

S.E. Atani and F.E.K. Saraei

Abstract: Let G be a monoid with identity e, and R be a graded commutative ring. Here we study the graded modules which satisfy the Gr- radical formula. The main part of this work is devoted to extending some results from McCasland modules to Gr-McCasland modules.

Keywords : Graded rings, *Gr*-McCasland modules, Graded radical formula **2000 Mathematics Subject Classification :** 13A02, 16W50

1 Introduction

Let G be an arbitary monoid with identity e. A ring R with non-zero identity is G-graded if it has a direct sum decomposition (as an additive group) $R = \bigoplus_{g \in G} R_g$ such that for all $g, h \in G$, $R_g R_h \subseteq R_{gh}$. If R is G-graded, then an R-module M is said to be G-graded if it has a direct sum decomposition $M = \bigoplus_{g \in G} M_g$ such that for all $g, h \in G$, $R_g M_h \subseteq M_{gh}$. An element of R_g or M_g is said to be a homogeneous element. If $x \in M$, then x can be written uniquely as $x = \sum_{g \in G} x_g$, where x_g is the homogeneous component of x in M_g . A submodule $N \subseteq M$, where M is graded, is called G-graded if $N = \bigoplus_{g \in G} (N \cap M_g)$ or if, equivalently, N is generated by homogeneous elements. Moreover, M/N becomes a G-graded module with g-component $(M/N)_g = (M_g + N)/N$ for $g \in G$. Clearly, 0 is a graded submodule of M. Also, we write $h(R) = \bigcup_{g \in G} R_g$ and $h(M) = \bigcup_{g \in G} M_g$. Throughout this paper R is a commutative G-graded ring with identity.

Let R be a G-graded ring. A graded ideal I of R is said to be a graded prime ideal if $I \neq R$; and whenever $ab \in I$, we have $a \in I$ or $b \in I$, where $a, b \in h(R)$. The graded radical of I, denoted by Gr(I), is the set of all $x \in R$ such that for each $g \in G$ there exists $n_g > 0$ with $x_g^{n_g} \in I$. A proper graded submodule N of a graded module M is called graded prime if $rm \in N$, then $m \in N$ or $r \in (N : M) = \{r \in R : rM \subseteq N\}$, where $r \in h(R), m \in h(M)$ (note that

Copyright \bigodot 2010 by the Mathematical Association of Thailand. All rights reserved.

(N: M) is graded by [2, Lemma 2.1]). A graded submodule N of a graded R-module M is called graded maximal submodule if $N \neq M$ and there is no graded submodule K of M such that $N \not\subseteq K \not\subseteq M$. A graded R-module M is called graded finitely generated if $M = \sum_{i=1}^{n} Rx_{g_i}$, where $x_{g_i} \in h(M)$ $(1 \leq i \leq n)$. A graded R-module M is called a graded multiplicative module (denoted by Gr-multiplicative) if for every graded submodule N of M, N = IM for some graded ideal I of R. In this case, it is clear that every graded module which is multiplicative is a Gr-multiplicative module and N = (N:M)M.

Lemma 1.1. (cf.[5]) Let M be a graded module over a G-graded ring R and I a graded ideal of R. Then the following hold:

(i) If N is a graded submodule of M, $a \in h(R)$ and $m \in h(M)$, then Rm, IN and aN are graded submodule of M and Ra is a graded ideal of R.

(ii) If $\{N_i\}_{i \in J}$ is a collection of graded submodules of M, then $\sum_{i \in J} N_i$ and $\bigcap_{i \in J} N_i$ are graded submodules of M.

(iii) If P is a graded prime ideal of R and M a faithful graded multiplication R-module with $PM \neq M$, then PM is a graded prime submodule of M.

2 Gr-radical formula

Definition 2.1. Let R be a G-graded ring, M be a graded R-module and N be a graded R- submodule of M.

(i) The graded radical of N in M denoted by $Gr_M(N)$ and is defined to be the intersection of all graded prime submodules of M containing N. Should there be no graded prime submodule of M containing N, then we put $Gr_M(N) = M$. By Lemma 1.1, It is easy to see that $Gr_M(N)$ is a graded submodule of M containing N. On the other hand, Gr(R) denotes the intersection of all graded prime ideals of R.

(ii) The graded envelop submodule $RGE_M(N)$ of N in M is a graded submodule of M generated by the set $GE_M(N) = \{rm : r \in h(R), m \in h(M) \text{ such that } r^n m \in N \text{ for some } n \in \mathbf{N} \}.$

(iii) We say that the graded submodule N of M satisfies Gr-radical formula (graded radical formula), if $Gr_M(N) = RGE_M(N)$.

(iv) A graded R-module M will be called a Gr-McCasland module if every graded submodule of M satisfies Gr-radical formula.

Lemma 2.2. Let M be a graded module over a G-graded ring R. Then $N \subseteq RGE_M(N) \subseteq Gr_M(N)$ for every graded R-submodule N of M.

Proof. Obvious.

3 Gr-Multiplication Modules

In this section we list some basic properties of graded multiplicative module and we will show that every Gr- multiplication module is McCasland.

Lemma 3.1. Let I be a graded ideal of a G-graded ring R and M be a graded Rmodule. Then there exists a proper graded submodule N of M satisfies I = (N : M)if and only if $IM \neq M$, I = (IM : M).

Proof. Let N be a proper graded submodule of M and I = (N : M). Then $IM \subseteq N \subsetneq M$, so $IM \neq M$. It is clear that $I \subseteq (IM : M)$. Let $r \in (IM : M)$ then $rM \subseteq IM \subseteq N$, so $r \in I$. Therefore I = (IM : M). The convers is clear since IM is a proper graded submodule from Lemma 1.1.

Theorem 3.2. Let M be a Gr-multiplicative R-module, N a graded submodule of M and A = (N : M). Then $Gr_M(N) = \sqrt{AM} = \sqrt{(N : M)M}$.

Proof. Without loss of generality we can assume that M is faithful by [7, p. 155]. Let P denote the collection of all graded prime ideals P of R such that $A \subseteq P$. If $B = \sqrt{A}$, then $B = \bigcap_{P \in \mathbb{P}} P$. Choose $P \in \mathbb{P}$. If PM = M, then $Gr_M(N) \subseteq PM$. If $PM \neq M$, then since N is a graded submodule of M and M is Gr-multiplicative then $N = AM \subseteq PM$. Therefore by Lemma 1.1, since PM is a prime submodule of M, then $Gr_M(N) \subseteq PM$. Thus $BM = \bigcap_{P \in \mathbb{P}} PM$, by [7, Corollary 4.2.8]. So $Gr_M(N) \subseteq BM$.

Now let K be a graded prime submodule of M containing N. Then there exists a graded prime ideal Q = (K : M) of R such that K = QM. We show that $A \subseteq Q$. By Lemma 3.1, Q = (QM : M). Let $r \in A = (N : M)$. So $rM \subseteq N \subseteq K = QM$, then $r \in (QM : M) = Q$. Thus $A \subseteq Q$. As Q is a graded prime ideal containing A, so $B = \sqrt{A} \subseteq Q$. Therefore $BM \subseteq QM = K$. Hence, since K is an arbitrary graded prime submodule of M containing N, then $BM \subseteq Gr_M(N)$.

Theorem 3.3. Let M be a Gr-multiplicative R-module. Then M is a Gr-McCasland module.

Proof. Let N be a graded submodule of M. Then $RGE_M(N) \subseteq Gr_M(N)$ by lemma 2.2, so it suffices to show that $Gr_M(N) \subseteq RGE_M(N)$. Let $x \in Gr_M(N)$. Since $Gr_M(N) = \sqrt{(N:M)}M$, then $x = \sum_{j=1}^k r_j x_j$ such that $r_j \in \sqrt{(N:M)}$, $x_j \in M$. As $\sqrt{(N:M)}$, M are graded, so without loss of generality we can assume that $x = \sum_{i=1}^n r_{g_i} x_{g_i}$ such that $r_{g_i} \in h(R) \cap \sqrt{(N:M)}$ and $x_{g_i} \in h(M)$ for each i = 1, 2, ..., n. Since $r_{g_i} \in \sqrt{(N:M)}$, so there exists $n_i \in \mathbb{N}$ such that $r_{g_i}^{n_i} M \subseteq N$ for each i = 1, 2, ..., n. Therefore $r_{g_i}^{n_i} x_{g_i} \in N$ and $r_{g_i} x_{g_i} \in GE_M(N) \subseteq RGE_M(N)$ for each i = 1, 2, ..., n. Thus $x \in RGE_M(N)$.

4 Gr-Semisimple Modules

In this section we list some basic properties of graded Semisimple module and we will show that every Gr- Semisimple Module is McCasland.

Lemma 4.1. Let N_1 , N_2 be graded submodules of a graded R-module M and $N_1 \subseteq N_2$. Then

(i) $RGE_{M/N_1}(N_2/N_1) = RGE_M(N_2)/N_1$

(*ii*) $Gr_{M/N_1}(N_2/N_1) = Gr_M(N_2)/N_1$

Proof. (i) Let $y \in RGE_{M/N_1}(N_2/N_1)$. So $y = \sum_{i=1}^k r_{g_i}(m_{g'_i} + N_1)$ such that $r_{g_i} \in h(R), m_{g'_i} \in h(M)$ and there exists $n_i \in \mathbf{N}$ such that $r_{g_i}^{n_i}(m_{g'_i} + N_1) \in N_2/N_1$ for each i = 1, 2, ..., k. Thus $r_{g_i}^{n_i}m_{g'_i} \in N_2$ and $r_{g_i}m_{g'_i} \in RGE_M(N_2)$. So $y = \sum_{i=1}^k r_{g_i}m_{g'_i} + N_1 \in RGE_M(N_2)/N_1$. Now let $x \in RGE_M(N_2)/N_1$. So $x = \sum_{i=1}^t s_{g_i}m_{g'_i} + N_1$ such that $s_{g_i} \in h(R), m_{g'_i} \in h(M)$ and there exists $n_i \in \mathbf{N}$ such that $s_{g'_i}^{n_i}m_{g'_i} \in N_2$ for each i = 1, 2, ..., t.

Now let $x \in RGE_M(N_2)/N_1$. So $x = \sum_{i=1}^t s_{g_i}m_{g'_i} + N_1$ such that $s_{g_i} \in h(R)$, $m_{g'_i} \in h(M)$ and there exists $n_i \in \mathbf{N}$ such that $s_{g_i}^{n_i}m_{g'_i} \in N_2$ for each i = 1, 2, ..., t. So $s_{g_i}^{n_i}(m_{g'_i} + N_1) \in N_2/N_1$ and $s_{g_i}(m_{g'_i} + N_1) \in RGE_{M/N_1}(N_2/N_1)$. Therefore $x = \sum_{i=1}^t s_{g_i}m_{g'_i} + N_1 = \sum_{i=1}^t s_{g_i}(m_{g'_i} + N_1) \in RGE_{M/N_1}(N_2/N_1)$. (ii) It is clear by [2, lemma 2.8].

Corollary 4.2. Let N, N' be graded submodules of graded R-modules M, M' such that $M/N \cong M'/N'$. Then $Gr_M(N) = RGE_M(N)$ if and only if $Gr_{M'}(N') = RGE_{M'}(N')$.

Proof. By lemma 4.1, we have the following implications: $Gr_M(N) = RGE_M(N) \Leftrightarrow Gr_M(N)/N = RGE_M(N)/N$ $\Leftrightarrow Gr_{M/N}(0) = RGE_{M/N}(0) \Leftrightarrow Gr_{M'/N'}(0) = RGE_{M'/N'}(0)$ $\Leftrightarrow Gr_{M'}(N')/N' = RGE_{M'}(N')/N' \Leftrightarrow Gr_{M'}(N') = RGE_{M'}(N').$

Corollary 4.3. Let N, L be graded submodule of graded R-module M such that M = N + L and $Gr_L(N \cap L) = RGE_L(N \cap L)$. Then $Gr_M(N) = RGE_M(N)$.

Proof. Note that $M/N = (N + L)/N \cong L/N \cap L$. Apply Corollary 4.2.

A graded R-module M is said to be a Gr-semisimple module if every graded R-submodule of M is a direct summand of M. It is clear that every graded submodule of a Gr-semisimple module is Gr-semisimple.

A graded submodule K of a graded R-module M is said to be Gr-small submodule in M, written $K \ll_{Gr} M$ if for every graded submodule $L \subseteq M$, the equality K + L = M implies L = M.

The intersection of all graded maximal submodules of a graded *R*-module *M* is denoted by GRad(M). If *M* has no graded maximal submodule we set GRad(M) = M.

164

Graded modules which satisfy the Gr-radical formula

Lemma 4.4. For a graded *R*-module *M*, we have $GRad(M) = \bigcap \{K \subset M \mid K \text{ is a graded maximal in } M\}$ $= \sum \{L \subset M \mid L \text{ is a } Gr - small submodule in } M\}.$

Proof. The first row is just the definition. If $L \ll_{Gr} M$ and K is a graded maximal submodule of M not containing L, then $K \subsetneq L + K \subseteq M$ so L + K = M. As K is a graded maximal submodule, then K = M, since $L \ll_{Gr} M$. Hence every Gr-small submodule of M is contained in GRad(M).

Now assume that $m \in GRad(M) \cap h(R)$, $U \subseteq M$ with Rm + U = M and U is a graded submodule of M. If $U \neq M$, set $\mathbf{A} = \{K \mid K \text{ is a graded submodule}\}$

of M with $U \subseteq K$ and $m \notin K$. Then $\mathbf{A} \neq \emptyset$. By Zorn's lemma there is a graded submodule L of M maximal with respect to $U \subseteq L$ and $m \notin L$. So M = Rm + L, now we show that L is a graded maximal submodule of M. Let L' be a graded submodule of M and $L \subseteq L' \subseteq M$. We divide the proof into two cases: **Case 1** If $m \notin L'$, then $L' \in \mathbf{A}$ and L = L'.

Case 2 If $m \in L'$, then M = Rm + L' and so L' = M.

So L is a graded maximal submodule of M. But $m \in GRad(M) \subseteq L$ is a contradiction. So U = M and $Rm \ll_{Gr} M$. Since GRad(M) is a graded submodule of M and every element of GRad(M) is a finite sum of homogenous elements, therefore the result holds.

Lemma 4.5. Let M be a Gr-semisimple R-module. Then GRad(M) = 0.

Proof. Since M is a Gr-semisimple R-module so M has no proper Gr-small submodule, then by lemma 4.4, GRad(M) = 0.

Lemma 4.6. Let M be a graded R-module and M' be a graded submodule of M. If P is a graded prime submodule of M, then $P \cap M'$ is a graded prime submodule of M'.

Proof. Set $L = P \cap M'$. Since P and M' are graded submodules of M so L is a graded submodule of M. Let $rm' \in L$ for some $r \in h(R)$ and $m \in h(M') \subseteq h(M)$. Then $rm' \in P$. So $m' \in P$ or $rM \subseteq P$ since P is a graded prime submodule of M. Thus $m' \in L$ or $rM' \subseteq L$. Therefore $L = P \cap M'$ is a graded prime submodule of M'.

Lemma 4.7. Let $M = M' \oplus M''$ be a graded R-module, M' and M'' be graded submodules of M such that M'' is a Gr-semisimple module. Then $Gr_M(N) = Gr_{M'}(N)$ for any graded submodule N of M'.

Proof. Let N be a graded submodule of M'. Since M'' is Gr-semisimple and GRad(M'') = 0, so there exists a collection of graded maximal submodules $P_i(i \in I)$ of M'' such that $\bigcap_{i \in I} P_i = 0$ and there exists a collection of graded prime submodules $Q_j(j \in J)$ of M' such that $Gr_{M'}(N) = \bigcap_{j \in J} Q_j$. We show that for all $i \in I$ and $j \in J$, $M' \oplus P_i$ and $Q_j \oplus M''$ are graded prime submodules of M containing N. First we show that for each $i \in I$, $L' = M' \oplus P_i$ is a graded prime submodule of M containing N, the proof for $Q_j \oplus M''$ is the same.

Let $rm \in L' = M' \oplus P_i$ for some $r \in h(R)$ and $m \in h(M)$. So m = m' + m'' for some $m' \in M'$ and $m'' \in M''$. Thus $r(m - m') = rm'' \in P_i$. If $m - m' \in P_i$, then $m = m' + (m - m') \in M' \oplus P_i$. If $rM'' \subseteq P_i$, then $rM = rM' \oplus rM'' \subseteq M' \oplus P_i$. Hence

 $Gr_M(N) \subseteq \{\bigcap_{i \in I} (M' \oplus P_i)\} \cap \{\bigcap_{j \in J} (Q_j \oplus M'')\} = \bigcap_{j \in J} Q_j = Gr_{M'}(N).$ By lemma 4.6, $Gr_{M'}(N) \subseteq Gr_M(N).$

Let M and M' be two graded R-modules. A morphism of graded R-modules $f: M \to M'$ is a morphism of R-modules verifying $f(M_g) \subseteq M'_g$ for every $g \in G$.

Lemma 4.8. Let M and M' be two graded R-modules and N be a graded R-submodule of M. If $f: M \to M'$ is a morphism of graded R-modules, then f(N) is a graded submodule of M'.

Proof. Let $N = \bigoplus_{g \in G} N_g$ such that $N_g = N \cap M_g$ for all $g \in G$. Since f is a morphism of graded R-modules so $f(N_g) = f(N) \cap M'_g$. We show that $f(N) = \bigoplus_{g \in G} f(N_g)$. Let $y \in f(N)$. Then $y = \sum_{g \in G} m'_g$ such that $m'_g \in M'_g$ for all $g \in G$ and y = f(n) for some $n \in N$. Thus $n = \sum_{g \in G} n_g$, since N is graded. Without loss of generality we can assume that $n = \sum_{i=1}^n n_{g_i}$ and $n_g = 0$ for each $g \notin \{g_1, ..., g_n\}$. Therefore $f(n) = \sum_{i=1}^n f(n_{g_i}) = y$. But every element of M' has unique representation, so $m'_{h_i} = f(n_{g_i}) \in f(N_{g_i}) \subseteq f(N)$ for some $h_i \in G$ and $m'_{h_i} = 0 \in f(N)$ for all $h \notin \{h_1, ..., h_n\}$. Therefore $m'_g \in f(N)$ for all $g \in G$ and f(N) is a graded submodule of M'.

Theorem 4.9. Let $M = M' \oplus M''$ be a graded R-module, M' a Gr-McCasland R-submodule and M'' a Gr-semisimple R-submodule of M. Then M is a Gr-McCasland module.

Proof. Let N be a graded R-submodule of M. It suffices to show that $Gr_M(N) \subseteq RGE_M(N)$. Let $\pi : M \to M''$ be the natural epimorphism. It is clear that π is a morphism of graded modules. Thus $\pi(N) \subseteq M''$ is a graded submodule of M'' by lemma 4.8. So there exists a graded submodule N'' of M'' such that $M'' = \pi(N) \oplus N''$. Then $M = M' \oplus M'' = M' \oplus \pi(N) \oplus N''$. We show that $M = N + (M' \oplus N'')$. Let $m \in M$. So there exists $m' \in M'$, $x \in \pi(N)$ and $n'' \in N''$ such that m = m' + x + n''. Since $x \in \pi(N)$, so $\pi(n) = x$ for some $n \in N$. Thus $n = n_1 + n_2$ for some $n_1 \in M'$, $n_2 \in M''$ and $n_2 = \pi(n) = x$. So $m = m' + x + n'' = m' + n - n_1 + n'' = n + (m' - n_1) + n''$, then $m \in N + (M' \oplus N'')$. Now consider submodule $L = N \cap (M' \oplus N'')$ of graded R-module $H = M' \oplus N''$. L is a graded submodule because N, M' and N'' are graded. Let $\pi' : H \to N''$ be the natural epimorphism. Then $\pi'(L) \subseteq \pi(N) \cap N'' = 0$, so $L \subseteq M'$. As N'' is Gr-semisimple and M' is a Gr-McCasland R-module, then by lemma 4.7, $Gr_H(L) = Gr_{M'}(L) = RGE_M(L) \subseteq RGE_H(L)$. So $Gr_H(L) = RGE_H(L)$. Then by Corollary 4.3, $Gr_M(N) = RGE_M(N)$ since M = N + H and $L = N \cap H$.

Corollary 4.10. Let R be a graded R-module. Then every Gr-semisimple R-module is a Gr-McCasland module.

5 *Gr*-Divisible Modules

In this section we list some basic properties of graded divisible Module and we will show that every Gr- divisible Module is McCasland.

Let R be a graded ring. We say that R is a Gr-integral domain whenever $a, b \in h(R)$ with ab = 0 implies that either a = 0 or b = 0.

Let R be a Gr-integral domain. A graded R-module M is called Gr-divisible if aM = M for all $0 \neq a \in h(R)$.

If R is a graded ring and M is a graded R-module, the subset T(M) of M is defined by $T(M) = \{m \in M : rm = 0 \text{ for some } 0 \neq r \in h(R)\}.$

Clearly, if R is a Gr-integral domain, then T(M) is a graded submodule of M. T(M) is called the Gr-torsion submodule of M. A graded R-module M is called a Gr-torsion module if M = T(M) and is called Gr-torsion free module if T(M) = 0.

Lemma 5.1. Let R be a Gr-integral domain, M be a graded R-module and N a proper graded submodule of M. Then N is a graded prime submodule of M or if T(M/N) = L/N is the Gr-torsion submodule of M/N, then L = M or L is a graded prime submodule of M containing N.

Proof. By the definition $T(M/N) = \{m + N \in M/N : rm \in N \text{ for some } 0 \neq r \in h(R)\}$. We divide the proof into two cases:

Case 1 Let the graded *R*-module M/N be Gr-torsion free. Then T(M/N) = 0. If $I = (N : M) \neq 0$, then there exists $0 \neq r \in I$ such that $rM \subseteq N$. So for every $m \in M$, r(m + N) = rm + N = N, then $m + N \in T(M/N) = 0$ and $m \in N$. Therefore N = M is a contradiction. Thus I = (N : M) = 0. So M/N is a Gr-torsion free $R \cong R/0$ -module and I = (N : M) = 0 is a graded prime ideal of R. So by [2, Theorem 2.11], N is a graded prime submodule of M.

Case 2 If M/N isn't Gr-torsion free R-module, then $T(M/N) = L/N \neq 0$. If M/N is Gr-torsion, then T(M/N) = M/N and L = M. If M/N isn't Gr-torsion, then by [6, Proposition 2.6], T(M/N) is a graded prime submodule of M. Then by [2, Lemma 2.8], L is a graded prime submodule of M containing N. \Box

Lemma 5.2. Let R be a graded ring and M, M' be two graded R-modules and $\varphi: M \to M'$ be an epimorphism of graded modules. Let N be a graded submodule of M such that $Ker\varphi \subseteq N$. Then

(i) If P is a graded prime submodule of M containing N, then $\varphi(P)$ is a graded prime submodule of M' containing $\varphi(N)$.

(ii) If P' is a graded prime submodule of M' containing $\varphi(N)$, then $\varphi^{-1}(P')$ is a graded prime submodule of M containing N.

Proof. The proof is a direct consequence of the definition.

Lemma 5.3. Let M, M' be graded R-modules and N' be a graded submodule of M'. Let $\varphi : M \to M'$ be an epimorphism of graded R-modules. Then (i) $\varphi^{-1}(Gr_{M'}(N')) = Gr_M(\varphi^{-1}(N'))$ (ii) $\varphi^{-1}(RGE_{M'}(N')) = RGE_M(\varphi^{-1}(N'))$

Proof. (i) Let $x \in Gr_M(\varphi^{-1}(N'))$ and L be a graded prime submodule of M' containing N'. Then by lemma 5.2, $\varphi^{-1}(L)$ is a graded prime submodule of M containing $\varphi^{-1}(N')$. So $Gr_M(\varphi^{-1}(N')) \subseteq \varphi^{-1}(L)$, then $x \in \varphi^{-1}(L)$ so $\varphi(x) \in L$. Therefore $\varphi(x) \in Gr_{M'}(N')$, then $x \in \varphi^{-1}(Gr_{M'}(N'))$.

Now suppose that $y \in \varphi^{-1}(Gr_{M'}(N'))$ and K be a graded prime submodule of M containing $\varphi^{-1}(N')$. It is clear that $Ker\varphi \subseteq \varphi^{-1}(N')$, so by lemma 5.2, $\varphi(K)$ is a graded prime submodule of M' containing N'. Thus $Gr_{M'}(N') \subseteq \varphi(K)$, then $\varphi(y) \in Gr_{M'}(N') \subseteq \varphi(K)$. So there exists $m \in K$ such that $\varphi(y) = \varphi(m)$, then $y - m \in Ker\varphi \subseteq \varphi^{-1}(N') \subseteq K$. Therefore $y \in K$, so $y \in Gr_M(\varphi^{-1}(N'))$.

(ii) Let $rm \in GE_M(\varphi^{-1}(N'))$ for some $m \in h(M)$ and $r \in h(R)$. So there exists $n \in \mathbf{N}$ such that $r^n m \in \varphi^{-1}(N')$, then $r^n \varphi(m) = \varphi(r^n m) \in N'$, so $\varphi(rm) = r\varphi(m) \in RGE_{M'}(N')$ since $r \in h(R)$ and $\varphi(m) \in h(M')$. Therefore $rm \in \varphi^{-1}(RGE_{M'}(N'))$.

 $\begin{array}{l} rm \in \varphi^{-1}(\operatorname{RGE}_{M'}(N')). \text{ So } \varphi(x) \in RGE_{M'}(N'). \text{ Without loss of generality we can consider } \varphi(x) = \sum_{i=1}^{k} r_{g_i} x'_{g'_i} \text{ such that } r_{g_i} \in h(R) \text{ and } x'_{g'_i} \in h(M') \text{ for each } i = 1, 2, ..., k. \text{ So there exists } n_i \in \mathbb{N} \text{ such that } r_{g_i}^{n_i} x'_{g'_i} \in N' \text{ for each } i = 1, 2, ..., k. \text{ So there exists } n_i \in \mathbb{N} \text{ such that } r_{g_i}^{n_i} x'_{g'_i} \in h(M'), \text{ then there exists } x_{g'_i} \in h(M) \text{ such that } \varphi(x_{g'_i}) = x'_{g'_i}. \text{ So } \varphi(r_{g_i}^{n_i} x_{g'_i}) = r_{g_i}^{n_i} x'_{g'_i} \in N', \text{ then } r_{g_i}^{n_i} x_{g'_i} \in \varphi^{-1}(N'). \text{ Thus } r_{g_i} x_{g'_i} \in GE_M(\varphi^{-1}(N')) \text{ for each } i = 1, 2, ..., k. \text{ On the other hand, } \varphi(x - \sum_{i=1}^{k} r_{g_i} x_{g'_i}) = 0. \text{ So } x - \sum_{i=1}^{k} r_{g_i} x_{g'_i} \in Ker\varphi \subseteq \varphi^{-1}(N') \subseteq RGE_M(\varphi^{-1}(N')). \end{array}$

Let M be a graded R-module. Then a graded homomorphic image of M is a graded R-module M' with an epimorphism of graded modules $\varphi: M \to M'$.

Theorem 5.4. Let M be a Gr-McCasland R-module. Then every graded homomorphic image of M is Gr-McCasland.

Proof. Let M' be a graded homomorphic image of M. Then there exists an epimorphism of graded modules $\varphi : M \to M'$. We show that M' is an Gr-McCasland module. Let N' be a graded submodule of M'. Then $\varphi^{-1}(N')$ is a graded submodule of M and since M is Gr-McCasland R-module, then $Gr_M(\varphi^{-1}(N')) = RGE_M(\varphi^{-1}(N'))$. So by lemma 5.3, $\varphi^{-1}(Gr_{M'}(N')) = \varphi^{-1}(RGE_{M'}(N'))$. Then $Gr_{M'}(N') = RGE_{M'}(N')$ since φ is an epimorphism.

Theorem 5.5. Let G be a group and R be a Gr-integral domain. Let $M = M_1 + M_2$ be a graded R-module, M_1 a Gr-McCasland submodule of M and M_2 be a Gr-divisible submodule of M. Then M is a Gr-McCasland R-module.

Proof. Define $\alpha: M_1 \to M/M_2$ with $\alpha(s_1) = s_1 + M_2$ for every element $s_1 \in M_1$. It is easy to see that α is an epimorphism of graded modules. Since M_1 is Gr-McCasland, so by Theorem 5.4, M/M_2 is Gr-McCasland. Let N be a graded submodule of M. It suffices to show that $Gr_M(N) \subseteq RGE_M(N)$. Let $m \in Gr_M(N)$. Then $m + M_2 \in (Gr_M(N) + M_2)/M_2 = Gr_{M/M_2}(N + M_2/M_2) = RGE_{M/M_2}(N + M_2/M_2)$, since M/M_2 is Gr-McCasland. So $m + M_2 = \sum_{i=1}^t r_{g_i}(k_{g'_i} + M_2)$ and Graded modules which satisfy the Gr-radical formula

$$\begin{split} m - \sum_{i=1}^{t} r_{g_i} k_{g'_i} \in M_2 \text{ such that } r_{g_i} \in h(R), \, k_{g'_i} \in h(M) \text{ and there exists } s_i \in \mathbf{N} \\ \text{such that } r_{g_i}^{s_i} k_{g'_i} \in (N + M_2) \cap M_{g_i^{s_i} g'_i}^{s_i} \text{ for each } i = 1, 2, ..., t. \text{ So there exist } n_i \in N \cap M_{g_i^{s_i} g'_i}^{s_i} \text{ and } d_i \in M_2 \cap M_{g_i^{s_i} g'_i}^{s_i} \text{ such that } r_{g_i}^{s_i} k_{g'_i} = n_i + d_i \text{ for each } i = 1, 2, ..., t. \\ \text{By hypothesis } M_2 \text{ is } Gr\text{-divisible, so there exists } c_i \in M_2 \text{ such that } d_i = r_{g_i}^{s_i} c_i \text{ for each } i = 1, 2, ..., t. \\ \text{By hypothesis } M_2 \text{ is } Gr\text{-divisible, so there exists } c_i \in M_2 \text{ such that } d_i = r_{g_i}^{s_i} c_i \text{ for each } i = 1, 2, ..., t. \\ \text{By hypothesis } M_2 \text{ is } Gr\text{-divisible, so there exists } c_i \in M_2 \text{ such that } d_i = r_{g_i}^{s_i} c_i \text{ for each } i = 1, 2, ..., t. \\ \text{By hypothesis } M_2 \text{ is } Gr\text{-divisible, so there exists } c_i \in M_2 \text{ such that } d_i = r_{g_i}^{s_i} c_i \text{ for each } i = 1, 2, ..., t. \\ \text{By hypothesis } M_2 \text{ is } Gr\text{-divisible, so there exists } c_i \in M_2 \text{ such that } d_i = r_{g_i}^{s_i} c_i \text{ for each } i = 1, 2, ..., t. \\ \text{By hypothesis } M_2 \text{ is } Gr\text{-divisible, so there exists } c_i \in M_2 \text{ such that } d_i = 0, \\ \text{for some } h_i \in G. \text{ Then } 0 \neq r_{g_i}^{s_i} c_i = d_i \in M_{g_i}^{s_i} g'_i \cap M_{g_i}^{s_i} h_i. \\ \text{For some } h_i \in G. \text{ Then } 0 \neq r_{g_i}^{s_i} c_i = d_i \in M_{g_i}^{s_i} g'_i \cap M_{g_i}^{s_i} h_i. \\ \text{So } g'_i = h_i \text{ since } G \text{ is a group. } \text{So } r_g(k_{g'_i} - c_i) \in RGE_M(N) \subseteq Gr_M(N) \text{ for each } i = 1, 2, ..., t. \\ \text{But } m - \sum_{i=1}^t r_{g_i} k_{g'_i}, \sum_{i=1}^t r_{g_i} c_i \in M_2 \text{ so there exists } x \in M_2 \text{ such that } m - \sum_{i=1}^t r_{g_i} (k_{g'_i} - c_i) = x. \\ \text{Then } x \in Gr_M(N) \cap M_2. \\ \text{Now by lemma 5.1, we divide the proof into two cases: } \\ \end{array}$$

Case 1 If N is a graded prime submodule of M, then $Gr_M(N) = RGE_M(N) = N$. **Case 2** If T(M/N) = L/N is Gr-torsion submodule of M/N, then L = M or L is a graded prime submodule of M containing N. Therefore $Gr_M(N) \subseteq L$, so $x \in L$ and $x+N \in T(M/N)$. Thus there exists $0 \neq c \in h(R)$ such that $cx \in N$. Since M_2 is Gr-divisible module, so there exists $y \in M_2$ such that x = cy so $c^2y = cx \in N$. Since $y \in M$, without loss of generality we can assume that $y = \sum_{i=1}^{l} m_{g_i}$ and $m_h = 0$ for each $h \notin \{g_1, ..., g_l\}$. Then $c^2y = \sum_{i=1}^{l} c^2m_{g_i} \in N$. Then $c^2m_{g_i} \in N$ for each i = 1, ..., l, since N is graded. Then $cm_{g_i} \in RGE_M(N)$ for each i = 1, ..., l. Therefore $x = cy = \sum_{i=1}^{l} cm_{g_i} \in RGE_M(N)$, then $m = x + \sum_{i=1}^{t} r_{g_i}(k_{g'_i} - c_i) \in RGE_M(N)$ and $Gr_M(N) \subseteq RGE_M(N)$.

Corollary 5.6. If G is a group and R is a Gr-integral domain, then every Grdivisible R-module is a Gr-McCasland module.

Acknowledgement(s) : The authors would like to thanks the referee for his useful comments and suggestions on the manuscript.

References

- S. Ebrahimi Atani and F. Esmaeili Khalil Saraei, On generalized distinguished prime submodules, Thai J. of Math., 6(2) (2008), 369-375.
- [2] S. Ebrahimi Atani, On graded prime submodules, Chiang Mai J. Sci., 33(1)(2006), 3-7.
- [3] S. Ebrahimi Atani and F. Farzalipour, On graded secondary modules, Turkish Journal of Mathematics, 30 (2007), 371-378.
- [4] S. Ebrahimi Atani, On graded weakly prime idealds, Turkish Journal of Mathematics, 30 (2006), 351-358.
- [5] S. Ebrahimi Atani and F. Farzalipour, Graded multiplication modules, Chiang Mai J. Sci., Submitted.

- [6] S. Ebrahimi Atani and F. Farzalipour, Notes on the graded prime submodules, International Mathematical Forum, 38 (1) (2006), 1871-1880.
- [7] J. E. Lopez, Multiplication objects in monoidal categories, Nova Science Publishers, 2000, 146-155.
- [8] C. Nastasescu and F. Van Oystaeyen, Graded Ring Theory, Mathematical Library 28, North Holand, Amsterdam, (1982).
- [9] D. Pusat-Yilmaz and P.F. Smith, Modules which satisfy the radical formula, Acta Math. Hungar.m 95 (2002), 155-167.
- [10] F. Van Oystaeyen and J. P. Van Deuren, Arithmetically graded ring, Lecture Notes in Math., Ring Theory (Antwerp 1980), Proceeding 825, 279-284, (1980).

(Received 12 March 2009)

S. Ebrahimi Atani and F. Esmaeili Khalil Saraei Department of Mathematics, University of Guilan, P.O. Box 1914 Rasht, IRAN. e-mail : esmaiely@guilan.ac.ir