Graded Modules which Satisfy the Gr-Radical Formula

S.E. Atani and F.E.K. Saraei

Abstract

Let G be a monoid with identity e, and R be a graded commutative ring. Here we study the graded modules which satisfy the $G r$ - radical formula. The main part of this work is devoted to extending some results from McCasland modules to Gr -McCasland modules.

Keywords : Graded rings, $G r$-McCasland modules, Graded radical formula 2000 Mathematics Subject Classification : 13A02, 16W50

1 Introduction

Let G be an arbitary monoid with identity e. A ring R with non-zero identity is G-graded if it has a direct sum decomposition (as an additive group) $R=\bigoplus_{g \in G} R_{g}$ such that for all $g, h \in G, R_{g} R_{h} \subseteq R_{g h}$. If R is G-graded, then an R-module M is said to be G-graded if it has a direct sum decomposition $M=\bigoplus_{g \in G} M_{g}$ such that for all $g, h \in G, R_{g} M_{h} \subseteq M_{g h}$. An element of R_{g} or M_{g} is said to be a homogeneous element. If $x \in M$, then x can be written uniquely as $x=\sum_{g \in G} x_{g}$, where x_{g} is the homogeneous component of x in M_{g}. A submodule $N \subseteq M$, where M is graded, is called G-graded if $N=\bigoplus_{g \in G}\left(N \cap M_{g}\right)$ or if, equivalently, N is generated by homogeneous elements. Moreover, M / N becomes a G-graded module with g-component $(M / N)_{g}=\left(M_{g}+N\right) / N$ for $g \in G$. Clearly, 0 is a graded submodule of M. Also, we write $h(R)=\bigcup_{g \in G} R_{g}$ and $h(M)=\bigcup_{g \in G} M_{g}$. Throughout this paper R is a commutative G-graded ring with identity.

Let R be a G-graded ring. A graded ideal I of R is said to be a graded prime ideal if $I \neq R$; and whenever $a b \in I$, we have $a \in I$ or $b \in I$, where $a, b \in h(R)$. The graded radical of I, denoted by $\operatorname{Gr}(I)$, is the set of all $x \in R$ such that for each $g \in G$ there exists $n_{g}>0$ with $x_{g}^{n_{g}} \in I$. A proper graded submodule N of a graded module M is called graded prime if $r m \in N$, then $m \in N$ or $r \in(N: M)=\{r \in R: r M \subseteq N\}$, where $r \in h(R), m \in h(M)$ (note that

[^0]$(N: M)$ is graded by [2, Lemma 2.1]). A graded submodule N of a graded R module M is called graded maximal submodule if $N \neq M$ and there is no graded submodule K of M such that $N \nsubseteq K \nsubseteq M$. A graded R-module M is called graded finitely generated if $M=\sum_{i=1}^{n} R x_{g_{i}}$, where $x_{g_{i}} \in h(M)(1 \leq i \leq n)$. A graded R module M is called a graded multiplicative module (denoted by $G r$-multiplicative) if for every graded submodule N of $M, N=I M$ for some graded ideal I of R. In this case, it is clear that every graded module which is multiplicative is a $G r$ multiplicative module and $N=(N: M) M$.

Lemma 1.1. (cf.[5]) Let M be a graded module over a G-graded ring R and I a graded ideal of R. Then the following hold:
(i) If N is a graded submodule of $M, a \in h(R)$ and $m \in h(M)$, then $R m, I N$ and aN are graded submodule of M and $R a$ is a graded ideal of R.
(ii) If $\left\{N_{i}\right\}_{i \in J}$ is a collection of graded submodules of M, then $\sum_{i \in J} N_{i}$ and $\bigcap_{i \in J} N_{i}$ are graded submodules of M.
(iii) If P is a graded prime ideal of R and M a faithful graded multiplication R-module with $P M \neq M$, then $P M$ is a graded prime submodule of M.

$2 \quad G r$-radical formula

Definition 2.1. Let R be a G-graded ring, M be a graded R-module and N be a graded R - submodule of M.
(i) The graded radical of N in M denoted by $G r_{M}(N)$ and is defined to be the intersection of all graded prime submodules of M containing N. Should there be no graded prime submodule of M containing N, then we put $G r_{M}(N)=M$. By Lemma 1.1, It is easy to see that $G r_{M}(N)$ is a graded submodule of M containing N. On the other hand, $\operatorname{Gr}(R)$ denotes the intersection of all graded prime ideals of R.
(ii) The graded envelop submodule $R G E_{M}(N)$ of N in M is a graded submodule of M generated by the set $G E_{M}(N)=\left\{r m: r \in h(R), m \in h(M)\right.$ such that $r^{n} m \in$ N for some $n \in \boldsymbol{N}\}$.
(iii) We say that the graded submodule N of M satisfies Gr-radical formula (graded radical formula), if $G r_{M}(N)=R G E_{M}(N)$.
(iv) A graded R-module M will be called a Gr-McCasland module if every graded submodule of M satisfies $G r$-radical formula.

Lemma 2.2. Let M be a graded module over a G-graded ring R. Then $N \subseteq$ $R G E_{M}(N) \subseteq G r_{M}(N)$ for every graded R-submodule N of M.

Proof. Obvious.

3 Gr-Multiplication Modules

In this section we list some basic properties of graded multiplicative module and we will show that every $G r$ - multiplication module is McCasland.

Lemma 3.1. Let I be a graded ideal of a G-graded ring R and M be a graded R module. Then there exists a proper graded submodule N of M satisfies $I=(N: M)$ if and only if $I M \neq M, I=(I M: M)$.

Proof. Let N be a proper graded submodule of M and $I=(N: M)$. Then $I M \subseteq N \subsetneq M$, so $I M \neq M$. It is clear that $I \subseteq(I M: M)$. Let $r \in(I M: M)$ then $r M \subseteq I M \subseteq N$, so $r \in I$. Therefore $I=(I M: M)$. The convers is clear since $I M$ is a proper graded submodule from Lemma 1.1.

Theorem 3.2. Let M be a Gr-multiplicative R-module, N a graded submodule of M and $A=(N: M)$. Then $G r_{M}(N)=\sqrt{A} M=\sqrt{(N: M)} M$.

Proof. Without loss of generality we can assume that M is faithful by [7, p. 155]. Let \boldsymbol{P} denote the collection of all graded prime ideals P of R such that $A \subseteq P$. If $B=\sqrt{A}$, then $B=\bigcap_{P \in P} P$. Choose $P \in P$. If $P M=M$, then $G r_{M}(N) \subseteq P M$. If $P M \neq M$, then since N is a graded submodule of M and M is $G r$-multiplicative then $N=A M \subseteq P M$. Therefore by Lemma 1.1, since $P M$ is a prime submodule of M, then $G r_{M}(N) \subseteq P M$. Thus $B M=\bigcap_{P \in P} P M$, by [7, Corollary 4.2.8]. So $G r_{M}(N) \subseteq B M$.

Now let K be a graded prime submodule of M containing N. Then there exists a graded prime ideal $Q=(K: M)$ of R such that $K=Q M$. We show that $A \subseteq Q$. By Lemma 3.1, $Q=(Q M: M)$. Let $r \in A=(N: M)$. So $r M \subseteq N \subseteq K=Q M$, then $r \in(Q M: M)=Q$. Thus $A \subseteq Q$. As Q is a graded prime ideal containing A, so $B=\sqrt{A} \subseteq Q$. Therefore $B M \subseteq Q M=K$. Hence, since K is an arbitary graded prime submodule of M containing N, then $B M \subseteq G r_{M}(N)$.

Theorem 3.3. Let M be a Gr-multiplicative R-module. Then M is a $G r-M c C a s l a n d$ module.

Proof. Let N be a graded submodule of M. Then $R G E_{M}(N) \subseteq G r_{M}(N)$ by lemma 2.2, so it suffices to show that $G r_{M}(N) \subseteq R G E_{M}(N)$. Let $x \in G r_{M}(N)$. Since $G r_{M}(N)=\sqrt{(N: M)} M$, then $x=\sum_{j=1}^{k} r_{j} x_{j}$ such that $r_{j} \in \sqrt{(N: M)}$, $x_{j} \in M$. As $\sqrt{(N: M)}, M$ are graded, so without loss of generality we can assume that $x=\sum_{i=1}^{n} r_{g_{i}} x_{g_{i}}$ such that $r_{g_{i}} \in h(R) \cap \sqrt{(N: M)}$ and $x_{g_{i}} \in h(M)$ for each $i=1,2, \ldots, n$. Since $r_{g_{i}} \in \sqrt{(N: M)}$, so there exists $n_{i} \in \mathbf{N}$ such that $r_{g_{i}}^{n_{i}} M \subseteq N$ for each $i=1,2, \ldots, n$. Therefore $r_{g_{i}}^{n_{i}} x_{g_{i}} \in N$ and $r_{g_{i}} x_{g_{i}} \in G E_{M}(N) \subseteq R G E_{M}(N)$ for each $i=1,2, \ldots, n$. Thus $x \in R G E_{M}(N)$.

$4 \quad G r$-Semisimple Modules

In this section we list some basic properties of graded Semisimple module and we will show that every $G r$ - Semisimple Module is McCasland.

Lemma 4.1. Let N_{1}, N_{2} be graded submodules of a graded R-module M and $N_{1} \subseteq N_{2}$. Then
(i) $R G E_{M / N_{1}}\left(N_{2} / N_{1}\right)=R G E_{M}\left(N_{2}\right) / N_{1}$
(ii) $G r_{M / N_{1}}\left(N_{2} / N_{1}\right)=G r_{M}\left(N_{2}\right) / N_{1}$

Proof. (i) Let $y \in R G E_{M / N_{1}}\left(N_{2} / N_{1}\right)$. So $y=\sum_{i=1}^{k} r_{g_{i}}\left(m_{g_{i}^{\prime}}+N_{1}\right)$ such that $r_{g_{i}} \in h(R), m_{g_{i}^{\prime}} \in h(M)$ and there exists $n_{i} \in \mathbf{N}$ such that $r_{g_{i}}^{n_{i}}\left(m_{g_{i}^{\prime}}+N_{1}\right) \in$ N_{2} / N_{1} for each $i=1,2, \ldots, k$. Thus $r_{g_{i}}^{n_{i}} m_{g_{i}^{\prime}} \in N_{2}$ and $r_{g_{i}} m_{g_{i}^{\prime}} \in R G E_{M}\left(N_{2}\right)$. So $y=\sum_{i=1}^{k} r_{g_{i}} m_{g_{i}^{\prime}}+N_{1} \in R G E_{M}\left(N_{2}\right) / N_{1}$.
Now let $x \in R G E_{M}\left(N_{2}\right) / N_{1}$. So $x=\sum_{i=1}^{t} s_{g_{i}} m_{g_{i}^{\prime}}+N_{1}$ such that $s_{g_{i}} \in h(R)$, $m_{g_{i}^{\prime}} \in h(M)$ and there exists $n_{i} \in \mathbf{N}$ such that $s_{g_{i}}^{n_{i}} m_{g_{i}^{\prime}} \in N_{2}$ for each $i=1,2, \ldots, t$. So $s_{g_{i}}^{n_{i}}\left(m_{g_{i}^{\prime}}+N_{1}\right) \in N_{2} / N_{1}$ and $s_{g_{i}}\left(m_{g_{i}^{\prime}}+N_{1}\right) \in R G E_{M / N_{1}}\left(N_{2} / N_{1}\right)$. Therefore $x=\sum_{i=1}^{t} s_{g_{i}} m_{g_{i}^{\prime}}+N_{1}=\sum_{i=1}^{t} s_{g_{i}}\left(m_{g_{i}^{\prime}}+N_{1}\right) \in R G E_{M / N_{1}}\left(N_{2} / N_{1}\right)$.
(ii) It is clear by [2, lemma 2.8].

Corollary 4.2. Let N, N^{\prime} be graded submodules of graded R-modules M, M^{\prime} such that $M / N \cong M^{\prime} / N^{\prime}$. Then $G r_{M}(N)=R G E_{M}(N)$ if and only if $G r_{M^{\prime}}\left(N^{\prime}\right)=$ $R G E_{M^{\prime}}\left(N^{\prime}\right)$.

Proof. By lemma 4.1, we have the following implications:
$G r_{M}(N)=R G E_{M}(N) \Leftrightarrow G r_{M}(N) / N=R G E_{M}(N) / N$
$\Leftrightarrow \operatorname{Gr}_{M / N}(0)=R G E_{M / N}(0) \Leftrightarrow G r_{M^{\prime} / N^{\prime}}(0)=R G E_{M^{\prime} / N^{\prime}}(0)$
$\Leftrightarrow G r_{M^{\prime}}\left(N^{\prime}\right) / N^{\prime}=R G E_{M^{\prime}}\left(N^{\prime}\right) / N^{\prime} \Leftrightarrow G r_{M^{\prime}}\left(N^{\prime}\right)=R G E_{M^{\prime}}\left(N^{\prime}\right)$.
Corollary 4.3. Let N, L be graded submodule of graded R-module M such that $M=N+L$ and $G r_{L}(N \cap L)=R G E_{L}(N \cap L)$. Then $G r_{M}(N)=R G E_{M}(N)$.

Proof. Note that $M / N=(N+L) / N \cong L / N \cap L$. Apply Corollary 4.2.
A graded R-module M is said to be a $G r$-semisimple module if every graded R-submodule of M is a direct summand of M. It is clear that every graded submodule of a $G r$-semisimple module is $G r$-semisimple.
A graded submodule K of a graded R-module M is said to be $G r$-small submodule in M, written $K \ll_{G r} M$ if for every graded submodule $L \subseteq M$, the equality $K+L=M$ implies $L=M$.
The intersection of all graded maximal submodules of a graded R-module M is denoted by $\operatorname{GRad}(M)$. If M has no graded maximal submodule we set $\operatorname{GRad}(M)=$ M.

Lemma 4.4. For a graded R-module M, we have
$\operatorname{GRad}(M)=\bigcap\{K \subset M \mid K$ is a graded maximal in $M\}$
$=\sum\{L \subset M \mid L$ is a $G r-$ small submodule in $M\}$.
Proof. The first row is just the definition. If $L<_{G r} M$ and K is a graded maximal submodule of M not containing L, then $K \subsetneq L+K \subseteq M$ so $L+K=M$. As K is a graded maximal submodule, then $K=M$, since $L \ll_{G r} M$. Hence every $G r$-small submodule of M is contained in $G R a d(M)$.
Now assume that $m \in G \operatorname{Rad}(M) \cap h(R), U \subseteq M$ with $R m+U=M$ and U is a graded submodule of M. If $U \neq M$, set $\mathbf{A}=\{K \mid K$ is a graded submodule of M with $U \subseteq K$ and $m \notin K\}$. Then $\mathbf{A} \neq \emptyset$. By Zorn's lemma there is a graded submodule L of M maximal with respect to $U \subseteq L$ and $m \notin L$. So $M=R m+L$, now we show that L is a graded maximal submodule of M. Let L^{\prime} be a graded submodule of M and $L \subseteq L^{\prime} \subseteq M$. We divide the proof into two cases:
Case 1 If $m \notin L^{\prime}$, then $L^{\prime} \in \mathbf{A}$ and $L=L^{\prime}$.
Case 2 If $m \in L^{\prime}$, then $M=R m+L^{\prime}$ and so $L^{\prime}=M$.
So L is a graded maximal submodule of M. But $m \in G R a d(M) \subseteq L$ is a contradiction. So $U=M$ and $R m<_{G r} M$. Since $\operatorname{GRad}(M)$ is a graded submodule of M and every element of $G R a d(M)$ is a finite sum of homogenous elements, therefore the result holds.

Lemma 4.5. Let M be a Gr-semisimple R-module. Then $\operatorname{GRad}(M)=0$.
Proof. Since M is a $G r$-semisimple R-module so M has no proper $G r$-small submodule, then by lemma $4.4, \operatorname{GRad}(M)=0$.

Lemma 4.6. Let M be a graded R-module and M^{\prime} be a graded submodule of M. If P is a graded prime submodule of M, then $P \cap M^{\prime}$ is a graded prime submodule of M^{\prime}.

Proof. Set $L=P \cap M^{\prime}$. Since P and M^{\prime} are graded submodules of M so L is a graded submodule of M. Let $r m^{\prime} \in L$ for some $r \in h(R)$ and $m \in h\left(M^{\prime}\right) \subseteq h(M)$. Then $r m^{\prime} \in P$. So $m^{\prime} \in P$ or $r M \subseteq P$ since P is a graded prime submodule of M. Thus $m^{\prime} \in L$ or $r M^{\prime} \subseteq L$. Therefore $L=P \cap M^{\prime}$ is a graded prime submodule of M^{\prime}.

Lemma 4.7. Let $M=M^{\prime} \oplus M^{\prime \prime}$ be a graded R-module, M^{\prime} and $M^{\prime \prime}$ be graded submodules of M such that $M^{\prime \prime}$ is a Gr-semisimple module. Then $G r_{M}(N)=$ $G r_{M^{\prime}}(N)$ for any graded submodule N of M^{\prime}.

Proof. Let N be a graded submodule of M^{\prime}. Since $M^{\prime \prime}$ is $G r$-semisimple and $G R a d\left(M^{\prime \prime}\right)=0$, so there exists a collection of graded maximal submodules $P_{i}(i \in$ $I)$ of $M^{\prime \prime}$ such that $\bigcap_{i \in I} P_{i}=0$ and there exists a collection of graded prime submodules $Q_{j}(j \in J)$ of M^{\prime} such that $G r_{M^{\prime}}(N)=\bigcap_{j \in J} Q_{j}$. We show that for all $i \in I$ and $j \in J, M^{\prime} \oplus P_{i}$ and $Q_{j} \oplus M^{\prime \prime}$ are graded prime submodules of M containing N. First we show that for each $i \in I, L^{\prime}=M^{\prime} \oplus P_{i}$ is a graded prime submodule of M containing N, the proof for $Q_{j} \oplus M^{\prime \prime}$ is the same.

Let $r m \in L^{\prime}=M^{\prime} \oplus P_{i}$ for some $r \in h(R)$ and $m \in h(M)$. So $m=m^{\prime}+m^{\prime \prime}$ for some $m^{\prime} \in M^{\prime}$ and $m^{\prime \prime} \in M^{\prime \prime}$. Thus $r\left(m-m^{\prime}\right)=r m^{\prime \prime} \in P_{i}$. If $m-m^{\prime} \in P_{i}$, then $m=m^{\prime}+\left(m-m^{\prime}\right) \in M^{\prime} \oplus P_{i}$. If $r M^{\prime \prime} \subseteq P_{i}$, then $r M=r M^{\prime} \oplus r M^{\prime \prime} \subseteq M^{\prime} \oplus P_{i}$. Hence
$G r_{M}(N) \subseteq\left\{\bigcap_{i \in I}\left(M^{\prime} \oplus P_{i}\right)\right\} \bigcap\left\{\bigcap_{j \in J}\left(Q_{j} \oplus M^{\prime \prime}\right)\right\}=\bigcap_{j \in J} Q_{j}=G r_{M^{\prime}}(N)$. By lemma 4.6, $G r_{M^{\prime}}(N) \subseteq G r_{M}(N)$.

Let M and M^{\prime} be two graded R-modules. A morphism of graded R-modules $f: M \rightarrow M^{\prime}$ is a morphism of R-modules verifying $f\left(M_{g}\right) \subseteq M_{g}^{\prime}$ for every $g \in G$.

Lemma 4.8. Let M and M^{\prime} be two graded R-modules and N be a graded R submodule of M. If $f: M \rightarrow M^{\prime}$ is a morphism of graded R-modules, then $f(N)$ is a graded submodule of M^{\prime}.

Proof. Let $N=\bigoplus_{g \in G} N_{g}$ such that $N_{g}=N \cap M_{g}$ for all $g \in G$. Since f is a morphism of graded R-modules so $f\left(N_{g}\right)=f(N) \cap M_{g}^{\prime}$. We show that $f(N)=$ $\bigoplus_{g \in G} f\left(N_{g}\right)$. Let $y \in f(N)$. Then $y=\sum_{g \in G} m_{g}^{\prime}$ such that $m_{g}^{\prime} \in M_{g}^{\prime}$ for all $g \in G$ and $y=f(n)$ for some $n \in N$. Thus $n=\sum_{g \in G} n_{g}$, since N is graded. Without loss of generality we can assume that $n=\sum_{i=1}^{n} n_{g_{i}}$ and $n_{g}=0$ for each $g \notin\left\{g_{1}, \ldots, g_{n}\right\}$. Therefore $f(n)=\sum_{i=1}^{n} f\left(n_{g_{i}}\right)=y$. But every element of M^{\prime} has unique representation, so $m_{h_{i}}^{\prime}=f\left(n_{g_{i}}\right) \in f\left(N_{g_{i}}\right) \subseteq f(N)$ for some $h_{i} \in G$ and $m_{h_{i}}^{\prime}=0 \in f(N)$ for all $h \notin\left\{h_{1}, \ldots, h_{n}\right\}$. Therefore $m_{g}^{\prime} \in f(N)$ for all $g \in G$ and $f(N)$ is a graded submodule of M^{\prime}.

Theorem 4.9. Let $M=M^{\prime} \oplus M^{\prime \prime}$ be a graded R-module, M^{\prime} a $G r-M c C a s l a n d$ R-submodule and $M^{\prime \prime}$ a Gr-semisimple R-submodule of M. Then M is a GrMcCasland module.

Proof. Let N be a graded R-submodule of M. It suffices to show that $G r_{M}(N) \subseteq$ $R G E_{M}(N)$. Let $\pi: M \rightarrow M^{\prime \prime}$ be the natural epimorphism. It is clear that π is a morphism of graded modules. Thus $\pi(N) \subseteq M^{\prime \prime}$ is a graded submodule of $M^{\prime \prime}$ by lemma 4.8. So there exists a graded submodule $N^{\prime \prime}$ of $M^{\prime \prime}$ such that $M^{\prime \prime}=\pi(N) \oplus N^{\prime \prime}$. Then $M=M^{\prime} \oplus M^{\prime \prime}=M^{\prime} \oplus \pi(N) \oplus N^{\prime \prime}$. We show that $M=N+\left(M^{\prime} \oplus N^{\prime \prime}\right)$. Let $m \in M$. So there exists $m^{\prime} \in M^{\prime}, x \in \pi(N)$ and $n^{\prime \prime} \in N^{\prime \prime}$ such that $m=m^{\prime}+x+n^{\prime \prime}$. Since $x \in \pi(N)$, so $\pi(n)=x$ for some $n \in N$. Thus $n=n_{1}+n_{2}$ for some $n_{1} \in M^{\prime}, n_{2} \in M^{\prime \prime}$ and $n_{2}=\pi(n)=x$. So $m=m^{\prime}+x+n^{\prime \prime}=m^{\prime}+n-n_{1}+n^{\prime \prime}=n+\left(m^{\prime}-n_{1}\right)+n^{\prime \prime}$, then $m \in N+\left(M^{\prime} \oplus N^{\prime \prime}\right)$. Now consider submodule $L=N \cap\left(M^{\prime} \oplus N^{\prime \prime}\right)$ of graded R-module $H=M^{\prime} \oplus N^{\prime \prime}$. L is a graded submodule because N, M^{\prime} and $N^{\prime \prime}$ are graded. Let $\pi^{\prime}: H \rightarrow N^{\prime \prime}$ be the natural epimorphism. Then $\pi^{\prime}(L) \subseteq \pi(N) \cap N^{\prime \prime}=0$, so $L \subseteq M^{\prime}$. As $N^{\prime \prime}$ is $G r$-semisimple and M^{\prime} is a $G r$-McCasland R-module, then by lemma 4.7, $G r_{H}(L)=G r_{M^{\prime}}(L)=R G E_{M^{\prime}}(L) \subseteq R G E_{H}(L)$. So $G r_{H}(L)=R G E_{H}(L)$. Then by Corollary 4.3, $G r_{M}(N)=R G E_{M}(N)$ since $M=N+H$ and $L=N \cap H$.

Corollary 4.10. Let R be a graded R-module. Then every $G r$-semisimple R module is a Gr-McCasland module.

$5 \quad G r$-Divisible Modules

In this section we list some basic properties of graded divisible Module and we will show that every $G r$ - divisible Module is McCasland.
Let R be a graded ring. We say that R is a $G r$-integral domain whenever $a, b \in$ $h(R)$ with $a b=0$ implies that either $a=0$ or $b=0$.
Let R be a $G r$-integral domain. A graded R-module M is called $G r$-divisible if $a M=M$ for all $0 \neq a \in h(R)$.
If R is a graded ring and M is a graded R-module, the subset $T(M)$ of M is defined by $T(M)=\{m \in M: r m=0$ for some $0 \neq r \in h(R)\}$.
Clearly, if R is a $G r$-integral domain, then $T(M)$ is a graded submodule of M. $T(M)$ is called the $G r$-torsion submodule of M. A graded R-module M is called a $G r$-torsion module if $M=T(M)$ and is called $G r$-torsion free module if $T(M)=0$.

Lemma 5.1. Let R be a Gr-integral domain, M be a graded R-module and N a proper graded submodule of M. Then N is a graded prime submodule of M or if $T(M / N)=L / N$ is the Gr-torsion submodule of M / N, then $L=M$ or L is a graded prime submodule of M containing N.

Proof. By the definition $T(M / N)=\{m+N \in M / N: r m \in N$ for some $0 \neq r \in$ $h(R)\}$. We divide the proof into two cases:
Case 1 Let the graded R-module M / N be $G r$-torsion free. Then $T(M / N)=0$. If $I=(N: M) \neq 0$, then there exists $0 \neq r \in I$ such that $r M \subseteq N$. So for every $m \in M, r(m+N)=r m+N=N$, then $m+N \in T(M / N)=0$ and $m \in N$. Therefore $N=M$ is a contradiction. Thus $I=(N: M)=0$. So M / N is a $G r$-torsion free $R \cong R / 0$-module and $I=(N: M)=0$ is a graded prime ideal of R. So by [2, Theorem 2.11], N is a graded prime submodule of M.
Case 2 If M / N isn't $G r$-torsion free R-module, then $T(M / N)=L / N \neq 0$. If M / N is $G r$-torsion, then $T(M / N)=M / N$ and $L=M$. If M / N isn't $G r$-torsion, then by $[6$, Proposition 2.6], $T(M / N)$ is a graded prime submodule of M. Then by [2, Lemma 2.8], L is a graded prime submodule of M containing N.

Lemma 5.2. Let R be a graded ring and M, M^{\prime} be two graded R-modules and $\varphi: M \rightarrow M^{\prime}$ be an epimorphism of graded modules. Let N be a graded submodule of M such that $\operatorname{Ker} \varphi \subseteq N$. Then
(i) If P is a graded prime submodule of M containing N, then $\varphi(P)$ is a graded prime submodule of M^{\prime} containing $\varphi(N)$.
(ii) If P^{\prime} is a graded prime submodule of M^{\prime} containing $\varphi(N)$, then $\varphi^{-1}\left(P^{\prime}\right)$ is a graded prime submodule of M containing N.

Proof. The proof is a direct consequence of the definition.
Lemma 5.3. Let M, M^{\prime} be graded R-modules and N^{\prime} be a graded submodule of M^{\prime}. Let $\varphi: M \rightarrow M^{\prime}$ be an epimorphism of graded R-modules. Then
(i) $\varphi^{-1}\left(G r_{M^{\prime}}\left(N^{\prime}\right)\right)=G r_{M}\left(\varphi^{-1}\left(N^{\prime}\right)\right)$
(ii) $\varphi^{-1}\left(R G E_{M^{\prime}}\left(N^{\prime}\right)\right)=R G E_{M}\left(\varphi^{-1}\left(N^{\prime}\right)\right)$

Proof. (i) Let $x \in G r_{M}\left(\varphi^{-1}\left(N^{\prime}\right)\right)$ and L be a graded prime submodule of M^{\prime} containing N^{\prime}. Then by lemma $5.2, \varphi^{-1}(L)$ is a graded prime submodule of M containing $\varphi^{-1}\left(N^{\prime}\right)$. So $G r_{M}\left(\varphi^{-1}\left(N^{\prime}\right)\right) \subseteq \varphi^{-1}(L)$, then $x \in \varphi^{-1}(L)$ so $\varphi(x) \in L$. Therefore $\varphi(x) \in G r_{M^{\prime}}\left(N^{\prime}\right)$, then $x \in \varphi^{-1}\left(G r_{M^{\prime}}\left(N^{\prime}\right)\right)$.
Now suppose that $y \in \varphi^{-1}\left(G r_{M^{\prime}}\left(N^{\prime}\right)\right)$ and K be a graded prime submodule of M containing $\varphi^{-1}\left(N^{\prime}\right)$. It is clear that $\operatorname{Ker} \varphi \subseteq \varphi^{-1}\left(N^{\prime}\right)$, so by lemma $5.2, \varphi(K)$ is a graded prime submodule of M^{\prime} containing N^{\prime}. Thus $G r_{M^{\prime}}\left(N^{\prime}\right) \subseteq \varphi(K)$, then $\varphi(y) \in G r_{M^{\prime}}\left(N^{\prime}\right) \subseteq \varphi(K)$. So there exists $m \in K$ such that $\varphi(y)=\varphi(m)$, then $y-m \in \operatorname{Ker} \varphi \subseteq \varphi^{-1}\left(N^{\prime}\right) \subseteq K$. Therefore $y \in K$, so $y \in G r_{M}\left(\varphi^{-1}\left(N^{\prime}\right)\right)$.
(ii) Let $r m \in G E_{M}\left(\varphi^{-1}\left(N^{\prime}\right)\right)$ for some $m \in h(M)$ and $r \in h(R)$. So there exists $n \in \mathbf{N}$ such that $r^{n} m \in \varphi^{-1}\left(N^{\prime}\right)$, then $r^{n} \varphi(m)=\varphi\left(r^{n} m\right) \in N^{\prime}$, so $\varphi(r m)=r \varphi(m) \in R G E_{M^{\prime}}\left(N^{\prime}\right)$ since $r \in h(R)$ and $\varphi(m) \in h\left(M^{\prime}\right)$. Therefore $r m \in \varphi^{-1}\left(R G E_{M^{\prime}}\left(N^{\prime}\right)\right)$.
Now let $x \in \varphi^{-1}\left(R G E_{M^{\prime}}\left(N^{\prime}\right)\right)$. So $\varphi(x) \in R G E_{M^{\prime}}\left(N^{\prime}\right)$. Without loss of generality we can consider $\varphi(x)=\sum_{i=1}^{k} r_{g_{i}} x_{g_{i}^{\prime}}^{\prime}$ such that $r_{g_{i}} \in h(R)$ and $x_{g_{i}^{\prime}}^{\prime} \in h\left(M^{\prime}\right)$ for each $i=1,2, \ldots, k$. So there exists $n_{i} \in \mathbf{N}$ such that $r_{g_{i}}^{n_{i}} x_{g_{i}^{\prime}}^{\prime} \in N^{\prime}$ for each $i=1,2, \ldots, k$. Since φ is an epimorphism of graded R-modules and $x_{g_{i}^{\prime}}^{\prime} \in h\left(M^{\prime}\right)$, then there exists $x_{g_{i}^{\prime}} \in h(M)$ such that $\varphi\left(x_{g_{i}^{\prime}}\right)=x_{g_{i}^{\prime}}^{\prime}$. So $\varphi\left(r_{g_{i}}^{n_{i}} x_{g_{i}^{\prime}}\right)=r_{g_{i}}^{n_{i}} x_{g_{i}^{\prime}}^{\prime} \in N^{\prime}$, then $r_{g_{i}}^{n_{i}} x_{g_{i}^{\prime}} \in \varphi^{-1}\left(N^{\prime}\right)$. Thus $r_{g_{i}} x_{g_{i}^{\prime}} \in G E_{M}\left(\varphi^{-1}\left(N^{\prime}\right)\right)$ for each $i=1,2, \ldots, k$. On the other hand, $\varphi\left(x-\sum_{i=1}^{k} r_{g_{i}} x_{g_{i}^{\prime}}\right)=0$. So $x-\sum_{i=1}^{k} r_{g_{i}} x_{g_{i}^{\prime}} \in \operatorname{Ker} \varphi \subseteq \varphi^{-1}\left(N^{\prime}\right) \subseteq$ $R G E_{M}\left(\varphi^{-1}\left(N^{\prime}\right)\right)$. Therefore $x \in R G E_{M}\left(\varphi^{-1}\left(N^{\prime}\right)\right)$.

Let M be a graded R-module. Then a graded homomorphic image of M is a graded R-module M^{\prime} with an epimorphism of graded modules $\varphi: M \rightarrow M^{\prime}$.

Theorem 5.4. Let M be a Gr-McCasland R-module. Then every graded homomorphic image of M is $G r-M c C a s l a n d$.

Proof. Let M^{\prime} be a graded homomorphic image of M. Then there exists an epimorphism of graded modules $\varphi: M \rightarrow M^{\prime}$. We show that M^{\prime} is an $G r$-McCasland module. Let N^{\prime} be a graded submodule of M^{\prime}. Then $\varphi^{-1}\left(N^{\prime}\right)$ is a graded submodule of M and since M is $G r$-McCasland R-module, then $G r_{M}\left(\varphi^{-1}\left(N^{\prime}\right)\right)=$ $R G E_{M}\left(\varphi^{-1}\left(N^{\prime}\right)\right)$. So by lemma 5.3, $\varphi^{-1}\left(G r_{M^{\prime}}\left(N^{\prime}\right)\right)=\varphi^{-1}\left(R G E_{M^{\prime}}\left(N^{\prime}\right)\right)$. Then $G r_{M^{\prime}}\left(N^{\prime}\right)=R G E_{M^{\prime}}\left(N^{\prime}\right)$ since φ is an epimorphism.

Theorem 5.5. Let G be a group and R be a Gr-integral domain. Let $M=$ $M_{1}+M_{2}$ be a graded R-module, M_{1} a $G r-M c C a s l a n d ~ s u b m o d u l e ~ o f ~ M a n d ~ M_{2}$ be a $G r$-divisible submodule of M. Then M is a $G r-M c C a s l a n d ~ R-m o d u l e . ~$

Proof. Define $\alpha: M_{1} \rightarrow M / M_{2}$ with $\alpha\left(s_{1}\right)=s_{1}+M_{2}$ for every element $s_{1} \in M_{1}$. It is easy to see that α is an epimorphism of graded modules. Since M_{1} is $G r$ McCasland, so by Theorem 5.4, M / M_{2} is $G r$-McCasland. Let N be a graded submodule of M. It suffices to show that $G r_{M}(N) \subseteq R G E_{M}(N)$. Let $m \in G r_{M}(N)$. Then $m+M_{2} \in\left(G r_{M}(N)+M_{2}\right) / M_{2}=G r_{M / M_{2}}\left(N+M_{2} / M_{2}\right)=R G E_{M / M_{2}}(N+$ M_{2} / M_{2}), since M / M_{2} is $G r$-McCasland. So $m+M_{2}=\sum_{i=1}^{t} r_{g_{i}}\left(k_{g_{i}^{\prime}}+M_{2}\right)$ and
$m-\sum_{i=1}^{t} r_{g_{i}} k_{g_{i}^{\prime}} \in M_{2}$ such that $r_{g_{i}} \in h(R), k_{g_{i}^{\prime}} \in h(M)$ and there exists $s_{i} \in \mathbf{N}$ such that $r_{g_{i}}^{s_{i}} k_{g_{i}^{\prime}} \in\left(N+M_{2}\right) \cap M_{g_{i}^{s_{i}} g_{i}^{\prime}}$ for each $i=1,2, \ldots, t$. So there exist $n_{i} \in$ $N \cap M_{g_{i}^{s_{i}} g_{i}^{\prime}}$ and $d_{i} \in M_{2} \cap M_{g_{i}^{s_{i}} g_{i}^{\prime}}$ such that $r_{g_{i}}^{s_{i}} k_{g_{i}^{\prime}}=n_{i}+d_{i}$ for each $i=1,2, \ldots, t$. By hypothesis M_{2} is $G r$-divisible, so there exists $c_{i} \in M_{2}$ such that $d_{i}=r_{g_{i}}^{s_{i}} c_{i}$ for each $i=1,2, \ldots, t$. Thus $r_{g_{i}}^{s_{i}}\left(k_{g_{i}^{\prime}}-c_{i}\right)=r_{g_{i}}^{s_{i}} k_{g_{i}^{\prime}}-d_{i}=n_{i} \in N$. Now we want to show that $k_{g_{i}^{\prime}}-c_{i} \in h(M)$ for each $i=1,2, \ldots, t$. Since $k_{g_{i}^{\prime}} \in M_{g_{i}^{\prime}}$, it suffices to show that $c_{i} \in M_{g_{i}^{\prime}}$. If $d_{i}=0$, then $c_{i}=0 \in M_{g_{i}^{\prime}}$. So suppose that $d_{i} \neq 0$. Let $c_{i} \in M_{h_{i}}$ for some $h_{i} \in G$. Then $0 \neq r_{g_{i}}^{s_{i}} c_{i}=d_{i} \in M_{g_{i}^{s_{i}} g_{i}^{\prime}} \cap M_{g_{i}^{s_{i}} h_{i}}$. Thus $g_{i}^{s_{i}} g_{i}^{\prime}=g_{i}^{s_{i}} h_{i}$. So $g_{i}^{\prime}=h_{i}$ since G is a group. So $r_{g_{i}}\left(k_{g_{i}^{\prime}}-c_{i}\right) \in R G E_{M}(N) \subseteq G r_{M}(N)$ for each $i=1,2, \ldots, t$. But $m-\sum_{i=1}^{t} r_{g_{i}} k_{g_{i}^{\prime}}, \sum_{i=1}^{t} r_{g_{i}} c_{i} \in M_{2}$ so there exists $x \in M_{2}$ such that $m-\sum_{i=1}^{t} r_{g_{i}}\left(k_{g_{i}^{\prime}}-c_{i}\right)=x$. Then $x \in G r_{M}(N) \cap M_{2}$. Now by lemma 5.1, we divide the proof into two cases:
Case 1 If N is a graded prime submodule of M, then $G r_{M}(N)=R G E_{M}(N)=N$. Case 2 If $T(M / N)=L / N$ is $G r$-torsion submodule of M / N, then $L=M$ or L is a graded prime submodule of M containing N. Therefore $G r_{M}(N) \subseteq L$, so $x \in L$ and $x+N \in T(M / N)$. Thus there exists $0 \neq c \in h(R)$ such that $c x \in N$. Since M_{2} is $G r$-divisible module, so there exists $y \in M_{2}$ such that $x=c y$ so $c^{2} y=c x \in N$. Since $y \in M$, without loss of generality we can assume that $y=\sum_{i=1}^{l} m_{g_{i}}$ and $m_{h}=0$ for each $h \notin\left\{g_{1}, \ldots, g_{l}\right\}$. Then $c^{2} y=\sum_{i=1}^{l} c^{2} m_{g_{i}} \in N$. Then $c^{2} m_{g_{i}} \in N$ for each $i=1, \ldots, l$, since N is graded. Then $c m_{g_{i}} \in R G E_{M}(N)$ for each $i=1, \ldots, l$. Therefore $x=c y=\sum_{i=1}^{l} c m_{g_{i}} \in R G E_{M}(N)$, then $m=x+\sum_{i=1}^{t} r_{g_{i}}\left(k_{g_{i}^{\prime}}-c_{i}\right) \in$ $R G E_{M}(N)$ and $G r_{M}(N) \subseteq R G E_{M}(N)$.

Corollary 5.6. If G is a group and R is a $G r$-integral domain, then every $G r$ divisible R-module is a $\mathrm{Gr}-\mathrm{Mc}$ Casland module.

Acknowledgement(s) : The authors would like to thanks the referee for his useful comments and suggestions on the manuscript.

References

[1] S. Ebrahimi Atani and F. Esmaeili Khalil Saraei, On generalized distinguished prime submodules, Thai J. of Math., 6(2) (2008), 369-375.
[2] S. Ebrahimi Atani, On graded prime submodules, Chiang Mai J. Sci., 33(1)(2006), 3-7.
[3] S. Ebrahimi Atani and F. Farzalipour, On graded secondary modules, Turkish Journal of Mathematics, 30 (2007), 371-378.
[4] S. Ebrahimi Atani, On graded weakly prime idealds, Turkish Journal of Mathematics, 30 (2006), 351-358.
[5] S. Ebrahimi Atani and F. Farzalipour, Graded multiplication modules, Chiang Mai J. Sci., Submitted.
[6] S. Ebrahimi Atani and F. Farzalipour, Notes on the graded prime submodules, International Mathematical Forum, 38 (1) (2006), 1871-1880.
[7] J. E. Lopez, Multiplication objects in monoidal categories, Nova Science Publishers, 2000, 146-155.
[8] C. Nastasescu and F. Van Oystaeyen, Graded Ring Theory, Mathematical Library 28, North Holand, Amsterdam, (1982).
[9] D. Pusat-Yilmaz and P.F. Smith, Modules which satisfy the radical formula, Acta Math. Hungar.m 95 (2002), 155-167.
[10] F. Van Oystaeyen and J. P. Van Deuren, Arithmetically graded ring, Lecture Notes in Math., Ring Theory (Antwerp 1980), Proceeding 825, 279-284, (1980).
(Received 12 March 2009)

S. Ebrahimi Atani and F. Esmaeili Khalil Saraei
Department of Mathematics,
University of Guilan,
P.O. Box 1914 Rasht, IRAN.
e-mail : esmaiely@guilan.ac.ir

[^0]: Copyright (c) 2010 by the Mathematical Association of Thailand. All rights reserved.

