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On the Bessel Ultra-Hyperbolic
Heat Equation

A. Saglam, H. Yildirim and M.Z. Sarikaya

Abstract : In this article, we study the equation

0

au(x,t) = 0% u(x,t)

with the initial condition u(z,0) = f(z) for € R;}. The operator 0% is named
the Bessel ultra-hyperbolic operator iterated k—times and is defined by

0% = (Bu,+Bu+.4Bs —By  —.—By,.)"

82 21}1' 8
Oz? x; 0x;’
205 + 1, o > —% [3,5-10], z; > 0, ¢ = 1,2,...,n, and n is the dimension of the
R, u(x,t) is an unknown for (x,t) = (x1,...,2,,t) € R} x (0,00), f(z) is a
given generalized function and c is a positive constant. We obtain the solution of
such equation which is related to the spectrum and the kernel which is so called
the Bessel ultra-hyperbolic heat kernel. Moreover, such the Bessel ultra-hyperbolic
heat kernel has interesting properties and also related to the kernel of an extension

of the heat equation.

where k is a non-negative integer, p+q = n, By, = 2u; =
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1 Introduction

It is known that for the ultra-hyperbolic heat equation

%u(x, t) = 20Fu(x, 1) (1.1)
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reserved.



150 Thai J. Math. 8(1) (2010)/ A. Saglam et al.

with the initial condition u(x,0) = f(z) where ¥ is the ultra-hyperbolic operator
iterated k—times defined by

k
Dk_(a? i a?)

2+ et e
dz?  Ox3 dxZ Ol o,

p + g = n is the dimension of the Euclidean space R™ and k is a positive integer.
In [?] Nonlaopon and Kananthai obtained the following solution

1

u,t) = (2m)" ReR"

ko
F)exp (2 [Pa,,62 =0 €8] +i(6a—y) ) dedy
or the solution in the classical convolution form
u(w,t) = E(z,t) « f(z) (1.2)

where

E(x,t) = [ &P (cQt [?igﬂgf —5-’:1 §?]k + (€, a:)) d¢ (1.3)

1
(2m)"
and Q C R™ is the spectrum of E(z,t) for any fixed ¢ > 0.

We can extend (1.1) to the equation

—u(z,t) = *Opu(x,t) (1.4)
ot
with the initial condition
u(,0) = f(2) (15)
where B, = 6‘9—;—1—2;’? 8‘2_ , p+gq = nis the dimension R} Rf = {z: z = (z1, 2, ...

y,&n), 1 > 0,...,x, > 0 and Op is the Bessel ultra-hyperbolic operator, defined
by
Up=By +Byy+...+ By, — By \y — . —Byp\yy PHqg=mn.

Then, we obtain
u(z,t) = E(x,t) * f(x) (1.6)

as a solution of (??) which satisfies (??) where E(z,t) is the kernel of (??) or the
elementary solution of (??) and is defined by

E(z,t) = C, etV () ﬁ Jv,fl(xiyi)yfv"dy (1.7)
]Rf{ =1 "t 2
_ 2 2
where V(y) = LY~ ji;‘ilyj > 0.

Moreover, we obtain E(x,t) — § as t — 0 where J is the Dirac-delta dis-
tribution, we studied the Bessel ultra-hyperbolic heat kernel which is related to
spectrum.
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Now, the purpose of this work is to study the equation
9 2k
—u(z,t) = c*Ofu(z, t) (1.8)
ot
which the initial condition
u(z,0) = f(z), for x € R}, (1.9)
where the operator D% is named the Bessel ultra-hyperbolic operator iterated
k—times, defined by

D]E = (Bm1 —|—sz ++Bmp - B _Bprrq)ka (110)

Tp+1

where k is a positive integer.
We obtain u(z,t) = E(z,t) * f(z) a solution in the B-convolution form of (?7)
which satisfies condition (?7?) where

n

E(z,t) =C, eCVEVEL T
’ “a i=1"viT2

(2o )3V dy (1.11)

and Q C R} is the spectrum of E(z,t) for any fixed ¢ > 0. The function F(z,t) is
called the Bessel ultra-hyperbolic heat kernel iterated k—times or the elementary
solution of (??). And all properties of E(z,t) will be studied in details.

2 Preliminaries

The generalized shift operator TV has the following form [?, 7, ?]:

TV(x) = C}[..[o(\/x?+y? — 221910801, ... \/22 + Y2 — 22y, cOS Oy,
0

O—x

(H sin?* =1 0;)db; ...dh,,

where z,y € R} |
_H 'U’L—f—l

We remark that this shift operator is closely connected with the Bessel differential
operator B = (By,, ..., B;,) [?].
The convolution operator determined by the TY is as follows.

(f * ) / rre [ [ty (2.1)

Convolution (??) known as a B-convolution. We note the following properties of
the B-convolution and the generalized shift operator.
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a.Tv.1=1
b. T°.f(2) = f(x)
c. If f(z),g9(z) € C(R)) , g() is a bounded function all z € R;} and

[T <
then

/ Tyf(x)g() Y2 )dy = / PP Lo
Ry

d. From c., we have the following equality for g(z) = 1.

/Tyf(x ui") dy—/ fly Hyz”’

RY

e. (fx9)(x) = (g f)(x).

The Fourier-Bessel transformation and its inverse transformation are defined

as follows (see, [?]-[?])
Cy /f ( vlfé (xzyz) y12w> dy (22)

(FBf) (_33)’ Cy = <H 2%7%F <'Uz' + ;)) (2.3)

i=1

(FBf) (x)

(F5'f) (=)

where .J, 1 (x;y;) is the normalized Bessel function which is the eigenfunction
of the Bessel differential operator. The following equalities for Fourier-Bessel
transformation is true (see, [?, 7, ?7]),

F36 (ZL‘) ==

Fp(f*g)(x) = Fpf(z) Fpg(x) (2.4)

Definition 1. The spectrum of the kernel E(x,t) (??) is the bounded support of
the Fourier Bessel transform FgE(x,t) for any fived t > 0.

Definition 2. Let x = (21,2, ...,2,) € R} and denote by
I'y = {xeRg:x%+...+x§—x§+1—...—x§+q>O }

the set of an interior of the forward cone, and Ty denotes the clousure of T',.
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Let Q be spectrum of E(x,t) defined by definition (??) and Q C T,. Let
FpE(x,t) be the Fourier Bessel transform of E(x,t) and define

e(_l)kc2t($%+”'+w12:_w;21+l_"'_$i+q)k fOT x; € Q
FpE(x,t) = (2.5)
0 for z; ¢ 2.
Lemma 1. (Fourier Bessel Transform of 0% operator)

FpOhu(x) = (—1)*VF(z) Fpu(x).

Proof. We can use the mathematical induction method, for k = 1, we have

Fr (O)(2) = Cong Ou(r) (11 (o)™ )

(H Toi-t (xiyi)yf”i> dy

v 2vz3u()>(n 2_>
+ C, < Sy —1 (Tiys iv' d
R z; yi Oy il;ll 2 (wii)y 4
pta 92y n .
= Cugg | 2 p) (2y)> (_H Joi-1 (ziyi) y7 ) dy
1=p+1 yi =1
BT 2u; Ou(y) (" ) >
- Oy —_— Jv,_L TiYq iv% d
B\, 2 ow LTy (i) i ) dy

= L+L+1I3+ 14

If we apply partial integration to twice in the I; and I integrals and once in the
I3 and I, integrals, then we have

Fo @) (@) = Coga) (£ B ) Ty (o) 2 )

i=1 i=1
A " 2v;
Copru) | | 22 By | IT Jo—y (wivi) y; ™ | dy.
i=p+1 i=1
Here, if we use the following equality [?],
/u(y)ByiJ’Uifé (ziyi) v}V dy; = —a7 /u(y)infé (ziyi) y;*" dys
0 0

then, we get

Fa (On)(2) = ~Vi@)Cusuts) (17
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Then, from inverse Fourier transform we finally obtain
Opu(z) = —F5'V(z)Fpu(z).
Assume the statement is true for & — 1, i.e,
O tu(z) = (=) 'F'VE1(2)Fpu(z).
Then, we must prove that it is also true for £ € N. Hence, we obtain
Ohu(z) = Op (D%_lu(x))

— (CDFF'V(@)Fp(—1) F V() Fau(a)

= (=D)FF5'VF(2)Fpu(z).
This completes the proof. O

The following result can be found in [?, ?, ?], which will be applied in the
sequel.

Lemma 2. For allt > 0, ¢ is a positive constant and all z € R} we have

. r
oo~ T 420 gy — O 5 (2.6)
0 262v+1tv+§
and
(v + 1 42
006_02””%‘]1,7; (xy)x*Vdr = (7%67@. (2.7)
0 2 2(c2t)vtz
3 Main Results
In this section, we will state our results and given their proofs.
Lemma 3. Let L be the operator defined by
0
L= - A0k (3.1)
where % is defined by (?7), k is a positive integer, (x1,...,x,) € R} | and c is a
positive constant. Then we obtain
. n
E(.CC, t) = CUQS(il)kCQth(y) ,1;[1‘]1),1—% (zzyv)yfvl dy (32)

as elementary solution of (77?) in the spectrum Q C R} fort > 0.
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Proof. Let E(x,t) is the kernel or the elementary solution of operator L and § is
the Dirac-delta distribution. Thus

%E(x,t) — (-D)*EObE(a,t) = 6(z)(t).

Take the Fourier Bessel transform defined by (??) to both sides of the equation,

using Lemma ?? and Fd(z) = 1, we obtain

%FBE(x,t) —(—D)FPRVE () FR Bz, t) = 8(1).

Thus .
FpE(z,t) = H(t)el7) ¢tV (@)

where H(t) is the Heaviside function. Since H(t) =1 for ¢ > 0.Therefore,
FBE(J}, t) — e(—l)kc%Vk(ac)

which has been already by (?7?). Thus, from (??), we have

2

E(z,t) = CUQe(_l)kcthk(y) ‘llllJvifé(a:iyi)y-%idy for t > 0,

where ) is the spectrum of E(z,t). O

Theorem 1. Let us consider the equation
Eu(m, t) — 0%u(z,t) =0 (3.3)

with the initial condition
u(z,0) = f(x) (3.4)

where 0% is defined by (?7), k is a positive integer, u(x,t) is an unknown function
for (x,t) = (21, ..., zn,t) € RF x (0,00) , f(x) is the given generalized function,
and c is a positive constant. Then we obtain

ulw, ) = Bz, 1) + () (3.5)
as a solution of (?77?) which satisfies (?7) where E(x,t) is given by (77).
Proof. Taking the Fourier Bessel transform defined by (??) to both sides of (?7?)

for z € R} and using Lemma ??, we obtain

d
aFBU(BC,f) = (=D V¥ (z)Fgu(z,t). (3.6)
Thus, we condider the initial condition (??) then we have following equality for
the (3.6)

u(z,t) = f(z)=* Fgle(_l)kcztvk(r) (3.7)
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Here, if we use the (??), (?7), then we have

u(z,t) = f(x)*Fgle(’l)kcgth(w)

= PRV T () <n1y> dy

R

= e et (f e ) as] s (fa ) a

R R;E z
(3.8)
Set
n
E(x,t) = C, +6(71)k62tvk(y) ('HlJvi_%(xiyi)yizvi) dy. (3.9)
R} i=

Since the integral of (?7) is divergent, therefore we choose  C R.' be the spectrum
of E(z,t) and by (??), we have

3 n
Blat) = C, V'@t <£[1 Jw_é(xiyi)yzgm) ay

(3.10)
- C’UQe(fl)kc%V’“(y) (iﬁljvi—;(ffz‘%)y?vi) dy.
Thus (?7?) can be written in the B-convolution form
u(z,t) = E(x,t) * f(z).

Moreover, since E(z,t) exist, then

. _ n o 2'U7,
%%E(x,t) = Cvml;[l‘]vi—%(xzyz)yz dy

- ¢, T Jvi_%(xiyi)yf“idy (3.11)

YRi=1
= 6(x), for z € R},

see [7].
Thus for the solution u(x,t) = E(x,t) * f(z) of (??), then we have

u(z,0) = tli_r}r(l)u(x, t)

= }i_I)I(l)E(:L‘,t) * f(x)
= 5 f()
= [flx)
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which satisfies (?7).
In particular, if we put k = 1 and ¢ = 0 in (??), then from Lemma ?? we
obtain
E(z,t) = C, e <tV® EIJU (xlyl)yzzl“ dy

R

— 2_(%‘“)(0215)_(”4?‘ l)ei4c2t‘z|2

where |z|* = "le This completes the proof. O
i=

Theorem 2. The kernel E(x,t) defined by (?77?) has the following properties:

i. E(z,t) € C=(R;} x (0,00))- the space of continuous function with infinitely
differetiable.

i, ( 9 _ 20B)E(x,t) =0 for all x € R}, ¢ > 0.
hmE( t) =6(z) for all z € R}

Proof. i. From (?7?), and

i3 n k k n
%E(xat) = C’L} gt"e( )c2t(y1+ +yp y11+1 . y120+(1) (Z—l}l‘]vi—;(xlyl)y,?vl> dy,

E(x,t) € C>® for x e R}, t > 0.
ii. From wu(z,t) = E(z,t) * f(x), we have following equality for f(z) = §(x)
by Fourier Bessel Transformation

u(z,t) = E(x,t).

Then by direct computation, we obtain,

iii. This case is obvious by (?7?). O
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