On the Bessel Ultra-Hyperbolic Heat Equation

A. Saglam, H. Yildirim and M.Z. Sarikaya

Abstract : In this article, we study the equation

$$
\frac{\partial}{\partial t} u(x, t)=c^{2} \square_{B}^{k} u(x, t)
$$

with the initial condition $u(x, 0)=f(x)$ for $x \in \mathbb{R}_{n}^{+}$. The operator \square_{B}^{k} is named the Bessel ultra-hyperbolic operator iterated k-times and is defined by

$$
\square_{B}^{k}=\left(B_{x_{1}}+B_{x_{2}}+\ldots+B_{x_{p}}-B_{x_{p+1}}-\ldots-B_{x_{p+q}}\right)^{k}
$$

where k is a non-negative integer, $p+q=n, B_{x_{i}}=\frac{\partial^{2}}{\partial x_{i}^{2}}+\frac{2 v_{i}}{x_{i}} \frac{\partial}{\partial x_{i}}, 2 v_{i}=$ $2 \alpha_{i}+1, \alpha_{i}>-\frac{1}{2}[3,5-10], x_{i}>0, i=1,2, \ldots, n$, and n is the dimension of the $\mathbb{R}_{n}^{+}, u(x, t)$ is an unknown for $(x, t)=\left(x_{1}, \ldots, x_{n}, t\right) \in \mathbb{R}_{n}^{+} \times(0, \infty), f(x)$ is a given generalized function and c is a positive constant. We obtain the solution of such equation which is related to the spectrum and the kernel which is so called the Bessel ultra-hyperbolic heat kernel. Moreover, such the Bessel ultra-hyperbolic heat kernel has interesting properties and also related to the kernel of an extension of the heat equation.

Keywords : Heat kernel, Dirac-delta distribution, Bessel ultra-hyperbolic operator, Fourier Bessel transform, B-convolution, Spectrum.
2000 Mathematics Subject Classification : 46F10, 31B10, 26 A 33 and 35 J 05

1 Introduction

It is known that for the ultra-hyperbolic heat equation

$$
\begin{equation*}
\frac{\partial}{\partial t} u(x, t)=c^{2} \square^{k} u(x, t) \tag{1.1}
\end{equation*}
$$

[^0]with the initial condition $u(x, 0)=f(x)$ where \square^{k} is the ultra-hyperbolic operator iterated k-times defined by
$$
\square^{k}=\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{\partial^{2}}{\partial x_{2}^{2}}+\ldots+\frac{\partial^{2}}{\partial x_{p}^{2}}-\frac{\partial^{2}}{\partial x_{p+1}^{2}}-\ldots-\frac{\partial^{2}}{\partial x_{p+q}^{2}}\right)^{k}
$$
$p+q=n$ is the dimension of the Euclidean space \mathbb{R}^{n} and k is a positive integer. In [?] Nonlaopon and Kananthai obtained the following solution
\[

\left.u(x, t)=\frac{1}{(2 \pi)^{n}} \mathbb{R}^{n} \mathbb{R}^{n}\right](y) \exp \left(c^{2} t\left[$$
\begin{array}{l}
p+q \\
j=p+1
\end{array}
$$ \xi_{j}^{2}-{ }_{j=1}^{p} \xi_{j}^{2}\right]^{k}+i(\xi, x-y)\right) d \xi d y
\]

or the solution in the classical convolution form

$$
\begin{equation*}
u(x, t)=E(x, t) * f(x) \tag{1.2}
\end{equation*}
$$

where

$$
E(x, t)=\frac{1}{(2 \pi)^{n}}{ }_{\Omega} \exp \left(c^{2} t\left[\begin{array}{c}
p+q \tag{1.3}\\
j=p+1
\end{array} \xi_{j}^{2}-{ }_{j=1}^{p} \xi_{j}^{2}\right]^{k}+i(\xi, x)\right) d \xi
$$

and $\Omega \subset \mathbb{R}^{n}$ is the spectrum of $E(x, t)$ for any fixed $t>0$.
We can extend (1.1) to the equation

$$
\begin{equation*}
\frac{\partial}{\partial t} u(x, t)=c^{2} \square_{B} u(x, t) \tag{1.4}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
u(x, 0)=f(x) \tag{1.5}
\end{equation*}
$$

where $B_{x_{i}}=\frac{\partial^{2}}{\partial x_{i}^{2}}+\frac{2 v_{i}}{x_{i}} \frac{\partial}{\partial x_{i}}, p+q=n$ is the dimension $\mathbb{R}_{n}^{+}, \mathbb{R}_{n}^{+}=\left\{x: x=\left(x_{1}, x_{2}, \ldots\right.\right.$, x_{n}), $x_{1}>0, \ldots, x_{n}>0$ and \square_{B} is the Bessel ultra-hyperbolic operator, defined by

$$
\square_{B}=B_{x_{1}}+B_{x_{2}}+\ldots+B_{x_{p}}-B_{x_{p+1}}-\ldots-B_{x_{p+q}}, \quad p+q=n
$$

Then, we obtain

$$
\begin{equation*}
u(x, t)=E(x, t) * f(x) \tag{1.6}
\end{equation*}
$$

as a solution of (??) which satisfies (??) where $E(x, t)$ is the kernel of (??) or the elementary solution of (??) and is defined by

$$
\begin{equation*}
E(x, t)=C_{v_{\mathbb{R}_{n}^{+}}} e^{-c^{2} t V(y)} \prod_{i=1}^{n} J_{v_{i}-\frac{1}{2}}\left(x_{i} y_{i}\right) y_{i}^{2 v_{i}} d y \tag{1.7}
\end{equation*}
$$

where $V(y)={ }_{i=1}^{p} y_{i}^{2}-\underset{j=p+1}{p+q} y_{j}^{2}>0$.
Moreover, we obtain $E(x, t) \rightarrow \delta$ as $t \rightarrow 0$ where δ is the Dirac-delta distribution, we studied the Bessel ultra-hyperbolic heat kernel which is related to spectrum.

On the bessel ultra-hyperbolic heat equation
Now, the purpose of this work is to study the equation

$$
\begin{equation*}
\frac{\partial}{\partial t} u(x, t)=c^{2} \square_{B}^{k} u(x, t) \tag{1.8}
\end{equation*}
$$

which the initial condition

$$
\begin{equation*}
u(x, 0)=f(x), \text { for } x \in \mathbb{R}_{n}^{+} \tag{1.9}
\end{equation*}
$$

where the operator \square_{B}^{k} is named the Bessel ultra-hyperbolic operator iterated k-times, defined by

$$
\begin{equation*}
\square_{B}^{k}=\left(B_{x_{1}}+B_{x_{2}}+\ldots+B_{x_{p}}-B_{x_{p+1}}-\ldots-B_{x_{p+q}}\right)^{k} \tag{1.10}
\end{equation*}
$$

where k is a positive integer.
We obtain $u(x, t)=E(x, t) * f(x)$ a solution in the B-convolution form of (??) which satisfies condition (??) where

$$
\begin{equation*}
E(x, t)=C_{v_{\Omega}} e^{(-1)^{k} c^{2} t V^{k}(y)} \prod_{i=1}^{n} J_{v_{i}-\frac{1}{2}}\left(x_{i} y_{i}\right) y_{i}^{2 v_{i}} d y \tag{1.11}
\end{equation*}
$$

and $\Omega \subset \mathbb{R}_{n}^{+}$is the spectrum of $E(x, t)$ for any fixed $t>0$. The function $E(x, t)$ is called the Bessel ultra-hyperbolic heat kernel iterated k-times or the elementary solution of (??). And all properties of $E(x, t)$ will be studied in details.

2 Preliminaries

The generalized shift operator T^{y} has the following form [?, ?, ?]:

$$
\begin{aligned}
T^{y} \varphi(x)=C_{v}^{*} \int_{0}^{\pi} \ldots \int_{0}^{\pi} \varphi(& \left.\sqrt{x_{1}^{2}+y_{1}^{2}-2 x_{1} y_{1} \cos \theta_{1}}, \ldots, \sqrt{x_{n}^{2}+y_{n}^{2}-2 x_{n} y_{n} \cos \theta_{n}}\right) \\
& \times\left(\prod_{i=1}^{n} \sin ^{2 v_{i}-1} \theta_{i}\right) d \theta_{1} \ldots d \theta_{n}
\end{aligned}
$$

where $x, y \in \mathbb{R}_{n}^{+}$,

$$
C_{v}^{*}=\prod_{i=1}^{n} \frac{\Gamma\left(v_{i}+1\right)}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(v_{i}\right)}
$$

We remark that this shift operator is closely connected with the Bessel differential operator $B=\left(B_{x_{1}}, \ldots, B_{x_{n}}\right)[?]$.

The convolution operator determined by the T^{y} is as follows.

$$
\begin{equation*}
(f * \varphi)(x)=\int_{\mathbb{R}_{n}^{+}} f(y) T^{y} \varphi(x)\left(\prod_{i=1}^{n} y_{i}^{2 v_{i}}\right) d y \tag{2.1}
\end{equation*}
$$

Convolution (??) known as a B-convolution. We note the following properties of the B-convolution and the generalized shift operator.
a. $T^{y} \cdot 1=1$
b. $T^{0} \cdot f(x)=f(x)$
c. If $f(x), g(x) \in C\left(\mathbb{R}_{n}^{+}\right), g(x)$ is a bounded function all $x \in \mathbb{R}_{n}^{+}$and

$$
\int_{\mathbb{R}_{n}^{+}}|f(x)|\left(\prod_{i=1}^{n} x_{i}^{2 v_{i}}\right) d x<\infty
$$

then

$$
\int_{\mathbb{R}_{n}^{+}} T^{y} f(x) g(y)\left(\prod_{i=1}^{n} y_{i}^{2 v_{i}}\right) d y=\int_{\mathbb{R}_{n}^{+}} f(y) T^{y} g(x)\left(\prod_{i=1}^{n} y_{i}^{2 v_{i}}\right) d y
$$

d. From c., we have the following equality for $g(x)=1$.

$$
\int_{\mathbb{R}_{n}^{+}} T^{y} f(x)\left(\prod_{i=1}^{n} y_{i}^{2 v_{i}}\right) d y=\int_{\mathbb{R}_{n}^{+}} f(y)\left(\prod_{i=1}^{n} y_{i}^{2 v_{i}}\right) d y
$$

e. $(f * g)(x)=(g * f)(x)$.

The Fourier-Bessel transformation and its inverse transformation are defined as follows (see, [?]-[?])

$$
\begin{align*}
\left(F_{B} f\right)(x) & =C_{v} \int_{\mathbb{R}_{n}^{+}} f(y)\left(\prod_{i=1}^{n} J_{v_{i}-\frac{1}{2}}\left(x_{i} y_{i}\right) y_{i}^{2 v_{i}}\right) d y \tag{2.2}\\
\left(F_{B}^{-1} f\right)(x) & =\left(F_{B} f\right)(-x), C_{v}=\left(\prod_{i=1}^{n} 2^{v_{i}-\frac{1}{2}} \Gamma\left(v_{i}+\frac{1}{2}\right)\right)^{-1} \tag{2.3}
\end{align*}
$$

where $J_{v_{i}-\frac{1}{2}}\left(x_{i} y_{i}\right)$ is the normalized Bessel function which is the eigenfunction of the Bessel differential operator. The following equalities for Fourier-Bessel transformation is true (see, [?, ?, ?]),

$$
\begin{gather*}
F_{B} \delta(x)=1 \\
F_{B}(f * g)(x)=F_{B} f(x) \cdot F_{B} g(x) \tag{2.4}
\end{gather*}
$$

Definition 1. The spectrum of the kernel $E(x, t)(? ?)$ is the bounded support of the Fourier Bessel transform $F_{B} E(x, t)$ for any fixed $t>0$.

Definition 2. Let $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}_{n}^{+}$and denote by

$$
\Gamma_{+}=\left\{x \in \mathbb{R}_{n}^{+}: x_{1}^{2}+\ldots+x_{p}^{2}-x_{p+1}^{2}-\ldots-x_{p+q}^{2}>0\right\}
$$

the set of an interior of the forward cone, and $\bar{\Gamma}_{+}$denotes the clousure of Γ_{+}.

Let Ω be spectrum of $E(x, t)$ defined by definition (??) and $\Omega \subset \bar{\Gamma}_{+}$. Let $F_{B} E(x, t)$ be the Fourier Bessel transform of $E(x, t)$ and define

$$
F_{B} E(x, t)= \begin{cases}e^{(-1)^{k} c^{2} t\left(x_{1}^{2}+\ldots+x_{p}^{2}-x_{p+1}^{2}-\ldots-x_{p+q}^{2}\right)^{k}} & \text { for } x_{i} \in \Omega \tag{2.5}\\ 0 & \text { for } x_{i} \notin \Omega\end{cases}
$$

Lemma 1. (Fourier Bessel Transform of \square_{B}^{k} operator)

$$
F_{B} \square_{B}^{k} u(x)=(-1)^{k} c^{2} V^{k}(x) F_{B} u(x) .
$$

Proof. We can use the mathematical induction method, for $k=1$, we have

$$
\begin{aligned}
F_{B}\left(\square_{B} u\right)(x) & =C_{v_{\mathbb{R}_{n}^{+}}}\left(\square_{B} u(y)\right)\left(\prod_{i=1}^{n} J_{v_{i}-\frac{1}{2}}\left(x_{i} y_{i}\right) y_{i}^{2 v_{i}}\right) d y \\
& =C_{v_{\mathbb{R}_{n}^{+}}}\left(\sum_{i=1}^{p} \frac{\partial^{2} u(y)}{\partial y_{i}^{2}}\right)^{2}\left(\prod_{i=1}^{n} J_{v_{i}-\frac{1}{2}}\left(x_{i} y_{i}\right) y_{i}^{2 v_{i}}\right) d y \\
& +C_{v_{\mathbb{R}_{n}^{+}}}\left(\sum_{i=1}^{p} \frac{2 v_{i}}{y_{i}} \frac{\partial u(y)}{\partial y_{i}}\right)\left(\prod_{i=1}^{n} J_{v_{i}-\frac{1}{2}}\left(x_{i} y_{i}\right) y_{i}^{2 v_{i}}\right) d y \\
& -C_{v_{\mathbb{R}_{n}^{+}}}\left(\sum_{i=p+1}^{p+q} \frac{\partial^{2} u(y)}{\partial y_{i}^{2}}\right)\left(\prod_{i=1}^{n} J_{v_{i}-\frac{1}{2}}\left(x_{i} y_{i}\right) y_{i}^{2 v_{i}}\right) d y \\
& -C_{v_{\mathbb{R}_{n}^{+}}}\left(\sum_{i=p+1}^{p+q} \frac{2 v_{i}}{y_{i}} \frac{\partial u(y)}{\partial y_{i}}\right)\left(\prod_{i=1}^{n} J_{v_{i}-\frac{1}{2}}\left(x_{i} y_{i}\right) y_{i}^{2 v_{i}}\right) d y \\
& =I_{1}+I_{2}+I_{3}+I_{4} .
\end{aligned}
$$

If we apply partial integration to twice in the I_{1} and I_{2} integrals and once in the I_{3} and I_{4} integrals, then we have

$$
\begin{aligned}
F_{B}\left(\square_{B} u\right)(x) & =C_{v_{\mathbb{R}_{n}^{+}}} u(y)\left(\left(\sum_{i=1}^{p} B_{y_{i}}\right) \prod_{i=1}^{n} J_{v_{i}-\frac{1}{2}}\left(x_{i} y_{i}\right) y_{i}^{2 v_{i}}\right) d y \\
& -C_{v_{\mathbb{R}_{n}^{+}}} u(y)\left(\left(\sum_{i=p+1}^{p+q} B_{y_{i}}\right) \prod_{i=1}^{n} J_{v_{i}-\frac{1}{2}}\left(x_{i} y_{i}\right) y_{i}^{2 v_{i}}\right) d y
\end{aligned}
$$

Here, if we use the following equality [?],

$$
\int_{0}^{\infty} u(y) B_{y_{i}} J_{v_{i}-\frac{1}{2}}\left(x_{i} y_{i}\right) y_{i}^{2 v_{i}} d y_{i}=-x_{i}^{2} \int_{0}^{\infty} u(y) J_{v_{i}-\frac{1}{2}}\left(x_{i} y_{i}\right) y_{i}^{2 v_{i}} d y_{i}
$$

then, we get

$$
\begin{aligned}
F_{B}\left(\square_{B} u\right)(x) & =-V(x) C_{v_{\mathbb{R}_{n}^{+}}} u(y)\left(\prod_{i=1}^{n} J_{v_{i}-\frac{1}{2}}\left(x_{i} y_{i}\right) y_{i}^{2 v_{i}}\right) d y \\
& =-V(x) F_{B} u(x)
\end{aligned}
$$

Then, from inverse Fourier transform we finally obtain

$$
\square_{B} u(x)=-F_{B}^{-1} V(x) F_{B} u(x)
$$

Assume the statement is true for $k-1$, i.e,

$$
\square_{B}^{k-1} u(x)=(-1)^{k-1} F_{B}^{-1} V^{k-1}(x) F_{B} u(x)
$$

Then, we must prove that it is also true for $k \in \mathbb{N}$. Hence, we obtain

$$
\begin{aligned}
\square_{B}^{k} u(x) & =\square_{B}\left(\square_{B}^{k-1} u(x)\right) \\
& =(-1) F_{B}^{-1} V(x) F_{B}(-1)^{k-1} F_{B}^{-1} V^{k-1}(x) F_{B} u(x) \\
& =(-1)^{k} F_{B}^{-1} V^{k}(x) F_{B} u(x)
\end{aligned}
$$

This completes the proof.
The following result can be found in [?, ?, ?], which will be applied in the sequel.

Lemma 2. For all $t>0, c$ is a positive constant and all $x \in \mathbb{R}_{n}^{+}$we have

$$
\begin{equation*}
\underset{0}{\infty} e^{-c^{2} x^{2} t} x^{2 v} d x=\frac{\Gamma(v)}{2 c^{2 v+1} t^{v+\frac{1}{2}}} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\underset{0}{\infty} e^{-c^{2} x^{2} t} J_{v-\frac{1}{2}}(x y) x^{2 v} d x=\frac{\Gamma\left(v+\frac{1}{2}\right)}{2\left(c^{2} t\right)^{v+\frac{1}{2}}} e^{-\frac{y^{2}}{4 c^{2} t}} \tag{2.7}
\end{equation*}
$$

3 Main Results

In this section, we will state our results and given their proofs.
Lemma 3. Let L be the operator defined by

$$
\begin{equation*}
L=\frac{\partial}{\partial t}-c^{2} \square_{B}^{k} \tag{3.1}
\end{equation*}
$$

where \square_{B}^{k} is defined by (??), k is a positive integer, $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{n}^{+}$, and c is a positive constant. Then we obtain

$$
\begin{equation*}
E(x, t)=C_{v_{\Omega}} e^{(-1)^{k} c^{2} t V^{k}(y)} \prod_{i=1}^{n} J_{v_{i}-\frac{1}{2}}\left(x_{i} y_{i}\right) y_{i}^{2 v_{i}} d y \tag{3.2}
\end{equation*}
$$

as elementary solution of (??) in the spectrum $\Omega \subset \mathbb{R}_{n}^{+}$for $t>0$.

On the bessel ultra-hyperbolic heat equation
Proof. Let $E(x, t)$ is the kernel or the elementary solution of operator L and δ is the Dirac-delta distribution. Thus

$$
\frac{\partial}{\partial t} E(x, t)-(-1)^{k} c^{2} \square_{B}^{k} E(x, t)=\delta(x) \delta(t)
$$

Take the Fourier Bessel transform defined by (??) to both sides of the equation, using Lemma ?? and $F_{B} \delta(x)=1$, we obtain

$$
\frac{\partial}{\partial t} F_{B} E(x, t)-(-1)^{k} c^{2} V^{k}(x) F_{B} E(x, t)=\delta(t)
$$

Thus

$$
F_{B} E(x, t)=H(t) e^{(-1)^{k} c^{2} t V^{k}(x)}
$$

where $H(t)$ is the Heaviside function. Since $H(t)=1$ for $t>0$. Therefore,

$$
F_{B} E(x, t)=e^{(-1)^{k} c^{2} t V^{k}(x)}
$$

which has been already by (??). Thus, from (??), we have

$$
E(x, t)=C_{v_{\Omega}} e^{(-1)^{k} c^{2} t V^{k}(y)} \prod_{i=1}^{n} J_{v_{i}-\frac{1}{2}}\left(x_{i} y_{i}\right) y_{i}^{2 v_{i}} d y \quad \text { for } t>0
$$

where Ω is the spectrum of $E(x, t)$.
Theorem 1. Let us consider the equation

$$
\begin{equation*}
\frac{\partial}{\partial t} u(x, t)-c^{2} \square_{B}^{k} u(x, t)=0 \tag{3.3}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
u(x, 0)=f(x) \tag{3.4}
\end{equation*}
$$

where \square_{B}^{k} is defined by (??), k is a positive integer, $u(x, t)$ is an unknown function for $(x, t)=\left(x_{1}, \ldots, x_{n}, t\right) \in \mathbb{R}_{n}^{+} \times(0, \infty), f(x)$ is the given generalized function, and c is a positive constant. Then we obtain

$$
\begin{equation*}
u(x, t)=E(x, t) * f(x) \tag{3.5}
\end{equation*}
$$

as a solution of (??) which satisfies (??) where $E(x, t)$ is given by (??).
Proof. Taking the Fourier Bessel transform defined by (??) to both sides of (??) for $x \in \mathbb{R}_{n}^{+}$and using Lemma ??, we obtain

$$
\begin{equation*}
\frac{\partial}{\partial t} F_{B} u(x, t)=(-1)^{k} c^{2} V^{k}(x) F_{B} u(x, t) \tag{3.6}
\end{equation*}
$$

Thus, we condider the initial condition (??) then we have following equality for the (3.6)

$$
\begin{equation*}
u(x, t)=f(x) * F_{B}^{-1} e^{(-1)^{k} c^{2} t V^{k}(x)} \tag{3.7}
\end{equation*}
$$

Here, if we use the (??), (??), then we have

$$
\begin{align*}
u(x, t) & =f(x) * F_{B}^{-1} e^{(-1)^{k} c^{2} t V^{k}(x)} \\
& ={ }_{\mathbb{R}_{n}^{+}} F_{B}^{-1} e^{(-1)^{k} c^{2} t V^{k}(y)} T^{y} f(x)\left(\prod_{i=1}^{n} y_{i}^{2 v_{i}}\right) d y \\
& ={ }_{\mathbb{R}_{n}^{+}}\left[C_{\mathbb{R}_{n}^{+}} e^{(-1)^{k} c^{2} t V^{k}(z)}\left(\prod_{i=1}^{n} J_{v_{i}-\frac{1}{2}}\left(y_{i} z_{i}\right) z_{i}^{2 v_{i}}\right) d z\right] T^{y} f(x)\left(\prod_{i=1}^{n} y_{i}^{2 v_{i}}\right) d y . \tag{3.8}
\end{align*}
$$

Set

$$
\begin{equation*}
E(x, t)=C_{v_{\mathbb{R}_{n}^{+}}} e^{(-1)^{k} c^{2} t V^{k}(y)}\left(\prod_{i=1}^{n} J_{v_{i}-\frac{1}{2}}\left(x_{i} y_{i}\right) y_{i}^{2 v_{i}}\right) d y \tag{3.9}
\end{equation*}
$$

Since the integral of (??) is divergent, therefore we choose $\Omega \subset \mathbb{R}_{n}^{+}$be the spectrum of $E(x, t)$ and by (??), we have

$$
\begin{align*}
E(x, t) & =C_{v_{\mathbb{R}_{n}^{+}}} e^{(-1)^{k} c^{2} t V^{k}(y)}\left(\prod_{i=1}^{n} J_{v_{i}-\frac{1}{2}}\left(x_{i} y_{i}\right) y_{i}^{2 v_{i}}\right) d y \\
& =C_{v_{\Omega}} e^{(-1)^{k} c^{2} t V^{k}(y)}\left(\prod_{i=1}^{n} J_{v_{i}-\frac{1}{2}}\left(x_{i} y_{i}\right) y_{i}^{2 v_{i}}\right) d y \tag{3.10}
\end{align*}
$$

Thus (??) can be written in the B-convolution form

$$
u(x, t)=E(x, t) * f(x)
$$

Moreover, since $E(x, t)$ exist, then

$$
\begin{align*}
\lim _{t \rightarrow 0} E(x, t) & =C_{v} \prod_{\Omega i=1}^{n} J_{v_{i}-\frac{1}{2}}\left(x_{i} y_{i}\right) y_{i}^{2 v_{i}} d y \\
& =C_{v} \prod_{\mathbb{R}_{n}^{+}}^{\prod_{i=1}^{n}} J_{v_{i}-\frac{1}{2}}\left(x_{i} y_{i}\right) y_{i}^{2 v_{i}} d y \tag{3.11}\\
& =\delta(x), \text { for } x \in \mathbb{R}_{n}^{+}
\end{align*}
$$

see [?].
Thus for the solution $u(x, t)=E(x, t) * f(x)$ of (??), then we have

$$
\begin{aligned}
u(x, 0) & =\lim _{t \rightarrow 0} u(x, t) \\
& =\lim _{t \rightarrow 0} E(x, t) * f(x) \\
& =\delta * f(x) \\
& =f(x)
\end{aligned}
$$

which satisfies (??).
In particular, if we put $k=1$ and $q=0$ in (??), then from Lemma ?? we obtain

$$
\begin{aligned}
E(x, t) & =C_{v_{\mathbb{R}_{n}^{+}}} e^{-c^{2} t V(y)} \prod_{i=1}^{n} J_{v_{i}-\frac{1}{2}}\left(x_{i} y_{i}\right) y_{i}^{2 v_{i}} d y \\
& =2^{-\left(\frac{n+2|v|}{2}\right)}\left(c^{2} t\right)^{-\left(\frac{n+2|v|}{2}\right)} e^{-\frac{1}{4 c^{2} t}|x|^{2}}
\end{aligned}
$$

where $|x|^{2}={ }_{i=1}^{n} x_{i}^{2}$. This completes the proof.
Theorem 2. The kernel $E(x, t)$ defined by (??) has the following properties:
i. $E(x, t) \in C^{\infty}\left(\mathbb{R}_{n}^{+} \times(0, \infty)\right)$ - the space of continuous function with infinitely differetiable.
ii. $\left(\frac{\partial}{\partial t}-c^{2} \square_{B}^{k}\right) E(x, t)=0$ for all $x \in \mathbb{R}_{n}^{+}, t>0$.
iii. $\lim _{t \rightarrow 0} E(x, t)=\delta(x)$ for all $x \in \mathbb{R}_{n}^{+}$.

Proof. i. From (??), and

$$
\frac{\partial^{n}}{\partial t^{n}} E(x, t)=C_{v_{\Omega}} \frac{\partial^{n}}{\partial t^{n}} e^{(-1)^{k} c^{2} t\left(y_{1}^{2}+\ldots+y_{p}^{2}-y_{p+1}^{2}-\ldots-y_{p+q}^{2}\right)^{k}}\left(\prod_{i=1}^{n} J_{v_{i}-\frac{1}{2}}\left(x_{i} y_{i}\right) y_{i}^{2 v_{i}}\right) d y
$$

$E(x, t) \in C^{\infty}$ for $x \in \mathbb{R}_{n}^{+}, t>0$.
ii. From $u(x, t)=E(x, t) * f(x)$, we have following equality for $f(x)=\delta(x)$ by Fourier Bessel Transformation

$$
u(x, t)=E(x, t)
$$

Then by direct computation, we obtain,

$$
\left(\frac{\partial}{\partial t}-c^{2} \square_{B}^{k}\right) E(x, t)=0 .
$$

iii. This case is obvious by (??).

References

[1] Kipriyanov I.A., Doklady Acad. Nauk USSR, 158, No:2, p.274-278 (1964).
[2] Kipriyanov I.A., Tr. Math. Im. V.A. Steklova Akad. Nauk SSSR, Vol. No:89, p.130-213(1967).
[3] Levitan B. M. , Expansion in Fourier Series and Integrals with Bessel Functions, Uspeki Mat., Nauka (N.S) 6, No: 2(42), pp.102-143 1951(in Russian).
[4] Nonlaopon K.and Kananthai A., On The Generalized Ultra-hyperbolic Heat Kernel Related to the Spectrum, ScienceAsia 32 (2006): 21-24.
[5] Yıldırım H., Riesz Potentials Generated by a Generalized shift operator, Ph. D. Thesis, Ankara University,1995.
[6] Yıldırım H. and Sarıkaya M.Z., On the generalized Riesz type potentials, Jour.of Inst. of Math. and Comp. Sci. Vol 14, No. 3 (2001) 217-224.
[7] Yıldırım H., Sarıkaya M. Z. and Ozturk S., The solutions of the n-dimensional Bessel diamond operator and the Fourier-Bessel transform of their convolution, Proc. Indian Acad. Sci. (Math. Sci.) Vol 114, No.4, pp.375-387, (2004).
[8] Saglam A, Yıldırım H. and Sarıkaya M.Z., On the Bessel heat equation related to the Bessel diamond operator, Acta Appl. Math (2010), 109: 849-860.
[9] Sarıkaya M. Z. and Yıldırım H., On the B-convolutions of the Bessel diamond kernel of Riesz, Applied Mathematics and Computation, 208(1), pp:18-22, 2009.
[10] Sarıkaya M. Z., On the elemantary solution of the Bessel Diamond operator, Ph. D. Thesis Afyon Kocatepe University, 2007.
[11] Sarıkaya M. Z. and Yıldırım H., On the Bessel diamond and the nonlinear Bessel diamond operator related to the Bessel wave equation, Nonlinear Anal. 68, 430-442 (2008).
[12] Sarıkaya M. Z. and Yıldırım H., On the weak solutions of the compound Bessel ultra-hyperbolic equation, Applied Mathematics and Computation 189, 910-917 (2007).
(Received 10 November 2009)

Aziz SAGLAM
Department of Mathematics, Faculty of Science and Arts, Afyon Kocatepe University, Afyon-TURKEY
e-mail : azizsaglam@aku.edu.tr

Hüseyin YILDIRIM
Department of Mathematics, Faculty of Science and Arts, Afyon Kocatepe University, Afyon-TURKEY
e-mail : hyildir@aku.edu.tr

Mehmet Zeki SARIKAYA
Department of Mathematics, Faculty of Science and Arts, Afyon Kocatepe University, Afyon-TURKEY
e-mail: sarikaya@aku.edu.tr

[^0]: Copyright (c) 2010 by the Mathematical Association of Thailand. All rights reserved.

