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On the Bessel Ultra-Hyperbolic
Heat Equation
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Abstract : In this article, we study the equation

∂

∂t
u(x, t) = c2�k

Bu(x, t)

with the initial condition u(x, 0) = f(x) for x ∈ R+
n . The operator �k

B is named
the Bessel ultra-hyperbolic operator iterated k−times and is defined by

�k
B =

(
Bx1 + Bx2 + ... + Bxp −Bxp+1 − ...−Bxp+q

)k
where k is a non-negative integer, p + q = n, Bxi

=
∂2

∂x2
i

+
2vi

xi

∂

∂xi
, 2vi =

2αi + 1, αi > − 1
2 [3,5-10], xi > 0, i = 1, 2, ..., n, and n is the dimension of the

R+
n , u(x, t) is an unknown for (x, t) = (x1, ..., xn, t) ∈ R+

n × (0,∞), f(x) is a
given generalized function and c is a positive constant. We obtain the solution of
such equation which is related to the spectrum and the kernel which is so called
the Bessel ultra-hyperbolic heat kernel. Moreover, such the Bessel ultra-hyperbolic
heat kernel has interesting properties and also related to the kernel of an extension
of the heat equation.

Keywords : Heat kernel, Dirac-delta distribution, Bessel ultra-hyperbolic oper-
ator, Fourier Bessel transform, B-convolution, Spectrum.
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1 Introduction

It is known that for the ultra-hyperbolic heat equation

∂

∂t
u(x, t) = c2�ku(x, t) (1.1)
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with the initial condition u(x, 0) = f(x) where �k is the ultra-hyperbolic operator
iterated k−times defined by

�k =

(
∂2

∂x2
1

+
∂2

∂x2
2

+ ... +
∂2

∂x2
p

− ∂2

∂x2
p+1

− ...− ∂2

∂x2
p+q

)k

,

p + q = n is the dimension of the Euclidean space Rn and k is a positive integer.
In [?] Nonlaopon and Kananthai obtained the following solution

u(x, t) =
1

(2π)n RnRn
f(y) exp

(
c2t
[p+q
j=p+1ξ

2
j −

p
j=1 ξ2

j

]k
+ i(ξ, x− y)

)
dξdy

or the solution in the classical convolution form

u(x, t) = E(x, t) ∗ f(x) (1.2)

where
E(x, t) =

1
(2π)n Ω

exp
(
c2t
[p+q
j=p+1ξ

2
j −

p
j=1 ξ2

j

]k
+ i(ξ, x)

)
dξ (1.3)

and Ω ⊂ Rn is the spectrum of E(x, t) for any fixed t > 0.
We can extend (1.1) to the equation

∂

∂t
u(x, t) = c2�Bu(x, t) (1.4)

with the initial condition
u(x, 0) = f(x) (1.5)

where Bxi = ∂2

∂x2
i
+ 2υi

xi

∂
∂xi

, p+q = n is the dimension R+
n , R+

n = {x : x = (x1, x2, ...

, xn), x1 > 0, ..., xn > 0 and �B is the Bessel ultra-hyperbolic operator, defined
by

�B = Bx1 + Bx2 + ... + Bxp −Bxp+1 − ...−Bxp+q , p + q = n.

Then, we obtain
u(x, t) = E(x, t) ∗ f(x) (1.6)

as a solution of (??) which satisfies (??) where E(x, t) is the kernel of (??) or the
elementary solution of (??) and is defined by

E(x, t) = Cυ
R+

n

e−c2tV (y)
n

Π
i=1

Jυi− 1
2
(xiyi)y2υi

i dy (1.7)

where V (y) = p

i=1
y2

i − p+q

j=p+1
y2

j > 0.

Moreover, we obtain E(x, t) → δ as t → 0 where δ is the Dirac-delta dis-
tribution, we studied the Bessel ultra-hyperbolic heat kernel which is related to
spectrum.
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Now, the purpose of this work is to study the equation

∂

∂t
u(x, t) = c2�k

Bu(x, t) (1.8)

which the initial condition

u(x, 0) = f(x), for x ∈ R+
n , (1.9)

where the operator �k
B is named the Bessel ultra-hyperbolic operator iterated

k−times, defined by

�k
B =

(
Bx1 + Bx2 + ... + Bxp −Bxp+1 − ...−Bxp+q

)k
, (1.10)

where k is a positive integer.
We obtain u(x, t) = E(x, t)∗f(x) a solution in the B-convolution form of (??)

which satisfies condition (??) where

E(x, t) = Cυ
Ω
e(−1)kc2tV k(y)

n

Π
i=1

Jυi− 1
2
(xiyi)y2υi

i dy (1.11)

and Ω ⊂ R+
n is the spectrum of E(x, t) for any fixed t > 0. The function E(x, t) is

called the Bessel ultra-hyperbolic heat kernel iterated k−times or the elementary
solution of (??). And all properties of E(x, t) will be studied in details.

2 Preliminaries

The generalized shift operator T y has the following form [?, ?, ?]:

T yϕ(x) = C∗v

π∫
0

...
π∫
0

ϕ(
√

x2
1 + y2

1 − 2x1y1 cos θ1, ...,
√

x2
n + y2

n − 2xnyn cos θn)

×(
n∏

i=1

sin2vi−1 θi)dθ1...dθn

where x, y ∈ R+
n ,

C∗v =
n∏

i=1

Γ(vi + 1)
Γ( 1

2 )Γ(vi)
.

We remark that this shift operator is closely connected with the Bessel differential
operator B = (Bx1 , ..., Bxn

) [?].
The convolution operator determined by the T y is as follows.

(f ∗ ϕ)(x) =
∫

R+
n

f(y)T yϕ(x)(
n∏

i=1

y2vi
i )dy. (2.1)

Convolution (??) known as a B-convolution. We note the following properties of
the B-convolution and the generalized shift operator.
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a. T y.1 = 1
b. T 0.f(x) = f(x)
c. If f(x), g(x) ∈ C(R+

n ) , g(x) is a bounded function all x ∈ R+
n and∫

R+
n

|f (x)| (
n∏

i=1

x2vi
i )dx < ∞

then ∫
R+

n

T yf(x)g(y)(
n∏

i=1

y2vi
i )dy =

∫
R+

n

f(y)T yg(x)(
n∏

i=1

y2vi
i )dy.

d. From c., we have the following equality for g(x) = 1.∫
R+

n

T yf(x)(
n∏

i=1

y2vi
i )dy =

∫
R+

n

f(y)(
n∏

i=1

y2vi
i )dy.

e. (f ∗ g)(x) = (g ∗ f)(x).
The Fourier-Bessel transformation and its inverse transformation are defined

as follows (see, [?]-[?])

(FBf) (x) = Cv

∫
R+

n

f(y)

(
n∏

i=1

Jvi− 1
2

(xiyi) y2vi
i

)
dy (2.2)

(
F−1

B f
)
(x) = (FBf) (−x) , Cv =

(
n∏

i=1

2vi− 1
2 Γ
(

vi +
1
2

))−1

(2.3)

where Jvi− 1
2

(xiyi) is the normalized Bessel function which is the eigenfunction
of the Bessel differential operator. The following equalities for Fourier-Bessel
transformation is true (see, [?, ?, ?]),

FBδ (x) = 1

FB(f ∗ g)(x) = FBf(x).FBg(x) (2.4)

Definition 1. The spectrum of the kernel E(x, t) (??) is the bounded support of
the Fourier Bessel transform FBE(x, t) for any fixed t > 0.

Definition 2. Let x = (x1, x2, ..., xn) ∈ R+
n and denote by

Γ+ =
{
x ∈ R+

n : x2
1 + ... + x2

p − x2
p+1 − ...− x2

p+q > 0
}

the set of an interior of the forward cone, and Γ+ denotes the clousure of Γ+.
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Let Ω be spectrum of E(x, t) defined by definition (??) and Ω ⊂ Γ+. Let
FBE(x, t) be the Fourier Bessel transform of E(x, t) and define

FBE(x, t) =

 e(−1)kc2t(x2
1+...+x2

p−x2
p+1−...−x2

p+q)k

for xi ∈ Ω

0 for xi /∈ Ω.

(2.5)

Lemma 1. (Fourier Bessel Transform of �k
B operator)

FB�k
Bu(x) = (−1)kc2V k(x)FBu(x).

Proof. We can use the mathematical induction method, for k = 1, we have

FB (�Bu) (x) = CvR+
n

(�Bu(y))
(

n∏
i=1

Jvi− 1
2

(xiyi) y2vi
i

)
dy

= CvR+
n

(
p∑

i=1

∂2u(y)
∂y2

i

)(
n∏

i=1

Jvi− 1
2

(xiyi) y2vi
i

)
dy

+ CvR+
n

(
p∑

i=1

2vi

yi

∂u(y)
∂yi

)(
n∏

i=1

Jvi− 1
2

(xiyi) y2vi
i

)
dy

− CvR+
n

(
p+q∑

i=p+1

∂2u(y)
∂y2

i

)(
n∏

i=1

Jvi− 1
2

(xiyi) y2vi
i

)
dy

− CvR+
n

(
p+q∑

i=p+1

2vi

yi

∂u(y)
∂yi

)(
n∏

i=1

Jvi− 1
2

(xiyi) y2vi
i

)
dy

= I1 + I2 + I3 + I4.

If we apply partial integration to twice in the I1 and I2 integrals and once in the
I3 and I4 integrals, then we have

FB (�Bu) (x) = CvR+
n
u(y)

((
p∑

i=1

Byi

)
n∏

i=1

Jvi− 1
2

(xiyi) y2vi
i

)
dy.

− CvR+
n
u(y)

((
p+q∑

i=p+1

Byi

)
n∏

i=1

Jvi− 1
2

(xiyi) y2vi
i

)
dy.

Here, if we use the following equality [?],

∞∫
0

u(y)Byi
Jvi− 1

2
(xiyi) y2vi

i dyi = −x2
i

∞∫
0

u(y)Jvi− 1
2

(xiyi) y2vi
i dyi

then, we get

FB (�Bu) (x) = −V (x)CvR+
n
u(y)

(
n∏

i=1

Jvi− 1
2

(xiyi) y2vi
i

)
dy

= −V (x)FBu(x).
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Then, from inverse Fourier transform we finally obtain

�Bu(x) = −F−1
B V (x)FBu(x).

Assume the statement is true for k − 1, i.e,

�k−1
B u(x) = (−1)k−1F−1

B V k−1(x)FBu(x).

Then, we must prove that it is also true for k ∈ N. Hence, we obtain

�k
Bu(x) = �B

(
�k−1

B u(x)
)

= (−1)F−1
B V (x)FB(−1)k−1F−1

B V k−1(x)FBu(x)

= (−1)kF−1
B V k(x)FBu(x).

This completes the proof.

The following result can be found in [?, ?, ?], which will be applied in the
sequel.

Lemma 2. For all t > 0, c is a positive constant and all x ∈ R+
n we have

∞
0
e−c2x2tx2υdx =

Γ(υ)
2c2υ+1tυ+ 1

2
(2.6)

and

∞
0
e−c2x2tJυ− 1

2
(xy)x2υdx =

Γ(υ + 1
2 )

2(c2t)υ+ 1
2
e−

y2

4c2t . (2.7)

3 Main Results

In this section, we will state our results and given their proofs.

Lemma 3. Let L be the operator defined by

L =
∂

∂t
− c2�k

B (3.1)

where �k
B is defined by (??), k is a positive integer, (x1, ..., xn) ∈ R+

n , and c is a
positive constant. Then we obtain

E(x, t) = Cυ
Ω
e(−1)kc2tV k(y)

n

Π
i=1

Jυi− 1
2
(xiyi)y2υi

i dy (3.2)

as elementary solution of (??) in the spectrum Ω ⊂ R+
n for t > 0.
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Proof. Let E(x, t) is the kernel or the elementary solution of operator L and δ is
the Dirac-delta distribution. Thus

∂

∂t
E(x, t)− (−1)kc2�k

BE(x, t) = δ(x)δ(t).

Take the Fourier Bessel transform defined by (??) to both sides of the equation,
using Lemma ?? and FBδ(x) = 1, we obtain

∂

∂t
FBE(x, t)− (−1)kc2V k(x)FBE(x, t) = δ(t).

Thus
FBE(x, t) = H(t)e(−1)kc2tV k(x)

where H(t) is the Heaviside function. Since H(t) = 1 for t > 0.Therefore,

FBE(x, t) = e(−1)kc2tV k(x)

which has been already by (??). Thus, from (??), we have

E(x, t) = Cυ
Ω
e(−1)kc2tV k(y)

n

Π
i=1

Jυi− 1
2
(xiyi)y2υi

i dy for t > 0,

where Ω is the spectrum of E(x, t).

Theorem 1. Let us consider the equation

∂

∂t
u(x, t)− c2�k

Bu(x, t) = 0 (3.3)

with the initial condition
u(x, 0) = f(x) (3.4)

where �k
B is defined by (??), k is a positive integer, u(x, t) is an unknown function

for (x, t) = (x1, ..., xn, t) ∈ R+
n × (0,∞) , f(x) is the given generalized function,

and c is a positive constant. Then we obtain

u(x, t) = E(x, t) ∗ f(x) (3.5)

as a solution of (??) which satisfies (??) where E(x, t) is given by (??).

Proof. Taking the Fourier Bessel transform defined by (??) to both sides of (??)
for x ∈ R+

n and using Lemma ??, we obtain

∂

∂t
FBu(x, t) = (−1)kc2V k(x)FBu(x, t). (3.6)

Thus, we condider the initial condition (??) then we have following equality for
the (3.6)

u(x, t) = f(x) ∗ F−1
B e(−1)kc2tV k(x) (3.7)
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Here, if we use the (??), (??), then we have

u(x, t) = f(x) ∗ F−1
B e(−1)kc2tV k(x)

=
R+

n

F−1
B e(−1)kc2tV k(y)T yf(x)

(
n

Π
i=1

y2υi
i

)
dy

=
R+

n

[
Cυ

R+
n

e(−1)kc2tV k(z)

(
n

Π
i=1

Jυi− 1
2
(yizi)z2υi

i

)
dz

]
T yf(x)

(
n

Π
i=1

y2υi
i

)
dy.

(3.8)
Set

E(x, t) = Cυ
R+

n

e(−1)kc2tV k(y)

(
n

Π
i=1

Jυi− 1
2
(xiyi)y2υi

i

)
dy. (3.9)

Since the integral of (??) is divergent, therefore we choose Ω ⊂ R+
n be the spectrum

of E(x, t) and by (??), we have

E(x, t) = Cυ
R+

n

e(−1)kc2tV k(y)

(
n

Π
i=1

Jυi− 1
2
(xiyi)y2υi

i

)
dy

= Cυ
Ω
e(−1)kc2tV k(y)

(
n

Π
i=1

Jυi− 1
2
(xiyi)y2υi

i

)
dy.

(3.10)

Thus (??) can be written in the B-convolution form

u(x, t) = E(x, t) ∗ f(x).

Moreover, since E(x, t) exist, then

lim
t→0

E(x, t) = Cυ
Ω

n

Π
i=1

Jυi− 1
2
(xiyi)y2υi

i dy

= Cυ
R+

n

n

Π
i=1

Jυi− 1
2
(xiyi)y2υi

i dy

= δ(x), for x ∈ R+
n ,

(3.11)

see [?].
Thus for the solution u(x, t) = E(x, t) ∗ f(x) of (??), then we have

u(x, 0) = lim
t→0

u(x, t)

= lim
t→0

E(x, t) ∗ f(x)

= δ ∗ f(x)

= f(x)
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which satisfies (??).
In particular, if we put k = 1 and q = 0 in (??), then from Lemma ?? we

obtain
E(x, t) = Cυ

R+
n

e−c2tV (y)
n

Π
i=1

Jυi− 1
2
(xiyi)y2υi

i dy

= 2−(
n+2|υ|

2 )(c2t)−(
n+2|υ|

2 )e−
1

4c2t
|x|2

where |x|2 = n
i=1

x2
i . This completes the proof.

Theorem 2. The kernel E(x, t) defined by (??) has the following properties:

i. E(x, t) ∈ C∞(R+
n × (0,∞))- the space of continuous function with infinitely

differetiable.
ii. ( ∂

∂t − c2�k
B)E(x, t) = 0 for all x ∈ R+

n , t > 0.
iii. lim

t→0
E(x, t) = δ(x) for all x ∈ R+

n .

Proof. i. From (??), and

∂n

∂tn E(x, t) = Cυ
Ω

∂n

∂tn e(−1)kc2t(y2
1+...+y2

p−y2
p+1−...−y2

p+q)
k
(

n

Π
i=1

Jυi− 1
2
(xiyi)y2υi

i

)
dy,

E(x, t) ∈ C∞ for x ∈ R+
n , t > 0.

ii. From u(x, t) = E(x, t) ∗ f(x), we have following equality for f(x) = δ(x)
by Fourier Bessel Transformation

u(x, t) = E(x, t).

Then by direct computation, we obtain,

(
∂

∂t
− c2�k

B)E(x, t) = 0.

iii. This case is obvious by (??).
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Hüseyin YILDIRIM
Department of Mathematics,
Faculty of Science and Arts,
Afyon Kocatepe University,
Afyon-TURKEY
e-mail : hyildir@aku.edu.tr



On the bessel ultra-hyperbolic heat equation 159

Mehmet Zeki SARIKAYA
Department of Mathematics,
Faculty of Science and Arts,
Afyon Kocatepe University,
Afyon-TURKEY
e-mail : sarikaya@aku.edu.tr


	Introduction
	Preliminaries
	Main Results

