Thai Journal of Mathematics Volume 8 (2010) Number 1: 141–148

www.math.science.cmu.ac.th/thaijournal Online ISSN 1686-0209

Starlikeness and Subordination of Two Integral Operators

B.A. Frasin, B.S. Keerthi, V.G. Shanthi and B.A. Stephen

Abstract: In this paper, we consider some sufficient conditions for two integral operators to be starlike in the open unit disk.

Keywords: Analytic functions, Starlike functions, Integral operators. **2000 Mathematics Subject Classification:** 30C45.

1 Introduction and definitions

Let \mathcal{A} denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

which are analytic in the open unit disk $\mathcal{U} = \{z : |z| < 1\}$. A function f belonging to \mathcal{A} is said to be starlike of order α if it satisfies

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha \qquad (z \in \mathcal{U})$$

for some $\alpha(0 \leq \alpha < 1)$. We denote by $\mathcal{S}^*(\alpha)$ the subclass of \mathcal{A} consisting of functions which are starlike of order α in \mathcal{U} . Clearly $\mathcal{S}^*(0) = \mathcal{S}^*$ the class of all starlike functions with respect the origin.

Recently, Breaz and Breaz in [3] and Breaz et al. [7] introduced and studied the integral operators

$$F_n(z) = \int_0^z \left(\frac{f_1(t)}{t}\right)^{\alpha_1} \dots \left(\frac{f_n(t)}{t}\right)^{\alpha_n} dt \tag{1.1}$$

and

Copyright $\ensuremath{\textcircled{c}}$ 2010 by the Mathematical Association of Thailand. All rights reserved.

$$F_{\alpha_1,...,\alpha_n}(z) = \int_0^z (f_1'(t))^{\alpha_1} \dots (f_n'(t))^{\alpha_n} dt$$
 (1.2)

where $f_i \in \mathcal{A}$ and for $\alpha_i > 0$, for all i = 1, ..., n (see also [1, 4, 6]).

Breaz and Güney [5] considered the above integral operators and they obtained their properties on the classes $S_{\alpha}^{*}(b)$, $C_{\alpha}(b)$ of starlike and convex functions of complex order b and type α introduced and studied by Frasin [8] (see [2]).

Very recently, Frasin [9] obtained some sufficient conditions for the above integral operators to be in the classes \mathcal{S}^* , $\mathcal{C}(\alpha)$ and \mathcal{UCV} , where $\mathcal{C}(\alpha)$ and \mathcal{UCV} denote the subclasses of \mathcal{A} consisting of functions which are, respectively, close -to-convex of order $\alpha(0 \le \alpha < 1)$ in \mathcal{U} and uniformly convex functions.

In the present paper, we obtain some sufficient conditions for starlikeness of the above integral operators F_n and $F_{\alpha_1,...,\alpha_n}$.

In order to derive our main results, we have to recall here the following results:

Lemma 1.1. ([10]) If $f \in A$ satisfies

$$Re\left\{1 + \frac{zf''(z)}{f'(z)}\right\} < \frac{\beta + 1}{2(\beta - 1)} \qquad (z \in \mathcal{U})$$

$$\tag{1.3}$$

for some $2 \le \beta < 3$, or

$$\operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} < \frac{5\beta - 1}{2(\beta + 1)} \qquad (z \in \mathcal{U})$$
(1.4)

for some $1 < \beta \le 2$, then $f \in \mathcal{S}^*$.

Lemma 1.2. ([10]) If $f \in A$ satisfies

$$Re\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > -\frac{\beta + 1}{2\beta(\beta - 1)} \qquad (z \in \mathcal{U})$$

$$\tag{1.5}$$

for some $\beta \leq -1$, or

$$\operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \frac{3\beta + 1}{2\beta(\beta + 1)} \qquad (z \in \mathcal{U})$$
(1.6)

for some $\beta > 1$, then $f \in \mathcal{S}^* \left(\frac{\beta+1}{2\beta} \right)$.

2 Starlikeness for the integral operator F_n

Applying Lemma 1.1, we derive

Theorem 2.1. Let $\alpha_i > 0$ be real numbers for all i = 1, ..., n. If $f_i \in \mathcal{A}$ for all i = 1, ..., n satisfies

$$\operatorname{Re}\left(\frac{zf_i'(z)}{f_i(z)}\right) < 1 + \frac{3-\beta}{2(\beta-1)n\alpha_i} \qquad (z \in \mathcal{U})$$
(2.1)

for some $2 \le \beta < 3$, or

$$\operatorname{Re}\left(\frac{zf_i'(z)}{f_i(z)}\right) < 1 + \frac{3(\beta - 1)}{2(\beta + 1)n\alpha_i} \qquad (z \in \mathcal{U})$$
(2.2)

for some $1 < \beta \le 2$, then $F_n \in \mathcal{S}^*$.

Proof. It follows from (1.1) that

$$F'_n(z) = \left(\frac{f_1(z)}{z}\right)^{\alpha_1} \dots \left(\frac{f_n(z)}{z}\right)^{\alpha_n}.$$
 (2.3)

Thus we have

$$F_n''(z) = \left[\alpha_1 \left(\frac{f_1'(z)}{f_1(z)} - \frac{1}{z}\right) + \ldots + \alpha_n \left(\frac{f_n'(z)}{f_n(z)} - \frac{1}{z}\right)\right] F_n'(z). \tag{2.4}$$

Then from (2.4), we obtain

$$\frac{zF_n''(z)}{F_n'(z)} = \sum_{i=1}^n \alpha_i \left(\frac{zf_i'(z)}{f_i(z)} - 1 \right)$$
 (2.5)

or, equivalently,

$$1 + \frac{zF_n''(z)}{F_n'(z)} = \sum_{i=1}^n \alpha_i \left(\frac{zf_i'(z)}{f_i(z)} \right) + 1 - \sum_{i=1}^n \alpha_i.$$
 (2.6)

Taking the real part of both terms of (2.6), we have

$$\operatorname{Re}\left(1 + \frac{zF_n''(z)}{F_n'(z)}\right) = \sum_{i=1}^n \alpha_i \operatorname{Re}\left(\frac{zf_i'(z)}{f_i(z)}\right) + 1 - \sum_{i=1}^n \alpha_i$$

$$= \alpha_1 \operatorname{Re}\left(\frac{zf_1'(z)}{f_1(z)}\right) + \alpha_2 \operatorname{Re}\left(\frac{zf_2'(z)}{f_2(z)}\right) + \cdots$$

$$+ \alpha_n \operatorname{Re}\left(\frac{zf_n'(z)}{f_n(z)}\right) + 1 - [\alpha_1 + \alpha_2 + \cdots + \alpha_n], (2.7)$$

using the hypothesis (2.1) it follows from (2.7) that

$$\operatorname{Re}\left(1 + \frac{zF_n''(z)}{F_n'(z)}\right) < \alpha_1 \left(1 + \frac{3 - \beta}{2(\beta - 1)n\alpha_1}\right) + \alpha_2 \left(1 + \frac{3 - \beta}{2(\beta - 1)n\alpha_2}\right) + \cdots$$

$$+ \alpha_n \left(1 + \frac{3 - \beta}{2(\beta - 1)n\alpha_n}\right) + 1 - [\alpha_1 + \alpha_2 + \cdots + \alpha_n]$$

$$< \frac{\beta + 1}{2(\beta - 1)} \qquad (z \in \mathcal{U}),$$

for some $2 \le \beta < 3$. Also from the hypothesis (2.2) and (2.7), we get

$$\operatorname{Re}\left(1 + \frac{zF_n''(z)}{F_n'(z)}\right) < \frac{5\beta - 1}{2(\beta + 1)} \qquad (z \in \mathcal{U}),$$

for some $1 < \beta \le 2$. Hence by Lemma 1.1, we get $F_n \in \mathcal{S}^*$. This completes the proof.

Letting n=1, $\alpha_1=\alpha$ and $f_1=f$ in Theorem 2.1, we have

Corollary 2.2. Let $\alpha > 0$. If $f \in \mathcal{A}$ satisfies

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) < 1 + \frac{3-\beta}{2(\beta-1)\alpha} \qquad (z \in \mathcal{U}),$$

for some $2 \le \beta \le 3$, or

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) < 1 + \frac{3(\beta - 1)}{2(\beta + 1)\alpha}$$
 $(z \in \mathcal{U}),$

for some $1 < \beta \le 2$, then $\int\limits_0^z \left(\frac{f(t)}{t} \right)^{\alpha} dt \in \mathcal{S}^*$.

Applying Lemma 1.2, we derive

Theorem 2.3. Let $\alpha_i > 0$ be real numbers for all i = 1, ..., n. If $f_i \in \mathcal{A}$ for all i = 1, ..., n satisfies

$$Re\left(\frac{zf_i'(z)}{f_i(z)}\right) > 1 + \frac{\beta - 2\beta^2 - 1}{2\beta(\beta - 1)n\alpha_i} \qquad (z \in \mathcal{U}),$$
 (2.8)

for some $\beta \leq -1$, or

$$Re\left(\frac{zf_i'(z)}{f_i(z)}\right) > 1 + \frac{\beta - 2\beta^2 + 1}{2\beta(\beta + 1)n\alpha_i} \qquad (z \in \mathcal{U}), \tag{2.9}$$

for some $\beta > 1$, then $F_n \in \mathcal{S}^*\left(\frac{\beta+1}{2\beta}\right)$.

Proof. Using (2.7), (2.8), (2.9) and applying Lemma 1.2, we have $F_n \in \mathcal{S}^*\left(\frac{\beta+1}{2\beta}\right)$.

Letting n = 1, $\alpha_1 = \alpha$ and $f_1 = f$ in Theorem 2.3, we have

Corollary 2.4. Let $\alpha > 0$. If $f \in \mathcal{A}$ satisfies

$$Re\left(\frac{zf'(z)}{f(z)}\right) > 1 + \frac{\beta - 2\beta^2 - 1}{2\beta(\beta - 1)\alpha}$$
 $(z \in \mathcal{U}),$

for some $\beta \leq -1$, or

$$Re\left(\frac{zf'(z)}{f(z)}\right) > 1 + \frac{\beta - 2\beta^2 + 1}{2\beta(\beta + 1)\alpha}$$
 $(z \in \mathcal{U}),$

for some $\beta > 1$, then $\int_{0}^{z} \left(\frac{f(t)}{t} \right)^{\alpha} dt \in \mathcal{S}^{*} \left(\frac{\beta+1}{2\beta} \right)$.

3 Starlikeness for the integral operator $F_{\alpha_1,\dots,\alpha_n}$

Applying Lemma 1.1, we derive

Theorem 3.1. Let $\alpha_i > 0$ be real numbers for all i = 1, ..., n. If $f_i \in \mathcal{A}$ for all i = 1, ..., n satisfies

$$\operatorname{Re}\left(\frac{zf_i''(z)}{f_i'(z)}\right) < \frac{3-\beta}{2(\beta-1)n\alpha_i} \tag{3.1}$$

for some $2 \le \beta < 3$, or

$$\operatorname{Re}\left(\frac{zf_i''(z)}{f_i'(z)}\right) < \frac{3(\beta - 1)}{2(\beta + 1)n\alpha_i} \tag{3.2}$$

for some $1 < \beta \le 2$, then $F_{\alpha_1,...,\alpha_n} \in \mathcal{S}^*$.

Proof. From (1.2), we easily get

$$\frac{zF_{\alpha_1,\dots,\alpha_n}''(z)}{F_{\alpha_1,\dots,\alpha_n}'(z)} = \sum_{i=1}^n \alpha_i \left(\frac{zf_i''(z)}{f_i'(z)}\right). \tag{3.3}$$

It follows from (3.3) that

$$\operatorname{Re}\left(1 + \frac{zF_{\alpha_{1},\dots,\alpha_{n}}'(z)}{F_{\alpha_{1},\dots,\alpha_{n}}'(z)}\right) = 1 + \sum_{i=1}^{n} \alpha_{i} \operatorname{Re}\left(\frac{zf_{i}''(z)}{f_{i}'(z)}\right)$$

$$= 1 + \alpha_{1} \operatorname{Re}\left(\frac{zf_{1}''(z)}{f_{1}'(z)}\right) + \alpha_{2} \operatorname{Re}\left(\frac{zf_{2}''(z)}{f_{2}'(z)}\right) + \cdots$$

$$+ \alpha_{n} \operatorname{Re}\left(\frac{zf_{n}''(z)}{f_{n}'(z)}\right), \tag{3.4}$$

which, in the light of the hypothesis (3.1), yields

$$\operatorname{Re}\left(1 + \frac{zF_{\alpha_{1},\dots,\alpha_{n}}'(z)}{F_{\alpha_{1},\dots,\alpha_{n}}'(z)}\right) < 1 + \alpha_{1}\left(\frac{3-\beta}{2(\beta-1)n\alpha_{1}}\right) + \alpha_{1}\left(\frac{3-\beta}{2(\beta-1)n\alpha_{2}}\right) + \cdots + \alpha_{n}\left(\frac{3-\beta}{2(\beta-1)n\alpha_{n}}\right) < \frac{\beta+1}{2(\beta-1)} \qquad (z \in \mathcal{U}),$$

for some $2 \le \beta < 3.0$ n the other hand, by the hypothesis (3.2) and (3.4), we have

$$\operatorname{Re}\left(1 + \frac{zF_{\alpha_1,\dots,\alpha_n}''(z)}{F_{\alpha_1,\dots,\alpha_n}'(z)}\right) < \frac{5\beta - 1}{2(\beta + 1)} \qquad (z \in \mathcal{U}),$$

for some $1 < \beta \leq 2$. Hence by Lemma 1.1, we get $F_{\alpha_1,...,\alpha_n} \in \mathcal{S}^*$.

Letting n=1 , $\alpha_1=\alpha$ and $f_1=f$ in Theorem 3.1, we have

Corollary 3.2. Let $\alpha > 0$. If $f \in \mathcal{A}$ satisfies

$$\operatorname{Re}\left(\frac{zf''(z)}{f'(z)}\right) < \frac{3-\beta}{2(\beta-1)\alpha}$$

for some $2 \le \beta < 3$, or

$$\operatorname{Re}\left(\frac{zf''(z)}{f'(z)}\right) < \frac{3(\beta-1)}{2(\beta+1)\alpha}$$

for some $1 < \beta \le 2$, then $\int\limits_0^z \left(f'(t)\right)^\alpha dt \in \mathcal{S}^*$.

Finally, we have

Theorem 3.3. Let $\alpha_i > 0$ be real numbers for all i = 1, ..., n. If $f_i \in \mathcal{A}$ for all i = 1, ..., n satisfies

$$\operatorname{Re}\left(\frac{zf_{i}''(z)}{f_{i}'(z)}\right) > \frac{\beta - 2\beta^{2} - 1}{2\beta(\beta - 1)n\alpha_{i}}$$
(3.5)

for some $\beta \leq -1$, or

$$\operatorname{Re}\left(\frac{zf_{i}''(z)}{f_{i}'(z)}\right) > \frac{\beta - 2\beta^{2} + 1}{2\beta(\beta + 1)n\alpha_{i}}$$
(3.6)

for some $\beta > 1$, then $F_{\alpha_1,...,\alpha_n} \in \mathcal{S}^*\left(\frac{\beta+1}{2\beta}\right)$.

Proof. The theorem follows easily by using (3.4), (3.5), (3.6) and applying Lemma 1.2.

Letting n = 1, $\alpha_1 = \alpha$ and $f_1 = f$ in Theorem 3.3, we have

Corollary 3.4. Let $\alpha > 0$. If $f \in \mathcal{A}$ satisfies

$$Re\left(\frac{zf''(z)}{f'(z)}\right) > \frac{\beta - 2\beta^2 - 1}{2\beta(\beta - 1)\alpha}$$

for some $\beta \leq -1$, or

$$Re\left(\frac{zf''(z)}{f'(z)}\right) > \frac{\beta - 2\beta^2 + 1}{2\beta(\beta + 1)\alpha}$$

for some $\beta > 1$, then then $\int_{0}^{z} (f'(t))^{\alpha} dt \in \mathcal{S}^{*}\left(\frac{\beta+1}{2\beta}\right)$.

Acknowledgements. The authors would like to thank the referee for his helpful comments and suggestions.

References

- [1] D. Breaz, Certain Integral Operators on the Classes $\mathcal{M}(\beta_i)$ and $\mathcal{N}(\beta_i)$, J. Ineq. Appl. Volume 2008, Article ID 719354, 4 pages
- [2] S. Bulut, A Note on the paper of Breaz and Güney, J. Math. Ineq. Vo. 2, No.4 (2008), 549-553.
- [3] D. Breaz and N. Breaz, Two integral operator, Studia Universitatis Babes-Bolyai, Mathematica, Cluj-Napoca, 3 (2002), 13-21.
- [4] D. Breaz and N. Breaz, Some convexity properties for a general integral operator, JIPAM, Volume 7, Issue 5, Article 177, 2006.
- [5] D. Breaz and H. Güney, The integral operator on the classes $\mathcal{S}_{\alpha}^{*}(b)$ and $\mathcal{C}_{\alpha}(b)$, J. Math. Ineq. Vol. 2, No.1 (2008), 97-100.
- [6] D. Breaz and V. Pescar, *Univalence conditions for some general integral operators*, Banach J. Math. Anal. (1) 2 (2008), 53-58.
- [7] D. Breaz, S.Owa, N. Breaz, A new integral univalent operator, Acta Univ. Apul. 16 (2008), 11-16.
- [8] B.A. Frasin, Family of analytic functions of complex order, Acta Math. Acad. Paed. Ny. 22 (2006), 179-191.
- [9] B.A. Frasin, Some sufficient conditions for certain integral operators, J. Math. Ineq. Vol. 2, No.4 (2008), 527-535
- [10] H. Shiraishi and S. Owa, Starlikeness and convexity for anytic functions concerned with Jack's lemma, Int. J. Open Problems Compt. Math., Vol. 2, No. 1, (2009), 37-46.

(Received 25 March 2009)

B.A. Frasin
Department of Mathematics,
Faculty of Science,
Al al-Bayt University,
P.O. Box: 130095 Mafraq, Jordan
e-mail: bafrasin@yahoo.com

B.S. KeerthiDepartment of Applied Mathematics,Sri Venkateswara College of Engineering,Sriperumbudur, Chennai - 602 105, India,

e-mail: sruthilaya06@yahoo.co.in

V.G. Shanthi
Department of Mathematics,
S.D.N.B. Vaishnav College for Women,
Chromepet, Chennai - 600 044, India,
e-mail: vg.shanthil@gmail.com

B.A. Stephen
Department of Mathematics,
Madras Christian College,
Tambaram, Chennai - 600 059, India,
e-mail: adolfmcc2003@yahoo.co.in