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Free Vibration Analysis of Waves

in a Microstretch Viscoelastic Layer
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Abstract : The free vibration analysis of waves in a homogeneous isotropic

microstretch viscoelastic layer subjected to stress-free conditions is investigated.

Mathematical modeling of the problem of obtaining dispersion curves for mi-

crostretch viscoelastic layer leads to coupled differential equations. The math-

ematical model has been simplified by using the Helmholtz decomposition tech-

nique and the resulting equations have been solved by using variable separable

method to obtain the secular equations for both symmetric and skew-symmetric

wave mode propagation. The special cases such as short wavelength and regions

of secular equations are deduced and discussed. The dispersion curves, amplitudes

of displacement components, microrotation and microstretch for symmetric and

skew-symmetric modes are computed numerically and presented graphically. Re-

sults of some earlier workers have been deduced as particular cases.
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1 Introduction

The concept of microcontinuum proposed by Eringen [4] can take into
account the microstructure effects while the theory itself is still a contin-
uum formulation. The first grade micro-continuum consists a hierarchy of
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theories, namely, micropolar, microstretch and micromorphic depending on
how much microdegrees of freedom are incorporated. These high order con-
tinuum theories are considered to be potential tools to model the behavior
of the material with a complicated microstructure. For example, in the case
of foam composite, when the size of the reinforced phase is comparable to
the intrinsic length scale of the foam, in this situation, the microstructure
of the foam must be taken into account to some degree, so a high order
continuum model must be assigned for the foam matrix. The same remains
true for nanocomposites, since the scale of the reinforced phase is so small,
the surrounding matrix can not be homogenized as a simple material (
Cauchy medium ), some intrinsic microstructures of the matrix must be
considered in a proper continuum model.
Microstretch [2, 3] theory is a generalization of the micropolar theory, for
such a material, a homogeneous stretch microdeformation is added to every
particle i.e. besides the translation and rigid rotation, each particle can
have an independently breathe - like degree of freedom. Such a generalized
media can catch more detailed information about the microdeformation
inside a material point. The material points of microstretch solids can
stretch and contract independently of their translations and rotations. The
microstretch continua are used to characterize composite materials and var-
ious porous media.
Liu and Hu [24] investigated the inclusion problem of microstretch. Svanadze
[8] constructed fundamental solution of the system of equations of steady
oscillations in the theory of microstretch elastic solids. De Cicco [22] in-
vestigated the stress concentration effects in microstretch elastic bodies.
Kumar, Singh and Chadha [14] discussed the axisymmetric problem in
microstretch. Kumar, Singh and Chadha [15] investigated plane strain
problem in microstretch elastic solid. Kumar and Partap [17] investigated
reflection of plane waves in a heat flux dependent microstretch thermoelas-
tic solid half spaces.
Eringen [1] extended the theory of micropolar elasticity to obtain linear
constitutive theory for micropolar material possessing internal friction. A
problem on micropolar viscoelastic waves has been discussed by McCarthy
and Eringen [7]. Biswas et al. [9] studied the axisymmetric problems of
wave propagation under the influence of gravity in a micropolar viscoelastic
semi-infinite medium when a time varying axisymmetric loading has been
applied on the surface of the medium. De Cicco and Nappa [21] discussed
the problem of Saint Venant’s principle for micropolar viscoelastic bodies.
Kumar and Singh [12] studied reflection of plane waves at a planar vis-
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coelastic micropolar interface.
EI - Karamany [23] studied uniqueness and reciprocity theorems in a gen-
eralized linear micropolar thermoviscoelasticity. Kumar et al. [11] studied
Lamb’s plane problem in a micropolar viscoelastic half-space with stretch.
Kumar [13] discussed wave propagation in micropolar viscoelastic gener-
alized thermoelastic solid. Kumar and Singh [16] studied elastodynamics
of an axisymmetric problem in microstretch viscoelastic solid.Kumar and
Partap [19]discussed analysis of free vibrations for Rayleigh Lamb waves in
a micropolar viscoelastic plate.Kumar and Sharma [20] investigated prop-
agation of waves in micropolar viscoelastic generalized thermoelastic solids
having interficial imperfections.
The present investigation is aimed to study the free vibration analysis of
waves in an infinite homogeneous, isotropic microstretch viscoelastic layer
of thickness 2d.

2 Basic Equations

The equations of motion and the constitutive relations in a microstretch
elastic solid without body forces, body couples and stretch force given by
Eringen [4] are

(λ+2µ+K)∇(∇·~u)−(µ+K)∇×∇×~u+K∇× ~φ+λ0∇φ
∗ = ρ

∂2~u

∂t2
, (2.1)

(α+ β + γ)∇(∇ · ~φ) − γ∇× (∇× ~φ) +K∇× ~u− 2K~φ = ρj
∂2~φ

∂t2
, (2.2)

α0∇
2φ∗ − λ1φ

∗ − λ0∇ · ~u =
1

2
ρj0

∂2φ∗

∂t2
, (2.3)

tij = (λ0φ
∗ + λur,r)δij + µ(ui,j + uj,i) +K(uj,i − ǫijrφr), (2.4)

mij = αφr,rδij + βφi,j + γφj,i + b0ǫmjiφ
∗

,m, (2.5)

λ∗i = α0φ
∗

,i + b0ǫijmφj,m (2.6)

Assuming the viscoelastic nature of the material described by Kumar and
Singh [16] model of linear viscoelasticity, we replace the microstretch elastic
constants λ, µ,K,α, β, γ, α0 , λ0, λ1, b0 by
λI , µI ,KI , αI , βI , γI , α0I , λ0I , λ1I , b0Iwhere

λI = λ+λv
∂
∂t
, µI = µ+µv

∂
∂t
,KI = K+Kv

∂
∂t
, αI = α+αv

∂
∂t
, βI = β+βv

∂
∂t
,
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γI = γ + γv
∂
∂t
, α0I = α0 + α0v

∂
∂t
, λ0I = λ0 + λ0v

∂
∂t
, λ1I = λ1 + λ1v

∂
∂t
,

b0I = b0 + b0v
∂
∂t
.

And λv, µv,Kv , αv, βv , γv, α0v , λ0v , λ1v, b0v are viscosity coefficients in Eqs.
(2.1) - (2.6), we obtain

(λI +2µI +KI)∇(∇·~u)−(µI +KI)∇×∇×~u+KI∇× ~φ+λ0I∇φ
∗ = ρ

∂2~u

∂t2
,

(2.7)

(αI +βI +γI)∇(∇· ~φ)−γI∇× (∇× ~φ)+KI∇×~u−2KI
~φ = ρj

∂2~φ

∂t2
, (2.8)

α0I∇
2φ∗ − λ1Iφ

∗ − λ0I∇ · ~u =
1

2
ρj0

∂2φ∗

∂t2
, (2.9)

tij = (λ0Iφ
∗ + λIur,r)δij + µI(ui,j + uj,i) +KI(uj,i − ǫijrφr), (2.10)

mij = αIφr,rδij + βIφi,j + γIφj,i + b0Iǫmjiφ
∗

,m, (2.11)

λ∗i = α0Iφ
∗

,i + b0Iǫijmφj,m (2.12)

where λ, µ, α, β, γ,K,α0 , λ0, λ1, b0 are material constants,ρ is the density, j
is the microinertia,j0 is the microinertia of microelement, tij components
of stress tensor,mij components of couple stress tensor, ~u = (u1, u2, u3) is

the displacement vector,~φ = (φ1, φ2, φ3) is the microrotation vector ,λ∗i is
the microstress tensor, φ∗ is the scalar point microstretch function,and δij
is Kronecker delta,.
The comma notation denotes spatial derivatives.

3 Formulation of the Problem

We consider a homogeneous isotropic microstretch viscoelastic layer of
thickness 2d. The origin of the coordinate system (x, y, z) is taken on the
middle surface of the layer and z - axis normal to it along the thickness as
illustrated in Fig. 1.
For two dimensional problem, we take

~u = (u1, 0, u3)and~φ = (0, φ2, 0)
We define the non-dimensional quantities

x′ = ω∗x
c1
, z′ = ω∗z

c1
, u′1 = ω∗

c1
u1, u

′
3 = ω∗

c1
u3, t

′ = ω∗t,, φ′2 = ω∗
2

j

c2
1

φ2,
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φ∗
′

= ω∗
2

j

c2
1

φ∗, ω∗
2

= KI

ρj
, t′ij = 1

λI
tij ,m

′
ij =

ω∗mij

λIc1
, λ∗

′

i =
ω∗λ∗

i

c1λI
, p = KI

ρc2
1

,

δ2 =
c22
c21
, δ22 =

c21
c24
, δ23 =

λ0I

KI
, δ∗

2

=
KI

ρc24
, δ24 =

λ1Ic
2
1

α0Iω∗2
, δ25 =

λ0Ij

α0I
, δ26 =

ρc21j0

2α0I
.

(3.1)
where c21 = λI+2µI+KI

ρ
, c22 = µI+KI

ρ
, c24 = γI

ρj
, ω∗is the characteristic fre-

quency of the medium,c1 and c2 are respectively longitudinal and shear
wave velocity in the medium.
Introducing the velocity potential functions φ and ψ through the relations

u1 =
∂φ

∂x
+
∂ψ

∂z
, u3 =

∂φ

∂z
−
∂ψ

∂x
, (3.2)

and using Eqs. (3.1) - (3.2) in Eqs. (2.7) - (2.9) and after suppressing the
primes for convenience, we obtain

∇2φ−
∂2φ

∂t2
+ δ23φ

∗ = 0, (3.3)

∇2ψ −
φ2

δ2
−

1

δ2
∂2ψ

∂t2
= 0, (3.4)

δ∗
2

∇2ψ = δ22
∂2φ2

∂t2
+ 2δ22φ2 −∇2φ2, (3.5)

∇2φ∗ − δ24φ
∗ − δ25∇

2φ− δ26
∂2φ∗

∂t2
= 0, (3.6)

where

∇2 = ∂2

∂x2 + ∂2

∂z2

3.1 Boundary Conditions

The non-dimensional mechanical boundary conditions at z = ±d are given
by

t33 = 0, t31 = 0,m32 = 0, λ∗3 = 0, (3.7)

where

t33 = λ0Iφ
∗ + (λI + 2µI +KI)

∂u3

∂z
+ λI

∂u1

∂x
,

t31 = µI(
∂u1

∂z
+ ∂u3

∂x
) +KI(

∂u1

∂z
− φ2),
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m32 = γI
∂φ2

∂z
+ b0I

∂φ∗

∂x
,

λ∗3 = α0I
∂φ∗

∂z
− b0I

∂φ2

∂x
.

4 Formal solution of the problem

We assume the solutions of Eqs. (3.3) - (3.6) of the form

(φ,ψ, φ2, φ
∗) = [f(z), g(z), w(z), h(z)]eιξ(x−ct) , (4.1)

where c = ω
ξ

is the non - dimensional phase velocity, ω and ξ are respec-
tively the circular frequency and wave number.
Using Eq.(4.1) in Eqs. (3.3) - (3.6) and solving the resulting differential
equations, the expressions for φ,ψ, φ2 and φ∗ are obtained as

φ = (A cosm1z +B sinm1z + C cosm2z +D sinm2z)e
ιξ(x−ct), (4.2)

ψ = (A′ cosm3z +B′ sinm3z + C ′ cosm4z +D′ sinm4z)e
ιξ(x−ct), (4.3)

φ2 = δ2[(b2 −m2
3)(A

′ cosm3z +B′ sinm3z)

+(b2 −m2
4)(C

′ cosm4z +D′ sinm4z)]e
ιξ(x−ct), (4.4)

φ∗ = −
1

δ23
[(a2 −m2

1)(A cosm1z +B sinm1z)

+(a2 −m2
2)(C cosm2z +D sinm2z)]e

ιξ(x−ct). (4.5)

where

m2
i = ξ2(c2a2

i − 1), i = 1, 2, 3, 4; a2 = ξ2(c2 − 1), b2 = ξ2( c2

δ2 − 1),

(a2
1, a

2
2) = 1

2{[1 + δ26 − 1
ω2 (δ24 − δ23δ

2
5)] ± [{1 − δ26 − 1

ω2 (δ24 − δ23δ
2
5)}

2

+ 4
ω2 {δ

2
4 + δ26(δ

2
4 − δ23δ

2
5)}]

1

2 }

(a2
3, a

2
4) = 1

2{[δ
2
2 + 1

δ2 + δ∗
2

ω2δ2 (1 −
2δ2

2
δ2

δ∗
2 )] ± {[ 1

δ2 − δ22 + δ∗
2

ω2δ2 (1 −
2δ2

2
δ2

δ∗
2 )]

2

+
4δ2

2

ω2δ2 {δ
∗2

− 2(δ2δ22 − 1)}}
1

2}

With the help of equations (3.2), (4.2) and (4.3) we obtain the displacement
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components u1 and u3 as

u1 = [ιξ(A cosm1z +B sinm1z + C cosm2z +D sinm2z) + (−A′m3 sinm3z

+B′m3 cosm3z − C ′m4 sinm4z +D′m4 cosm4z)]e
ιξ(x−ct),(4.6)

u3 = [(−m1A sinm1z +m1B cosm1z −m2C sinm2z +m2D cosm2z)

−ξ(A′ cosm3z +B′ sinm3z + C ′ cosm4z +D′ sinm4z)]e
ιξ(x−ct).(4.7)

5 Derivation of the Secular Equations

Invoking the boundary conditions (3.7) on the surfaces z =± d of the
plate and using Eqs. (4.2) - (4.7), we obtain a system of eight simultaneous
Eqs.

P (AC1 +Bs1 +CC2 +Ds2)+Q{m3(A
′s3−B

′C3)+m4(C
′s4−D

′C4)} = 0,
(5.1)

P (AC1−Bs1+CC2−Ds2)+Q{m3(−A
′s3−B

′C3)+m4(−C
′s4−D

′C4)} = 0,
(5.2)

Q{(−As1+BC1)m1+(−Cs2+DC2)m2}+P (A′C3+B
′s3+C

′C4+D
′s4) = 0,

(5.3)
Q{(As1 +BC1)m1 +(Cs2 +DC2)m2}+P (A′C3−B

′s3 +C ′C4−D
′s4) = 0,

(5.4)

R[g1C1A+ g1s1B + g2C2C + g2s2D] + S[f3(−A
′s3 +B′C3)m3

+f4(−C
′s4 +D′C4)m4] = 0, (5.5)

R[g1C1A− g1s1B + g2C2C − g2s2D] + S[f3(A
′s3 +B′C3)m3

+f4(C
′s4 +D′C4)m4] = 0, (5.6)

U [g1(−Am1s1 +Bm1C1) + g2(−Cm2s2 +Dm2C2)

−V [f3C3A
′ + f3s3B

′ + f4C4C
′ + f4s4D

′] = 0, (5.7)

U [g1(Am1s1 +Bm1C1) + g2(Cm2s2 +Dm2C2)

−V [f3C3A
′ − f3s3B

′ + f4C4C
′ − f4s4D

′] = 0, (5.8)

where
P = b2 − ξ2 + pξ2

δ2 , Q = −2ιξ(1 − p
2δ2 ), R = ιξb0I

δ2

3

, S = γIδ
2, U = α0I

δ2

3

,
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V = ιξb0Iδ
2, fi = b2 −m2

i , i = 3, 4; gi = a2 −m2
i , i = 1, 2;

si = sinmid,Ci = cosmid, i = 1, 2, 3, 4.

The system of Eqs. (5.1) - (5.8) has a non-trivial solution if the determi-
nant of the coefficients of amplitudes [A,B,C,D,A′, B′, C ′,D′]T vanishes.
We obtain the following secular equations after applying lengthy algebraic
reductions and manipulations

{1 +
QR(m2

1
−a2)

PS(m2

4
−b2)

+
QV (m2

3
−b2)

PU(m2

2
−a2)

+
Q2RV (m2

1
−a2)(m2

3
−b2)

P 2SU(m2

2
−a2)(m2

4
−b2)

}[ tanm1d
tanm3d

]±1

−{
m1(m2

1
−a2)

m2(m2

2
−a2)

+
QRm1(m2

1
−a2)

PSm2(m2

4
−b2)

+
QV m1(m2

3
−b2)

PUm2(m2

2
−a2)

+
Q2RV m1(m2

3
−b2)

P 2SUm2(m2

4
−b2)

}[ tanm2d
tanm3d

]±1

−{
m3(m2

3
−b2)

m4(m2

4
−b2)

+
QRm3(m2

1
−a2)

PSm4(m2

4
−b2)

+
QV m3(m2

3
−b2)

PUm4(m2

2
−a2)

+
Q2RV m3(m2

1
−a2)

P 2SUm4(m2

2
−a2)

}[ tanm1d
tanm4d

]±1

+{
m1m3(m2

1
−a2)(m2

3
−b2)

m2m4(m2

2
−a2)(m2

4
−b2)

+
QRm1m3(m2

1
−a2)

PSm2m4(m2

4
−b2)

+
QV m1m3(m2

3
−b2)

PUm2m4(m2

2
−a2)

+ Q2RV m1m3

P 2SUm2m4
}[ tanm2d

tanm4d
]±1 −

RV (m2

2
−m2

1
)(m2

4
−m2

3
)

SU(m2

4
−b2)(m2

2
−a2)

[ (tanm1d)(tanm2d)
(tanm3d)(tanm4d) ]

±1

=
−4ξ2(1 − p

2δ2 )2m1m3(m
2
2 −m2

1)(m
2
4 −m2

3)

(b2 − ξ2 + pξ2

δ2 )2(m2
4 − b2)(m2

2 − a2)
(5.9)

Here the exponent +1 refers to skew-symmetric and -1 refers to symmetric
modes of wave propagation.

5.1 Particular cases

5.1.1 Micropolar elastic Plate

In the absence of viscous effect (α0I = λ0I = λ1I = 0) and microstretch
effect (α0 = λ0 = λ1 = b0 = 0) , the secular equation (5.9) reduces to

[
tanm1d

tanm3d
]±1 −

m3(b
2 −m2

3)

m4(b2 −m2
4)

[
tanm1d

tanm4d
]±1 =

−4ξ2(1 − p
2δ2 )2am3(m

2
4 −m2

3)

(b2 − ξ2 + pξ2

δ2 )2(m2
4 − b2)

(5.10)
The equation (5.10) agrees with Kumar and Partap [17] and has been dis-
cussed for homogeneous, isotropic, stress-free micropolar elastic plate.

5.1.2 Elastic Plate

In the absence of micropolarity effect (K = p = 0), the secular equation
(5.10) reduces to

[
tanm1d

tanm3d
]±1 =

−4ξ2ab

(b2 − ξ2)2
(5.11)
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The equation (5.11) agrees with Graff [6]and has been discussed for homo-
geneous, isotropic, stress-free elastic plate.

6 Regions of the Secular Equation

In order to explore various regions of the secular equations, here we
consider the equation (5.9) as an example for the purpose of discussion.
Depending upon whether m1,m2 ,m3 ,m4 ,a ,b being real, purely imagi-
nary or complex, the frequency equation (5.9) is correspondingly altered as
follows:

6.1 Region I

When the characteristic roots are of the type,a2 = −α′2 ,b2 = −β′2 ,m2
k =

−α2
k , k = 1,2,3,4 so that a = ια′ ,b = ιβ′ ,mk = ιαk , k = 1, 2, 3,4 are purely

imaginary or complex numbers. This ensures that the superposition of
partial waves has the property of exponential decay.In this case, the secular
equations are written from equation (5.9) by replacing circular tangent
functions of mk , k = 1, 2, 3,4 with hyperbolic tangent functions of αk , k
= 1, 2, 3,4.

6.2 Region II

This region is characterized by δ < c < 1.In this case, we have
b = b , m3 = m3, m4 = m4, a = ια′ ,mk = ιαk (i = 1,2)
and the secular equations can be obtained from equation (5.9) by replacing
circular tangent functions ofmk , k = 1, 2 with hyperbolic tangent functions
of αk , k = 1, 2.

6.3 Region III

In this case, the characteristic roots are given by m2
k , k = 1, 2,3,4 and the

secular equation is given by equation (5.9).

7 Waves of Short Wavelength

Some information on the asymptotic behavior is obtained by letting
ξ → ∞ , tanh αid

tanh αjd
→ 1,i = 1,2;j = 3,4 . If we take ξ > ω

δ
, it follows that
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c < δ, 1 .Then we replace a,b, mi with ια′, ιβ′, ιαi and secular equations
(5.9)reduces to

4ξ2(1 −
p

2δ2
)2α1α2α3α4(α1 + α2)(α3 + α4)

= (
pξ2

δ2
− β′2 − ξ2)2[(α2

1 + α2
2 + α1α2 − α′2)(α2

3 + α2
4 + α3α4 − β′2)

+
QR

PS
(α2

1 − α′2)(α2
2 − α′2) +

QV

PU
(α2

3 − β′2)(α2
4 − β′2)

+
Q2RV

P 2SU
(α3α4 + β′2)(α1α2 + α′2) −

RV

SU
(α1 + α2)(α3 + α4).

These are merely Rayleigh surface wave equations. The Rayleigh results
enter here since for such wavelengths, the finite thickness plate appears
as a half-space. Hence vibrational energy is transmitted mainly along the
surface of the plate.

8 Lame Modes

A special class of exact solutions, called the Lame modes ,but evidently
first identified by Lamb[5] can be obtained by considering the special case
b2 = ξ2(1 − p

δ2 ) , the roots for this case are in Region II and the frequency
equation (5.9) reduces to

Symmetric modes: tanm3d = ∞,⇒ m3 = nπ
2d
, n = 1, 3, 5,− −−−−−

Anti symmetric modes: tanm3d = 0,⇒ m3 = nπ
2d
, n = 0, 2, 4,−−−−−− .

Here, the frequency is given by

ω =

q
4b2d2+n2π2(1− p

δ2
)

2da3

q
1− p

δ2

9 Amplitudes of Displacements, Microrotation and

Microstretch

In this section the amplitudes of displacement components, microrota-
tion and microstretch for symmetric and skew-symmetric modes of plate
waves, have been computed. Upon using Eqs. (4.2) - (4.7), we obtain
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(u1)sym = {ιξ(cosm1z+L cosm2z)+Mm3 cosm3z+Nm4 cosm4z}Ae
ιξ(x−ct),

(u1)asym = {ιξ(sinm1z+L
′ sinm2z)+M

′m3 sinm3z+N
′m4 sinm4z}Be

ιξ(x−ct),

(u3)sym = −{m1 sinm1z+Lm2 sinm2z+ιξ(M sinm3z+N sinm4z)}Ae
ιξ(x−ct),

(u3)asym = {m1 cosm1z+L
′m2 cosm2z+ιξ(M

′ cosm3z+N
′ cosm4z)}Be

ιξ(x−ct),

(φ2)sym = δ2{(b2 −m2
3) sinm3z − (b2 −m2

4)
f3m3C3

f4m4C4
sinm4z}B

′eιξ(x−ct),

(φ2)asym = δ2{(b2 −m2
3) cosm3z − (b2 −m2

4)
f3m3s3

f4m4s4
cosm4z}A

′eιξ(x−ct),

(φ∗)sym = 1
δ2

3

{(a2 −m2
1) cosm1z + (a2 −m2

2)L cosm2z}Ae
ιξ(x−ct),

(φ∗)asym = 1
δ2

3

{(a2 −m2
1) sinm1z + (a2 −m2

2)L
′ sinm2z}Be

ιξ(x−ct).

where

L = − g1m1s1

g2m2s2
, L′ = − g1m1C1

g2m2C2
,

M =
P (g2m2T−1

1
−g1m1T−1

2
)f4s1

Qg2m2m3(f4−f3)T
−1

3
s3

, M ′ = P (g2m2T1−g1m1T2)f4C1

Qg2m2m3(f4−f3)T3C3
,

N = −
P (g2m2T−1

1
−g1m1T−1

2
)f3s1

Qg2m2m4(f4−f3)T−1

4
s4

, N ′ = −P (g2m2T1−g1m1T2)f3C1

Qg2m2m4(f4−f3)T4C4
,

Ti = tanmid, i = 1, 2, 3, 4.

10 Example results

With the view of illustrating theoretical results obtained in the preced-
ing sections, we now present some numerical results. The material chosen
for this purpose is Aluminium-epoxy composite (microstretch elastic solid),
the physical data for which is given below

ρ = 2.19 × 103Kgm−3, λ = 7.59 × 109Nm−2 ,µ = 1.89 × 109Nm−2,

K = 0.0149 × 109Nm−2 ,γ = 0.0268 × 105N ,j = 0.00196 × 10−4m2 ,

j0 = 0.00185 × 10−4m2,λ0 = λ1 = 0.037 × 109Nm−2, α0 = 0.61 × 10−5N,
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b0 = 0.025 × 105N, d = 0.01m.

For a particular model of a microstretch viscoelastic solid, the relevant
parameters following Kumar and Singh [16] are expressed as
χI = χ(1 − ιQ−1

k ) , k = 1,2,3,4,5,6,7,8 for ,χ = λ, µ,K, γ, α0, λ0, λ1, b0
respectively where Q−1

1 = 0.05,Q−1
2 = 0.01 ,Q−1

3 = 0.015 ,Q−1
4 = 0.1

,Q−1
5 = 0.15 ,Q−1

6 = 0.15 ,Q−1
7 = 0.1,Q−1

8 = 0.1 .
A FORTRAN program has been developed for the solution of equation (5.9)
to compute phase velocity c for different values of n by using the relations
tan(θ) = tan(nπ + θ) and m2

i = ξ2(c2a2
i − 1).

In general, wave number and phase velocity of the waves are complex quan-
tities, therefore, the waves are attenuated in space. If we write

c−1 = v−1 + ιω−1q (10.1)

then ξ = K1 + ιq , where K1 = ω
v

and q are real numbers. This shows that
v is the propagation speed and q is attenuation coefficient of waves. Upon
using Eq.(10.1) in the FORTRAN program developed for the solution of
equation (5.9) to compute phase velocity c, attenuation coefficient q for
different modes of wave propagation can be obtained.
The non-dimensional phase velocity and attenuation coefficient of symmet-
ric and skew-symmetric modes of wave propagation have been computed
for various values of non-dimensional wave number from secular equation
(5.9). The corresponding numerically computed values of phase velocity
and attenuation coefficient are shown graphically in Figs. 2-5 for different
modes (n = 0 to n = 3).The amplitudes of displacements, microrotation
and microstretch for symmetric and skew-symmetric modes are presented
graphically in Figs. 6-13. The solid curves correspond to microstretch
viscoelastic plate (MVEP) and dotted curves refer to microstretch elastic
plate (MEP).

10.1 Phase velocity

The phase velocity of higher modes of wave propagation, symmetric and
skew-symmetric attains quite large values at vanishing wave number, which
sharply slashes down to become steady with increasing wave number. It is
observed that the phase velocities of different modes of wave propagation
start from large values at vanishing wave number and then exhibit strong
dispersion until the velocity flattens out to the value of the microstretch
Rayleigh wave velocity of the material at higher wave numbers. The reason
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for this asymptotic approach is that for short wavelengths (or high frequen-
cies) the material plate behaves increasingly like a thick slab and hence the
coupling between upper and lower boundary surfaces is reduced and as a
result the properties of symmetric and skew-symmetric waves become more
and more similar.
The phase velocity of lowest symmetric and skew-symmetric mode (n = 0)
remains constant with the variation in wave number in microstretch elas-
tic plate (MEP) and microstretch viscoelastic plate (MVEP) respectively,
whereas the phase velocity of lowest symmetric mode and skew-symmetric
mode (n = 0) varies at lower wave number and becomes constant at higher
wave number in microstretch viscoelastic plate (MVEP) and microstretch
elastic plate (MEP) respectively.
It is observed that phase velocity in MEP is more than in MVEP for sym-
metric modes n = 1, 2, 3 and skew-symmetric modes n = 0, 1, 2, 3. In
case of lowest symmetric mode ( n = 0), for wave number ξ ≤ 0.8 phase
velocity in MVEP is more than in case of MEP, the values of phase velocity
are smaller in MVEP than in MEP for wave number ξ ≥ 0.8. The phase
velocity for symmetric mode n = 2 in MEP is more than in case of MVEP
for symmetric mode n = 3.

10.2 Attenuation coefficients

The variation of attenuation coefficient with wave number for symmet-
ric and skew-symmetric modes is represented graphically in Figs. 3 and
5 respectively in case of microstretch viscoelastic plate (MVEP). For the
symmetric modes n = 1, 2, 3, we observe the following
(i) the magnitude of attenuation coefficient has maxima upto 10.14 at
ξ = 5.07. (ii) The variation of attenuation coefficient with wave num-
ber remains same. (iii) the attenuation coefficient varies linearly with wave
number. For lowest symmetric mode n = 0, the magnitude of attenuation
coefficient increases upto 8.37 in region 0.07 ≤ ξ ≤ 3.08 at ξ = 1.08 and
varies linearly with increase in wave number and attains maxima upto 10.13
in region 3.08 ≤ ξ ≤ 5.07 at ξ = 5.07.
For skew-symmetric modes we observe the following (i) the attenuation co-
efficient varies linearly with wave number for modes n = 2,3 (ii) for mode n
= 1, the attenuation coefficient varies linearly with wave number in region
0.07 ≤ ξ ≤ 4.08 and the attenuation coefficient is highest in the region
4.08 ≤ ξ ≤ 5.08and attains maximum value upto 10.89 at ξ = 5.08 (iii)
for lowest mode, the attenuation coefficient varies linearly with wave num-
ber in region 1.08 ≤ ξ ≤ 5.08 and the lowest mode has higher attenuation
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coefficient than other modes for the region 0.07 ≤ ξ ≤ 1.08

10.3 Amplitudes

Figs. 6-13 depict the variations of symmetric and skew-symmetric am-
plitudes of displacement (u1), displacement (u3) ,microrotation (φ2)and
microstretch (φ∗) in case of microstretch viscoelastic plate (MVEP) and
microstretch elastic plate (MEP). The displacement (u1) of the plate is
maximum at the centre and minimum at the surfaces for symmetric mode
as can be seen from Fig.6. It is evident from Fig. 7 and Fig. 8 that
(i) the values of the skew-symmetric displacement (u1)and symmetric dis-
placement (u3) of the plate is maximum at top surface, zero at the centre
and minimum at the bottom surface in case of microstretch elastic plate
(MEP) (ii) the values of the skew-symmetric displacement (u1) is minimum
at z = -0.6d , zero at the centre and maximum at z = 0.6d , whereas the
values of the symmetric displacement is maximum at z = -0.6d , zero at the
centre and minimum at z = 0.6d in case of microstretch viscoelastic plate
(MVEP). From Fig.9, it is noticed that the values of the displacement (u3)
of the plate is maximum at the centre and minimum at the surfaces in case
of microstretch viscoelastic plate (MVEP) and minimum at the centre and
maximum at the surfaces in case of microstretch elastic plate (MEP) for
skew-symmetric mode. The values of the symmetric microrotation (φ2) of
the plate is maximum at top surface , zero at the centre and minimum at the
bottom surface as seen from Fig. 10. The values of the microrotation (φ2)
and microstretch (φ∗) of the plate is minimum at the centre and maximum
at the surfaces for skew-symmetric mode and symmetric modes respectively
as observed from Fig.11 and Fig. 12. The values of the skew-symmetric
microstretch (φ∗) of the plate is minimum at top surface , zero at the centre
and maximum at the bottom surface as seen from Fig. 13.(u1)sym ,(u1)asym

,(u3)sym , (u3)asym, (φ2)sym ,(φ2)asym , (φ∗)symand (φ∗)asym correspond to
the values of (u1),(u3) , (φ2) and (φ∗) for symmetric and skew-symmetric
modes respectively. The values of the symmetric displacement (u1) , skew-
symmetric displacement (u3)and skew-symmetric microrotation (φ2) of the
plate are more in microstretch elastic plate (MEP) in comparison to mi-
crostretch viscoelastic plate (MVEP) , whereas values of the symmetric
microstretch (φ∗) of the plate are more in microstretch viscoelastic plate
(MVEP) in comparison to microstretch elastic plate (MEP). The values of
the skew-symmetric displacement (u1) , symmetric displacement (u3) and
symmetric microrotation (φ2) of the plate are smaller in microstretch elas-
tic plate (MEP) in comparison to microstretch viscoelastic plate (MVEP)
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below the centre of the plate and are more in microstretch elastic plate
(MEP) in comparison to microstretch viscoelastic plate (MVEP) above the
centre of the plate, whereas the values of the skew-symmetric microstretch
(φ∗) of the plate in case of microstretch elastic plate (MEP) are more below
the centre of the plate and are smaller above the centre of the plate.

11 Conclusions

(i) The propagation of free vibrations in infinite homogeneous, isotropic
microstretch viscoelastic plate subjected to stress-free conditions is investi-
gated after deriving the secular equations (ii) It is noticed that the motion
of free vibrations is governed by the Rayleigh - Lamb type secular equations
(iii) At short wavelength limit, the secular equations in case of symmetric
and skew-symmetric modes of propagation of free vibrations in a stress-free
plate reduces to the Rayleigh surface frequency equations (iv) The phase
velocities of higher modes of propagation, symmetric and skew-symmetric
attain quite large values at vanishing wave number which sharply slashes
down to become steady and asymptotic to the reduced Rayleigh wave veloc-
ity with increasing wave number. The phase velocity in MEP is more than
in MVEP for symmetric modes n = 1, 2, 3 and skew-symmetric modes
n = 0, 1, 2, 3 (v) The attenuation coefficient varies linearly with wave
number for symmetric modes n = 1, 2, 3 and for skew-symmetric modes
n = 2, 3 (vi) The amplitudes of displacement components, microrotation
and microstretch for symmetric and skew-symmetric modes are computed
numerically and presented graphically.
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Fig.1  Geometry of the problem
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Fig. 2 Variation of phase velocity for symmetric modes of wave propagation
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Fig. 3 Variation of attenuation coefficient of symmmetric modes of wave propagation
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Fig. 4 Variation of phase velocity for skew-symmetric modes of wave propagation
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Fig. 5 Variation of attenuation coefficient of skew-symmmetric modes 
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Fig. 6 Amplitude of symmetric displacement  u
1
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Fig. 7 Amplitude of skew-symmetric displacement  u
1
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Fig. 8 Amplitude of symmetric displacement  u
3
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Fig. 9 Amplitude of skew-symmetric displacement  u
3
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Fig. 10 Amplitude of symmetric microrotation  φφφφ
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Fig. 11 Amplitude of skew-symmetric microrotation  φφφφ
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Fig. 12 Amplitude of symmetric microstretch  φφφφ
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Fig. 13 Amplitude of skew-symmetric microstretch  φφφφ
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