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1 Introduction and preliminaries

Throughout the paper, we assume that K is a nonempty subset of a Banach
space E. F (T ) denotes the fixed point set of T , i.e., F (T ) = {x ∈ K : Tx = x}.
Definition 1.1. A mapping T : K → K is said to be

(i) asymptotically nonexpansive, if there exists kn ∈ [1,∞), lim
n→∞

kn = 1, such
that

‖Tnx− Tny‖ ≤ kn‖x− y‖, ∀x, y ∈ K, n ≥ 1.

(ii) asymptotically quasi-nonexpansive, if F (T ) 6= ∅ and there exists kn ∈
[1,∞), lim

n→∞
kn = 1, such that

‖Tnx− p‖ ≤ kn‖x− p‖, ∀x ∈ K, p ∈ F (T ), n ≥ 1.

(iii) uniformly quasi-Lipschitzian, if F (T ) 6= ∅ and there exists a constant
L > 0, such that

‖Tnx− p‖ ≤ L‖x− p‖, ∀x ∈ K, p ∈ F (T ), n ≥ 1.
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Remark 1.2. It is easy to see that the asymptotically nonexpansive mapping
is asymptotically quasi-nonexpansive mapping, and the latter is uniformly quasi-
Lipschitzian mapping with L = supn≥1{kn} < +∞. However, the converse doesn’t
hold in general.

Definition 1.3. ( [1]) Let {Ti : i = 1, 2, · · · , k} : K → K be a finite family of
mappings. Let x1 ∈ K, then the sequence {xn} is defined by

xn+1 = aknxn + bknTn
k y(k−1)n + cknukn,

y(k−1)n = a(k−1)nxn + b(k−1)nTn
k−1y(k−2)n + c(k−1)nu(k−1)n,

y(k−2)n = a(k−2)nxn + b(k−2)nTn
k−2y(k−3)n + c(k−2)nu(k−2)n, (1.1)

...
y2n = a2nxn + b2nTn

2 y1n + c2nu2n,

y1n = a1nxn + b1nTn
1 xn + c1nu1n, n ≥ 1,

where {ain}, {bin}, {cin} are sequences in [0, 1] with ain + bin + cin = 1 for all
i = 1, 2, · · · , k and n ≥ 1, {uin, i = 1, 2, · · · , k, n ≥ 1} are bounded sequences in
K, is called multistep iterative sequences with errors.

Remark 1.4. The multistep iterative sequences with errors contains many well-
known iterations as special case. Such as, the modified Mann iteration(see, Schu
[2]), the modified Ishikawa iteration(see, Tan and Xu [3]), the three-step itera-
tion(see, Xu and Noor [4]), the multistep iteration(see, Khan et al. [5]) etc.

In 1972, Goebel and Kirk [6] introduced the conception of asymptotically non-
expansive mapping, they proved that if K is a nonempty closed convex bounded
subset of a uniformly convex Banach space E, then every asymptotically non-
expansive mapping of K has a fixed point. Iterative techniques for approxi-
mating fixed points of asymptotically nonexpansive and asymptotically quasi-
nonexpansive mappings in Banach spaces have been studied by many authors;
See, [6–16, 18, 19, 21]and the references therein. Related work can be found in
[22–27,29,30] and others.

Recently, Shahzad and Udomene [20] established several necessary and suffi-
cient conditions for the modified Ishikawa iteration process for two asymptotically
quasi-nonexpansive mappings in Banach spaces. Quan et al. [1] discarded Condi-
tion 2.1 in Theorem 2.1 of Chang et al. [17], and they studied sufficient and neces-
sary conditions on the strong convergence of the multistep iterative sequences with
errors for a finite family of asymptotically quasi-nonexpansive and type mappings
in Banach spaces. Khan et al. [5] proved a necessary and sufficient conditions for
the multistep iterative processes to converge strongly to a common fixed points of
a finite family of asymptotically quasi-nonexpansive mappings in Banach spaces.

In this paper, we give a sufficient and necessary condition on the strong
convergence of the iteration process (1.1) for a finite family of uniformly quasi-
Lipschitzian mappings in Banach spaces. Furthermore, our results generalize and
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improve the corresponding results of Quan et al. [1], Khan et al. [5], Shahzad and
Udomene [20], Chang et al. [17] and Wang and Liu [28] and many others.

In the sequel, we shall need the following lemma.

Lemma 1.5. ( [10]) Let {an}, {bn}, {λn} be sequences of nonnegative real numbers
satisfying the inequality

an+1 ≤ (1 + λn)an + bn, ∀n ≥ 1.

If
∑∞

n=1 λn < +∞,
∑∞

n=1 bn < +∞, we have (i) limn→∞ an exists. (ii) In partic-
ular, if lim infn→∞ an = 0, then limn→∞ an = 0.

2 Main Results

The following lemma plays an important role in this paper.

Lemma 2.1. Let K be a nonempty closed convex subset of a Banach space E and
{Ti : i = 1, 2, · · · , k} : K → K be a finite family of uniformly quasi-Lipschitzian
mappings, i.e., ‖Tn

i x − pi‖ ≤ Li‖x − pi‖ for all x ∈ K and pi ∈ F (Ti), i =
1, 2, · · · , k, n ≥ 1. The sequence {xn} is defined by (1.1) satisfying:

∑∞
n=1(bin +

cin) < +∞, for all i = 1, 2, · · · , k. If F :=
⋂k

i=1 F (Ti) 6= ∅, then

(i) there exists a sequence {αn} in [0, +∞), such that
∑∞

n=1 αn < +∞ and
two constants L , M > 0, such that

‖xn+1 − p‖ ≤
(

1 +
k∑

i=1

αi
nLi

)
‖xn − p‖+

k∑

i=1

αi
nLi−1M, ∀p ∈ F, n ≥ 1. (2.1)

(ii) there exists a constant M1 > 0, such that

‖xn+m − p‖ ≤ M1‖xn − p‖+ M1

k∑

i=1

n+m−1∑

j=n

αi
jL

i−1M, ∀p ∈ F, n,m ≥ 1. (2.2)

Proof. (i)Let p ∈ F and L = max1≤i≤k Li. Assume αn = max1≤i≤k(bin+cin), n ≥
1. Since

∑n
i=1(bin + cin) < +∞, i = 1, 2, · · · , k, so

∑∞
n=1 αn < +∞. Notice that

{uin : i = 1, 2, · · · , k} are bounded sequences in K, therefore there exists a M > 0,
such that

M = max

{
sup
n≥1

‖uin − p‖, i = 1, 2, · · · , k

}
.

Using iterative sequence (1.1), we have

‖y1n − p‖ = ‖a1n(xn − p) + b1n(Tn
1 xn − p) + c1n(u1n − p)‖

≤ a1n‖xn − p‖+ b1nL‖xn − p‖+ c1n‖u1n − p‖
≤ (a1n + b1nL)‖xn − p‖+ αnM

≤ (1 + αnL)‖xn − p‖+ αnM. (2.3)
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Furthermore, by inequality (2.3), we obtain

‖y2n − p‖ = ‖a2n(xn − p) + b2n (Tn
2 y1n − p) + c2n(u2n − p)‖

≤ a2n‖xn − p‖+ b2nL‖y1n − p‖+ c2nM

= (a2n + b2nL(1 + αnL))‖xn − p‖+ b2nLαnM + αnM

≤ (1 + αnL + α2
nL2)‖xn − p‖+ α2

nLM + αnM. (2.4)

Repeatedly, we have

‖yjn−p‖ ≤
(

1 +
j∑

i=1

αi
nLi

)
‖xn−p‖+

j∑

i=1

αi
nLi−1M, j = 1, 2, · · · , k−1. (2.5)

In fact, (2.5) holds for j = 1 via inequality (2.3). By using induction, suppose that
(2.5) holds for j, then for j + 1, we have

‖y(j+1)n − p‖ = ‖a(j+1)n(xn − p) + b(j+1)n(Tn
j+1yjn − p) + c(j+1)n(u(j+1)n − p)‖

≤ a(j+1)n‖xn − p‖+ b(j+1)nL‖yjn − p‖+ c(j+1)nM

≤ a(j+1)n‖xn − p‖+ b(j+1)nL

(
1 +

j∑

i=1

αi
nLi

)
‖xn − p‖

+ b(j+1)nL

j∑

i=1

αi
nLi−1M + c(j+1)nM

≤
[
1 + αnL

(
1 +

j∑

i=1

αi
nLi

)]
‖xn − p‖+ αnL

j∑

i=1

αi
nLi−1M + αnM

=

(
1 +

j+1∑

i=1

αi
nLi

)
‖xn − p‖+

j+1∑

i=1

αi
nLi−1M.

Hence (2.5) holds. It follows from (1.1) and (2.5) that

‖xn+1 − p‖ = ‖akn(xn − p) + bkn(Tn
k y(k−1)n − p) + ckn(ukn − p)‖

≤ akn‖xn − p‖+ bknL‖y(k−1)n − p‖+ cknM

≤
[
akn + bknL

(
1 +

k−1∑

i=1

αi
nLi

)]
‖xn − p‖+ bknL

k−1∑

i=1

αi
nLi−1M + αnM

≤
(

1 +
k∑

i=1

αi
nLi

)
‖xn − p‖+

k∑

i=1

αi
nLi−1M.

This completes the proof of part(i).
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(ii) If x ≥ 0, then 1 + x ≤ ex. For any integer n,m ≥ 1 and from part(i), we
have

‖xn+m − p‖

≤
(

1 +
k∑

i=1

αi
n+m−1L

i

)
‖xn+m−1 − p‖+

k∑

i=1

αi
n+m−1L

i−1M

≤ e
Pk

i=1 αi
n+m−1Li‖xn+m−1 − p‖+

k∑

i=1

αi
n+m−1L

i−1M

≤ e
Pk

i=1 αi
n+m−1Li

e
Pk

i=1 αi
n+m−2Li‖xn+m−2 − p‖+ e

Pk
i=1 αi

n+m−1Li
k∑

i=1

αi
n+m−2L

i−1M

+
k∑

i=1

αi
n+m−1L

i−1M

· · ·

≤ e
Pk

i=1
Pn+m−1

j=1 αi
jLi‖xn − p‖+ e

Pk
i=1

Pn+m−1
j=1 αi

jLi
k∑

i=1

n+m−1∑

j=n

αi
jL

i−1M

≤ e
Pk

i=1
P∞

j=1 αi
jLi‖xn − p‖+ e

Pk
i=1

P∞
j=1 αi

jLi
k∑

i=1

n+m−1∑

j=n

αi
jL

i−1M

= M1‖xn − p‖+ M1

k∑

i=1

n+m−1∑

j=n

αi
jL

i−1M,

where M1 = e
Pk

i=1
P∞

j=1 αi
jLi

. This completes the proof of part(ii).

Theorem 2.2. Let K be a nonempty closed convex subset of a Banach space
E. Let {Ti : i = 1, 2, · · · , k} : K → K be a finite family of uniformly quasi-
Lipschitzian mappings, i.e., ‖Tn

i x−pi‖ ≤ Li‖x−pi‖ for all x ∈ K and pi ∈ F (Ti),
i = 1, 2, · · · , k, n ≥ 1. Suppose that F :=

⋂k
i=1 F (Ti) 6= ∅. The sequence {xn} is

defined by (1.1) satisfying:
∑∞

n=1(bin + cin) < +∞, i = 1, 2, · · · , k. Then {xn}
converges strongly to a common fixed point of the family of mappings {Ti : i =
1, 2, · · · , k} if and only if lim infn→∞ d(xn, F ) = 0, where d(x, F ) = infp∈F ‖x−p‖.
Proof. The necessity of Theorem 2.2 is obvious. Thus, we will only prove the
sufficiency. From Lemma 2.1(i), we have

‖xn+1 − p‖ ≤
(

1 +
k∑

i=1

αi
nLi

)
‖xn − p‖+

k∑

i=1

αi
nLi−1M, ∀p ∈ F, n ≥ 1.

Therefore,

d(xn+1 − p) ≤
(

1 +
k∑

i=1

αi
nLi

)
d(xn − p) +

k∑

i=1

αi
nLi−1M.
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Since
∑∞

n=1 αn < +∞, so
∑k

i=1 αi
nLi < +∞ and

∑k
i=1 αi

nLi−1M < +∞. With
the help of Lemma 1.5 and lim infn→∞ d(xn, F ) = 0. We know limn→∞ d(xn, F ) =
0.

Next, we prove that {xn} is a Cauchy sequence. For each ε > 0, there exists
a natural number n1, such that

d(xn, F ) ≤ ε

12M1
, for all n ≥ n1. (2.6)

Hence, there exists p1 ∈ F and a constant n2 > n1, such that

‖xn2 − p1‖ ≤ ε

4M1
,

k∑

i=1

∞∑

j=n2

αi
jL

i−1 <
ε

2M1M
. (2.7)

By Lemma 2.1(ii), (2.6) and (2.7), for all n ≥ n2, we have

‖xn+m − xn‖ ≤ ‖xn+m − p1‖+ ‖p1 − xn‖

≤ M1‖xn2 − p1‖+ M1

k∑

i=1

n+m−1∑

j=n2

αi
jL

i−1M + ‖p1 − xn2‖

≤ 2M1‖xn2 − p1‖+ M1

k∑

i=1

n+m−1∑

j=n2

αi
jL

i−1M

≤ 2M1
ε

4M1
+ M1

ε

2M1M
M = ε.

Then {xn} is a Cauchy sequence. Because K is nonempty closed convex subset of
E, so there exists a q ∈ K, such that xn → q as n →∞. Finally, we prove q ∈ F .

In fact, since d(q, F ) = 0. So, for any ε1 > 0, there exists p2 ∈ F , such that
‖p2 − q‖ < ε1. Then we have

‖Tiq − q‖ ≤ ‖Tiq − p2‖+ ‖p2 − q‖
≤ (1 + L)ε1.

By the arbitrary of ε1, we know that ‖Tiq− q‖ = 0, i = 1, 2, · · · , k, i.e., q ∈ F .

Remark 2.3. Theorem 2.2 improves Theorem 2.3 of Quan et al. [1], Theorem
2.2 of Khan et al. [5] and Theorem 3.2 of Shahzad and Udomene [20] from the
asymptotically quasi-nonexpansive mappings to the uniformly quasi-Lipschitzian
mappings. At the same time, it extends the iterative sequences in Khan et al. [5]
and Wang and Liu [28] to multistep iterative sequences with errors.

By Remark 1.2, we have the following Corollaries immediately.

Corollary 2.4. Let K be a nonempty closed convex subset of a Banach space E
and {Ti : i = 1, 2, · · · , k} : K → K be a finite family of asymptotically quasi-
nonexpansive mappings, such that F :=

⋂k
i=1 F (Ti) 6= ∅. The sequence {xn} is

defined by (1.1) satisfying:
∑∞

n=1(bin + cin) < +∞, i = 1, 2, · · · , k. Then {xn}
converges strongly to a common fixed point of {Ti : i = 1, 2, · · · , k} if and only if
lim infn→∞ d(xn, F ) = 0, where d(x, F ) = infp∈F ‖x− p‖.
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Corollary 2.5. Let K be a nonempty closed convex subset of a Banach space E
and {Ti : i = 1, 2, · · · , k} : K → K be a finite family of asymptotically nonex-
pansive mappings, such that F :=

⋂k
i=1 F (Ti) 6= ∅. The sequence {xn} is defined

by (1.1) satisfying:
∑∞

n=1(bin + cin) < +∞, i = 1, 2, · · · , k. Then {xn} con-
verges strongly to a common fixed point of {Ti : i = 1, 2, · · · , k} if and only if
lim infn→∞ d(xn, F ) = 0, where d(x, F ) = infp∈F ‖x− p‖.
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