Thai Journal of Mathematics
Volume 8 (2010) Number 1 : 51-62

www.math.science.cmu.ac.th/thaijournal
Online ISSN 1686-0209

Pseudo-Differential Operators associated
with Bessel Type Operators - I
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Abstract : In this paper Bessel type differential operator A, g, the pseudo dif-
ferential type operators are defined and the symbol classes H"and Hf" are in-
troduced. It is established that Pseudo-differential type operator associated with
symbols belonging to these classes are continuous linear mappings of the Zemanian
space H, g into itself. Integral representation for Pseudo-differential type opera-
tor hq,g,q is obtained. Finally it is shown that Pseudo-differential type operators
satisfy L'-norm inequality.
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1 Introduction

The Hankel type transformation,
(hog)(@) = [ ap)*Jus(en)olu)dy (1)
0

is extended by Zemanian [7] to distributions belonging to H; g+ the dual of the
function space H, g which consists of all complex valued infinitely differentiable
functions defined on I = (0, 00) satisfying,

p%ﬁk(gp) = blé}fl) |a:m(x_1Dx)k (x25_1¢(x))| < 00 (1.2)

for every m, k € Ny.
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Zaidman [5], [6] has used Schwartz’s theory of the Fourier transform of distri-
butions in §’(R™)in the study of Pseudo-differential operators. But Zemanian’s
theory of the Hankel type transform has not been used so far to develop a theory
of Pseudo-differential operators associated with Bessel type operators as a special
case. The purpose of the present paper is to change this Scenario (situation)

2 Notations and Terminology

We define the differential operators P, g, Qa3 and S, 3 as,

Pog = Papa=a" Dy 2! (2.1)
Qopz =271 D, 2 (2.2)

Aa,ﬁ - Aa.ﬂ,x = Qa.ﬂ Pa.ﬂ = x2ﬁ71 Dz x4aDz x2ﬁ71
= (28-1)(4a+23 — 2) z*otA=D (2.3)

+ 2(2a+ 26 _ 1) x4o¢+4ﬁ—3 D, +x2(2a+26—1) Dg

d
where, D, = —

x
Following [7, p. 139] and [2, p. 948], we can establish the following relations
for any ¢ € Ho g

ha,ﬁ,l(_x(b) = Pa,ﬁ hac,ﬁ ¢ (24)
hap1(Pap ¢) = =y hap ¢ (2.5)
ha,8(Ba,p 6) = —y° hap ¢ (2.6)
k . .
(@ 'D)" (220710¢) =S (5) (7' D) 0 (27 D,) " (220 19) (2.7)
=0
haaed(@) = Y b2 (37D, (2P () (2.8)
j=0

where b; are constants depending only on a — (3.
We also need a lemma due to Haimo [1] for the Hankel type convolution
transform.

Lemma 2.1. Let A(z,y,z) be the area of a triangle with sides x, y, z if such a

triangle exists for fized (a —b) > —1% set,

2301 (T(q — b+ 1))
VrT(a—b+3)

D(z,y,2) = (2y2) 27" [Adz,y, )P0 (2.9)
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if A exists and zero otherwise. We note that D(x,y, z) > 0 and that it is symmetric
m x,y, z. Further we have the following basic formula:

/000 i(zt) D(x,y,z) d p(z) = i(xt) i(yt) (2.10)
22(a—b)+1

where, d p(x) = 5 (a bt 1>dx (2.11)

i(x) =29 T(a—b+1) 7@ J,_ () - (2.12)

Let f € L'(0,00) Then its associated function f(x,y) is defined by,
fen = [ 1 Depdut) 0<ay<o. (@1
0
Lemma 2.2. Let f and g be functions of L*(0,00) and let,

f#ﬂ@—Amﬂmewdmw 0< <o (2.14)

Then the integral defining f#g(xz) converges for almost all x, 0 < x < oo, and

If# 9l < W1l Nl - (2.15)

3 The Pseudo-Differential type Operator h, 3,

Definition 3.1. Let a(x,y) be a complex valued function belonging to the space
C>™ (I x I), where I = (0,00) and let its deriatives satisfy certain growth condi-
tions such as (3.5). Then the Pseudo-differential type operator ha . associated
with the symbol a(x,y) is defined by,

(ha,p,av) (2) :/Om(wy)aHj Jo—p (zy) a(z,y) Uap (y) dy (3.1)
where,
e 1
Uap (y) = (ha,p u) (y) —/O (@y)* "7 Jap (zy) u(z) do; (o —f) 2 —3 (32)

In case a(z,y) = b(y), then clearly we have,

(hocﬁ.,a u)(r) = hocﬁ[b(y) Uocﬁ(y)] ’
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If a(z,y) possesses a power series expansion in (—y?) with variable coefficients
depending on x, that is,

a(z,y) =Y ax (@) (—y*)" - (3.3)

k=0
Then using formula (2.6) one can show that

N

(ha,p,a u) (2) = ax, () (Aa,ﬁ)k u(x) (3.4)
k=0

so that the Pseudo-differential type operator associated with the symbol (3.3)
could be a finite order differential operator involving Ay g .

Definition 3.2. The function a(z,y) : C*° (I x I) — C belongs to class H™ if

and only if for every ¢ € Ny, i € Ny, p € Ny, there exists K}, i m,q > 0 such that,
(+2) (@7 D) (7 D) al@,y)| € Kpiamg L+9)™ 7 (35)
where D, = % and m is a fized real number.

If a(x,y) satisfies (3.5) with ¢ = 0, then the symbol class will be denoted by H{";

clearly H™ C H(". One can easily show that a(x,y) = (1 + x2)_n (1 + y2) % > 0,
m € R is an element of Hj", but it does not belong to H™.
Nevertheless a(z,y) = e=* (1+y%)%, m € R belongs to H™.

Theorem 3.3. Let the symbol a(x,y) € H{*(or H™). Then for (o — ) > —3,

the pseudo-differential type operator hq g,q is a continuous linear mapping of H g
into itself.

Proof. Let ¢(y) = (ha,p,a ) (y), uw € Hqp (I). Then using formulae (2.4), (2.5)
and Zemanian’s technique, [6, p. 141], we have,

(Pa,ﬁ,k—l ...... Pa)ﬁ (;5) (y) =

k oo
S0 [Tyt D) atey) (<0 o) Jaasi o) d
r=0 0
where C,. are certain positive real numbers.

Set 07 (I,y) - (y71 Dy)r a(x,y)

Now using formula (2.7) and induction, we obtain,

(—y)” (Pa,ﬁ,k—l ...... Pa)ﬁ 10} (y))
k o0 n
_ Z(_l)kfr CT/O yr+§ Ia7ﬁ+k+nfr+1 Z(?) (x71 Dz)l
r=0 i=0

X ap (z,y) (@ D) (x2ﬁ71 u(:z:)) Ja—prin—r (zy) dz .
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Setting & — 8 + k —r = X\ and using formula (2.1), we can obtain,

(_1)11 y" (y—l Dy)k (y2ﬁ—1 ¢(y)) _ Z( 1)1@_T o /OO g2 ntl
r=0 0

>0 D)

ar (z,y) (x7" Do) (27 () Jagn (zy) (zy) da .

i=0
Now setting n =t + s where s,t € Ny, and s > m, and n = t in turn, in the
above expression and using (3.5) with ¢ = 0 and assumption (o — ) > ——, we

can estimate the above expression in absolute value as follows:
There exists a constant K, ,, such that,

(L+y%) |y (=t DY)y~ 6 (v)]

E oo
SZ_;/O 2" (14y™) (1+y)7" -

t+s
(1 + @)y K (7)) (@71 D) 7 (227 ()
itzo dx
+(1 4 x)2A L Z Ky (f) (z7'D,)"" (xm*lu(x))
i=0
Thus, ‘y(_lD)k y?8=1 p(y) <KZ/ "4y 14y
t+s
(1 + I)2)\+t+s+1 Z ($+s) (Ilez)tJrsfi(xQﬁflu(x)
it:O dx
+(1 + x)Q)\thJrl Z (5) (I—lDz)tﬂ' (walu(x))
i=0
—ﬁ+k)+t+s+3.

Now, we can choose a non-negative integer N such that N > 2(
Then using the fact that (1 +y™)/(1+y*) <2 for y > 0, s > m, we obtain,

’y (y -1p )k 28— 1¢ < K/Z2m+1/ 1+x)N72_

t+s
Z@WWUWW%%WwHZ®WﬂmWW“WMPx
=0

i=0
k t+s N t N
<K 3|S5 ()
i=0 | i=0 3:0 i=0  j=0
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Therefore by using (1.2), we have,

t+s t
p?.,)k < K” ZZ Z t+5) pg t+s A +Z pgt 7 (36)
r=0 7=0 1=0 =0

where K" is a positive constant. The continuity of hg g, follows from (3.6)
and hence the proof is complete. O

4 Integral Representation for £, 3,

The function a,(y), associated with the symbol a(z,y) and defined by,

an(y) = / (@)t Jamp (2y) [(xn)*? Jaep (xt) a(e,n)] de (4.1)
0
will play a fundamental role in our investigation. An estimate for a,(y) is given

by the following lemma:

Lemma 4.1. Let the symbol a(z,y) € H™. Then the function a,(y) defined by
(4.1) satisfies the inequity,

lanW)] < Aagimrg (1+n0)?0FmH (14 y)> (1+y?) " where Aa,g.m,rq i
a positive constant.

Proof. For r € Ny, using formula (2.6), we have,

(Y anly) = / T @) Jap (@9) (Bag)” (@)™ Jars (on) ale,n)] do

/ (29)°%8 Ju_s (ay) 3 by 2%+20 (371 D)7+ 5261
0 .
7=0

< [@n)**? Jaop (2n) a(z,n)] de

Using formula (2.7) we obtain,

) r r+j ]
Y a) = [ s la) 3 ey (1)
0 =0 =0

x (27! Dy)la(x,n) (x7 D) (x_(o‘_ﬁ) Jo—p (xn)) Bz .
Now using the formula,

(xilDw)mxi(aiﬁ)Ja—B(xn) = (_n)mxi(aiﬁ)im‘]&—ﬁﬁ-m(*xn) :

We can obtain,

[(=y*)" an(y)| < /o (2)°*? Jup (zy) ij L2i+2a

Jj=0
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r+j
X (IH) (@7 Da)' alw, ) nPr 27220 (o) =m0 gy (am) | d
i=0
< y2a/ an (xy)*(a*ﬁ) Jafﬁ(xy)’
0
r _ r+j ) _ o
x| Dby xRy (:H) (@7" Dy)" alw,n) Pr A2
§=0 i=0
X ‘(wn)f(afﬁ)frfjfi Ja—partj—i (wn)‘ dx
r r+j S
<Bapy Y (;-l—j) DY i (g n)m/ 22142 (1 4 g)-ag,
i=0 i=0 0
r r+j )
< By 3 (1) e g
j=0 i=0
XB (2a—B)+2 +2,q—2a—F) 2 —2) ;

forg >2(a—-pB+j+1).

Therefore there exists a constant A 3,m,rq such that,
lan@)] < Aagm.rq(l+n)" 214 y)* (14 y27) 7, for every r > 0.

This completes the proof. [l

Now we are ready to obtain an integral representation for the Pseudo-differential
type operator hq g, as the following theorem:

Theorem 4.2. For any symbol a(z,y) € H™, the associated operator ho. g.q can
be represented by

oo

a’ﬁ(y) Uaﬂ(n)] dy,u € Ha,ﬁ (I) )
(4.2)

(o) @)= [ ) s )| [

where Uy g(n) = (ha,gu) (n) and all involved integrals are convergent.

Proof. We have,

an(y) = / @) Tues (2) [(@n)* Juep (an) ale,m)] da

Now by inversion, formula, we have,

/0°° an(y) (2y)**? Jazp (xy) dy = (a0)* Jap (an) a(z,n)
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Therefore,

(hovpau)() = / @) Jues (en) ale,n) Uns(n) de

/ S U s dn / " an(y) (@)™ Tap (ey) dy

0 0

- / (29)°* Ja_p (zy) dy / Un () ) d 1.
0 0

Using (4.1) for a,(y), the above change in the order of integration can be jus-
tified and the existence of the last integral can be proved.

Note also that as U, g(n) € Hy g(I), we have,
Uas(m)| < Cp** (14n)"% forall £>0.

Thus,
(hapa)l < [ [

X Aagmrg (1Y) (L+y7) 7 x (L)t 20 0 (149) " dndy

()~ Jog (ay)

< D I2a/ (1 +y)2(a—ﬁ)+1 (1 +y2r)—l dy
0

a,B,m,r,q

X/ (1 +n)2(a7ﬁ)+m+4r7€+1 dn
0

Since (o — 3) > —1, and ¢ and r can be chosen sufficiently large, the above

integrals are convergent. This completes the proof. O
5 An L' - Norm Inequality

In this section we shall need the following

Definition 5.1. (Sobolev type space) The space G*(R), s € R, is defined to be the
set of all those elements u € Hy g(I), which satisfy,

lullge = [|7"*°~  hap(@)]| < oo (5.1)

Lemma 5.2. For (o — 3) > —1 and r € Ny,there exists a constant Cypm.q > 0
such that,
[An@)] < Crmg (L) y** (L4y7) 70, (5.2)

where, Ay(y) = ha,p (w2°‘ a(x,n)(y)) ) (5.3)
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Proof. Proceeding as in the proof of Lemma 4.1, we can obtain,

(—y*) Ayly) = (@) Jamp (2y) (Days)” [2°* ale, )] da
0
= / (2y)*P Jo_ s (zy) Z b 22 (71 D) a(x,n) do .
0 =
Therefore,
o Al < [l oy ()] byl 2B
§=0
X Dryjmg(1+n)" (1+2)""de
< [ ) i ()| 3o 2
0

j=0
X Dryjmq (L+n)™ (142)""de

< D v Bimg (1 +77)’"/ (14 @) PF2rHma g
0

j=0
Choosing ¢ > 2(a — 4+ r + 1), we can obtain,
[Ay@)] < Cramg (L+m)™ L +57) 7 g™
where C,. ., 4 is a positive constant. Thus the proof is complete. O
Now we prove our main theorem.

Theorem 5.3. Let (o — 3) > —%. Then for all m € Ny, there exists C' > 0 such
that,

[ha,g.a(W)lgo < C Z [ullge u € Hap(l). (5.4)
(=0

Proof. From Theorem 4.2, equation (4.1) and the relation (2.10) we have,

| @) da @) (o )@ o = [ ay(0) Ut
0 0

Hence

/ooo Y (2y)* o p (2y) (ha g w)(z) do =

A Uapmdn [ Dy [ 8 aten) (202 oy () do
0 0 0
(5.5)
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1

20787 (o — B + 1))

An application of the estimate (5.2) to (5.5) yields,

where, A =

2 ha (hays.a uw)(y)]

< CT,m,qA/ (1+77)m772aUa,ﬁ(77)d77'/ 2D (14227 D(n, y, 2)dz (5.6)
0 0

< Dagmrg Y (2”)/ 77l+2aUa,ﬁ(77)d77'/ (142%") "' D(n, y, z) 2> H1g=(a=0)
=0 0 0
x (Dl —f+1)"" dz.
Set f(z) = (14 2%")~! € L'(0,00); for r > 0, and
g(n) =227 P (a—B+1)n**-1U, 5(n) € L'(0,00), forall £ = 0,1,2,...... m

Thus according to (2.13) and (2.14) we obtain,
fn,y) = / F(2) D(n,y,2) 2D+ 27 (Do~ g+ 1) 7" dz
0

and

(f#9)(y)

| fon) gty e 2@ (0= g )7 d
0
Now if we apply (2.15) to (5.6), we get

15707 g (R0 w)@)]] s

< Dagrma p ) |02 Ua s - | 1+
£=0

m

<O @) [ hag u)| (5.7)
£=0

Now inequality (5.4) follows from the inequality (5.7).
This completes the proof. O

Conclusions
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1. Ifwetakea:i—i—

ol

and 8 = = — £ in (2.1), (2.2) and (2.3), we obtain
2

1
i 1
respectively,

— — ot —n—3
P,=P,,=at"2DyaF 2 |

1 1

Q,LL = Q,U,,I B D:E I“U’+§
and

(1 —4p®)

_ _ o p—i 2u+1 —p—i P2
Ay =08 =Qu Py =2t 2 Dya®tla™h™2 = DI + 22

which are operators studied in Zeamnian [7] and later on in Pathak and
Pandey [3] with P,, Q., A, respectively replaced by N,,, M, S,,.

. Author claims that results developed in this paper are stronger than Pathak

and Pandey [3].

Remark : [t is proposed to obtain more results on Pseudo-differential operators
associated with Bessel type operators in future.
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