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Abstract : In 1974, Magill and Subbiah gave a characterization of the regular
elements of C(X), the semigroup of all continuous selfmaps of a topological space
X. In this paper, their result is applied to determine the regular elements of C(I)
where I is an interval in R, as follows : An element f ∈ C(I) is regular if and
only if ran f is a closed interval in I and there is a closed interval J in I such that
f|J is a strictly monotone function from J onto ran f . In addition, their proof is
helpful to characterize the regular elements of D(I) where |I| > 1 and D(I) is
the semigroup of all differentiable selfmaps of I. We show that for a nonconstant
function f ∈ D(I), f is regular if and only if f is a strictly monotone function from
I onto itself and f ′(x) 6= 0 for all x ∈ I.
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1 Introduction

For a set A, let |A| and 1A denote the cardinality of A and the identity map
on A, respectively. If f is a function and A is a subset of the domain of f , we let
f|A denote the restriction of f to A.

An element x of a semigroup S is called an idempotent of S if x2 = x. A
regular element of S is an element x ∈ S such that x = xyx for some y ∈ S.
Following [3], let E(S) and Reg (S) denote respectively the set of all idempotents
and the set of all regular elements of S. If Reg (S) = S, then S is called a regular
semigroup. Note that E(S) ⊆ Reg (S) and if x = xyx, then xy, yx ∈ E(S).

For a set X, let T (X) denote the full transformation semigroup on X, that
is, T (X) is the semigroup, under composition, of all selfmaps of X. It is known
that T (X) is a regular semigroup ([3], page 4) and it is clearly seen that for
f ∈ T (X), f ∈ E(T (X)) if and only if f(x) = x for all x ∈ ran f where ran f is
the range (image) of f . For f, g ∈ T (X), if f = fgf , then fg, gf ∈ E(T (X)).
Also, ran f = ran (fg) since ran f = ran (fgf) ⊆ ran (fg) ⊆ ran f . Moreover,
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(fg)(f(x)) = f(x) and (gf)(gf)(x) = (gf)(x) for all x ∈ X which imply that
(fg)|ran f

= 1ran f and (gf)|ran (gf)
= 1ran (gf), respectively.

For a topological space X, let C(X) be the subsemigroup of T (X) consisting
of all continuous functions f : X → X. A subset A of X is called a retract of X
if A = ran f for some f ∈ E(C(X)).

In 1974, Magill and Subbiah [6] characterized the regular elements of C(X) as
follows :

Theorem 1.1 ([6]) Let X be a topological space and f ∈ C(X). Then f ∈
Reg (C(X)) if and only if

(i) ran f is a retract of X and

(ii) there is a retract A of X such that f|A is a homeomorphism from A onto
ran f .

Recall that a homeomorphism from a topological space X onto a topological space
Y is a bijection f : X → Y such that f and f−1 are continuous.

Next, let I be an interval in R, the set of real numbers. By a nontrivial interval
in R we mean an interval I in R with |I| > 1. Consider I as a metric space with
the usual metric on R. Then

C(I) =
{

f : I → I | f is continuous on I
}

and we have
D(I) =

{
f : I → I | f is differentiable on I

}
with |I| > 1 is a subsemigroup of C(I). By an interval in I we mean a nonempty
subset J of I having the property that for x ∈ I, a ≤ x ≤ b for some a, b ∈ J
implies x ∈ J . Hence all intervals of I are precisely all intervals in R of the form
K ∩ I where K is an interval of R with K ∩ I 6= ∅. Also, by a closed interval in I
we mean an interval in I which is a closed set in I. It follows as consequences of
the main results in [2] that neither C(I) nor D(I) is a regular semigroup for every
nontrivial interval I in R.

In 1967, Magill [5] proved that every automorphism ϕ of D(R) is inner, that
is, there is a unit (invertible element) g ∈ D(R) such that ϕ(f) = gfg−1 for
all f ∈ D(R). The second author and Changphas [4] investigated the regularity
of the subsemigroup OT (I) of T (I) consisting of all order-preserving functions
f : I → I. It was proved that OT (I) is a regular semigroup if and only if I is
closed and bounded.

Our first purpose is to determine the regular elements of C(I) by Theorem
1.1. Also, the following basic results are recalled to be referred.

Proposition 1.2 ([1], page 177) Let I be an interval in R and f : I → R. If f is
strictly increasing [decreasing] and continuous on I, then f−1 is strictly increasing
[decreasing] and continuous on ran f .

Proposition 1.3 ([1], page 179) Let I be an interval in R and f : I → R. If f is
one-to-one and continuous on I, then f is strictly monotone on I.
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Our second purpose is to give necessary and sufficient conditions for elements
of D(I) to be regular. The proof of Theorem 1.1 given in [6] is useful for this
result. Beside Proposition 1.2 and 1.3, the following basic results are also needed.

Proposition 1.4 ([1], page 198) Let I be a nontrivial interval in R and f : I → R
strictly monotone on I. If f is differentiable on I and f ′(x) 6= 0 for all x ∈ I,
then f−1 is differentiable on ran f and

(f−1)′(x) =
1

f ′(f−1(x))

for all x ∈ ran f .

Proposition 1.5 ([1], page 205) Let I be a nontrivial interval in R and f : I → R
differentiable on I.

(i) f is increasing [decreasing] on I if and only if f ′(x) ≥ 0 [f ′(x) ≤ 0] for all
x ∈ I.

(ii) If f ′(x) > 0 [f ′(x) < 0] for all x ∈ I, then f is strictly increasing [strictly
decreasing] on I.

Proposition 1.6 ([1], page 209-210) Let I be a nontrivial interval in R and f :
I → R, c ∈ I and assume that f ′(c) exists.

(i) If f ′(c) > 0, then there is a δ > 0 such that f(x) > f(c) for all x ∈ I ∩
(c, c + δ) and f(x) < f(c) for all x ∈ I ∩ (c− δ, c).

(ii) If f ′(c) < 0, then there is a δ > 0 such that f(x) < f(c) for all x ∈
I ∩ (c, c + δ) and f(x) > f(c) for all x ∈ I ∩ (c− δ, c).

In the remainder, let I be an interval in R.

2 The Semigroup C(I)

First, we provide the following two lemmas which will be used to obtain the
main results.

Lemma 2.1 If f ∈ Reg (C(I)), then ran f is a closed interval in I.

Proof. Let g ∈ C(I) be such that f = fgf . Then ran (fg) = ran f and
(fg)(x) = x for all x ∈ ran f . Since f is continuous on I and ran f ⊆ I, ran f is
an interval in I. Let x ∈ ran f where ran f is the closure of ran f in I. Then there
is a sequence (xn) in ran f such that lim

n→∞
xn = x. By the continuity of fg at x

in I, lim
n→∞

(fg)(xn) = (fg)(x). But (fg)(xn) = xn for every n, so x = (fg)(x) ∈
ran (fg) = ran f . �

Lemma 2.2 For A ⊆ I,A is a retract of I if and only if A is a closed interval
in I.
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Proof. Since E(C(I)) ⊆ Reg (C(I)), by Lemma 2.1, every retract of I is a closed
interval in I.

Conversely, assume that A is a closed interval in I.

Case 1 : A = (a, b) for some a ∈ R ∪ {−∞} and b ∈ R ∪ {∞}. Then A = I =
ran (1I) and 1I ∈ E(C(I)).

Case 2 : A = [a, b) for some a ∈ R and b ∈ R ∪ {∞}. Then I = [c, b) for some
c ∈ R or I = (c, b) for some c ∈ R ∪ {−∞}. Then f : I → I defined by

f(x) =

{
x if x ∈ A,

a if x < a,

belongs to E(C(I)) whose range is A.

Case 3 : A = (a, b] for some a ∈ R∪ {−∞} and b ∈ R. It can be shown similarly
to Case 2 that A = ran f for some f ∈ E(C(I)).

Case 4 : A = [a, b] for some a, b ∈ R. Then f : I → I defined by

f(x) =


x if x ∈ A,

a if x < a,

b if x > b,

is an element of E(C(I)) whose range is A. �

Now, we are ready to provide the first main result.

Theorem 2.3 For f ∈ C(I), f ∈ Reg (C(I)) if and only if

(i) ran f is a closed interval in I and

(ii) there is a closed interval J in I such that f|J is a strictly monotone function
from J onto ran f .

Proof. Assume that f ∈ Reg (C(I)). Then (i) holds by Lemma 2.1. By Theorem
1.1 and Lemma 2.2, there is a closed interval J in I such that f|J is a homeomor-
phism from J onto ran f . Then f|J is one-to-one and continuous on J , so we have
by Proposition 1.3 that f|J is a strictly monotone function from J onto ran f .

Conversely, assume that (i) and (ii) hold. By Lemma 2.2, ran f and J are
retracts of I. From Proposition 1.2, (f|J )−1 : ran f → J is continuous. Hence f|J
is a homeomorphism from J onto ran f . We therefore deduce from Theorem 1.1
that f ∈ Reg (C(I)), as desired. �

As a consequence of Theorem 2.3, we have

Corollary 2.4 If |I| > 1, then C(I) is not a regular semigroup.
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Proof. Let a, b, c, d ∈ I be such that a < b < c < d. Define f : I → I by

f(x) =



a if x < a,

x if x ∈ [a, b],
b if x ∈ (b, c],
d−b
d−c (x− c) + b if x ∈ (c, d],
d if x > d.

Then f ∈ C(I), ran f = [a, d] and f is increasing on I. It is clearly seen that
there is no interval J in I such that f|J is a strictly increasing function from J
onto ran f . Hence from Theorem 2.3, f is not regular in C(I). �

Example 2.5 Consider the following functions in C(R) :

f(x) = sin x, g(x) = x2, h(x) = ex, k(x) = x sinx.

Since ran f = [−1, 1] and f|[−π
2 , π

2 ]
is a strictly increasing function from [−π

2 , π
2 ]

onto [−1, 1], by Theorem 2.3, f ∈ Reg (C(R)). Also, g ∈ Reg (C(R)) since ran g =
[0,∞) and g|[0,∞)

is a strictly increasing function from [0,∞) onto [0,∞). Since
ranh = (0,∞) which is not closed in R, by Theorem 2.3, h /∈ Reg (C(R)).

By the definition of k, for every n ∈ Z, k(2nπ) = 0 and k(2nπ + π
2 ) = 2nπ + π

2
where Z is the set of integers. This implies that ran k = R and for every a ∈ R,
k|[a,∞)

and k|(−∞,a]
are not one-to-one. Since |k(x)| = |x sinx| ≤ |x| for every

x ∈ R, it follows that for any a, b ∈ R with a < b, k([a, b]) ⊆ [−c, c] 6= R where
c = max{|a|, |b|}. Consequently, there is no closed interval J in R such that k|J is
a strictly monotone function from J onto R. Hence we have k /∈ Reg (C(R)) by
Theorem 2.3.

3 The Semigroup D(I)

Our purpose of this section is to prove the following theorem.

Theorem 3.1 Assume that I is a nontrivial interval in R. Then for a nonconstant
function f ∈ D(I), f ∈ Reg (D(I)) if and only if f is a strictly monotone function
from I onto itself and f ′(x) 6= 0 for all x ∈ I.

Proof. Let f ∈ D(I) be a nonconstant function and assume that f ∈ Reg (D(I)).
Then |ran f | > 1. Let g ∈ D(I) be such that f = fgf . Then fg, gf ∈ E(D(I)),
ran f = ran (fg), (fg)|ran f

= 1ran f and (gf)|ran (gf)
= 1ran (gf). Let J = ran (gf).

From Lemma 2.1, J and ran f are closed intervals in I. Hence

(f|J )(g|ran f
) = (f|ran (gf)

)(g|ran f
) = (fg)|ran f

= 1ran f ,

(g|ran f
)(f|J ) = (g|ran f

)(f|ran (gf)
) = (gf)|ran (gf)

= 1|J .
(1)

This implies that f|J is a bijection from J onto ran f and g|ran f
= (f|J )−1. Since

|ran f | > 1, both J and ran f are nontrivial closed intervals in I. Then we deduce
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that (g|ran f
)′(x) = g′(x) for all x ∈ ran f and (f|J )′(x) = f ′(x) for all x ∈ J .

Therefore from (1), we have

g′(f(x))f ′(x) = 1 for all x ∈ J and f ′(g(x))g′(x) = 1 for all x ∈ ran f.

Hence

f ′(x) 6= 0 for all x ∈ J and g′(x) 6= 0 for all x ∈ ran f. (2)

From Proposition 1.3, f|J is strictly monotone on J .
First, assume that f|J is strictly increasing on J . But g|ran f

= (f|J )−1, so by
Proposition 1.2, g|ran f

is strictly increasing on ran f . Proposition 1.5(i) and (2)
imply that f ′(x) > 0 for all x ∈ J and g′(x) > 0 for all x ∈ ran f . It remains to
show that J = I = ran f . First, suppose that J ( I. Then there is an element
c ∈ I such that c > x for all x ∈ J or c < x for all x ∈ J .

Case 1 : c > x for all x ∈ J . Since J is a closed interval in I, max(J) exists,
say b. This implies that f(b) = max(ran f) because f|J is a strictly increasing
function from J onto ran f . But c > b and f ′(b) > 0, thus by Proposition 1.6(i),
there is an element x ∈ (b, c) such that f(x) > f(b). This is a contradiction since
f(b) = max(ran f).

Case 2 : c < x for all x ∈ J . We obtain a contradiction dually to Case 1.

Therefore we have that J = I. Thus f|J = f and g|ran f
= f−1 which is a strictly

increasing function from ran f onto I. If we consider ran f and g|ran f
replacing J

and f|J , respectively, then we can obtain analogously that ran f = I.
If f|J is strictly decreasing on J , it can be proved similarly by Proposition 1.2,

Proposition 1.5(i), (2) and Proposition 1.6(ii) that J = I = ran f .
The converse follows directly from Proposition 1.4. �

Theorem 3.1, Proposition 1.4 and Proposition 1.5 yield the following result.

Corollary 3.2 If f is a nonconstant function in D(I), then the following state-
ments are equivalent.

(i) f ∈ Reg (D(I)).

(ii) f is a unit of D(I).

(iii) ran f = I and either f ′(x) > 0 for all x ∈ I or f ′(x) < 0 for all x ∈ I.

Corollary 3.3 The semigroup D(I) is not regular for every nontrivial interval I
in R.

Proof. Let I be a nontrivial interval in R and let a, b ∈ R satisfy the following
conditions : a < b, if I is bounded below, let a = inf(I) and if I is bounded above,
let b = sup(I). Then the interval (a, b) is always contained in I. Define f : R → R
by
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f(x) =

{
1

b−a

(
x− a+b

2

)2 + a+b
2 if I is bounded below,

1
a−b

(
x− a+b

2

)2 + a+b
2 if I is not bounded below.

Then f is a parabola whose vertex is the point
(a + b

2
,
a + b

2
)
. If I is bounded

below, then f(a) = f(b) =
a + 3b

4
∈

(a + b

2
, b

)
⊆ I. Also, if I is not bounded

below, then f(a) = f(b) =
3a + b

4
∈

(
a,

a + b

2
)
⊆ I. Consequently, f|I ∈ D(I).

Since f ′
(a + b

2
)

= 0, by Theorem 3.1, f|I is not regular in D(I). �

Example 3.4 All the functions in Example 2.5 belong to D(I) and it is clearly
seen from Theorem 3.1 that none of them is regular in D(I). Define

p(x) =
1
x

for all x ∈ (0,∞),

q(x) = x3 and r(x) = x3 + x for all x ∈ R.

Then p′(x) = − 1
x2

< 0 for all x ∈ (0,∞), q′(0) = 0 and r′(x) = 3x2 + 1 > 0

for all x ∈ R, ran p = (0,∞) and ran r = R. Hence, by Corollary 3.2, p ∈
Reg (D((0,∞))), q /∈ Reg (D(R)) and r ∈ Reg (D(R)).
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