Thai Journal of Mathematics Volume 8 (2010) Number 1 : 11–19

www.math.science.cmu.ac.th/thaijournal Online ISSN 1686-0209

Generalized Difference Sequence Spaces Defined by Orlicz Functions and their Köthe-Toeplitz and Null Duals

H. Dutta

Abstract : In this article we define some difference sequence spaces and its subspaces using an Orlicz function. We find their isometrically isomorphic spaces and study some other properties. Moreover we compute Köthe-Toeplitz and null duals of all these spaces.

Keywords : Difference sequence spaces, Orlicz function, Köthe Toeplitz dual, Null dual.

2000 Mathematics Subject Classification: 40A05, 40C05, 46A45.

1 Introduction

Throughout this section w, ℓ_{∞} , ℓ_1 , c and c_0 denote the spaces of all, bounded, absolutely summable, convergent and null sequences $x = (x_k)$ with complex terms respectively. The notion of difference sequence space was introduced by Kizmaz [4], who studied the difference sequence spaces $\ell_{\infty}(\Delta)$, $c(\Delta)$ and $c_0(\Delta)$. The notion was further generalized by Et and Colak [3] by introducing the spaces $\ell_{\infty}(\Delta^m)$, $c(\Delta^m)$ and $c_0(\Delta^m)$.

Let *n* be non-negative integers then for *Z* a given sequence space we have $Z(\Delta^m) = \{x = (x_k) \in w : (\Delta^m x_k) \in Z\},$

where $\Delta^m x = (\Delta^m x_k) = (\Delta^{m-1} x_k - \Delta^{m-1} x_{k+1})$ and $\Delta^0 x_k = x_k$ for all $k \in N$, which is equivalent to the following binomial representation.

$$\Delta^m x_k = \sum_{v=0}^m (-1)^v \binom{m}{v} x_{k+v}.$$

Taking m = 1, we get the spaces $\ell_{\infty}(\Delta)$, $c(\Delta)$ and $c_0(\Delta)$ introduced and studied by Kizmaz [4].

Copyright \bigodot 2010 by the Mathematical Association of Thailand. All rights reserved.

An Orlicz function is a function $M : [0, \infty) \longrightarrow [0, \infty)$, which is continuous, non-decreasing and convex with M(0) = 0, M(x) > 0, for x > 0 and $M(x) \longrightarrow \infty$, as $x \longrightarrow \infty$.

An Orlicz function M is said to satisfy Δ_2 -condition for all values of u, if there exists a constant K > 0, such that

 $M(2u) < KM(u), \quad \text{where} \ u \ge 0$

The Δ_2 -condition is equivalent to $M(lu) \leq KlM(u)$, for all values of u and for l > 1.

An Orlicz function M can always be represented in the following integral form: $M(x) = \int_{-\infty}^{x} p(t) dt$

$$M(x) = \int_{0} p(t)dt$$

where p, known as kernel of M, is right differentiable for $t \ge 0$, p(0) = 0, p(t) > 0 for t > 0, p is non-decreasing, and $p(t) \longrightarrow \infty$ as $t \longrightarrow \infty$.

Consider the kernel p(t) associated with the Orlicz function M(t), and let $q(s) = \sup\{t: p(t) \le s\}$

Then q possesses the same properties as the function p. Suppose now

$$\Phi(x) = \int_{0}^{x} q(s) ds$$

Then Φ is an Orlicz function. The functions M and Φ are called mutually complementary Orlicz functions.

Now we state the following results which can be found in [5].

Let M and Φ are mutually complementary Orlicz functions. Then we have (Young's inequality)

(i) For $x, y \ge 0$, $xy \le M(x) + \Phi(y)$. Also we have

(ii) $M(\lambda x) < \lambda M(x)$ for all $x \ge 0$ and λ with $0 < \lambda < 1$.

Lindenstrauss and Tzafriri [6] used the Orlicz function and introduced the sequence space ℓ_M as follows:

$$\ell_M = \{ (x_k) \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \}.$$

They proved that ℓ_M is a Banach space normed by

$$\|(x_k)\| = \inf\{\rho > 0 : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) \le 1\}$$

A norm $\| \bullet \|$ on a vector space X is said to be equivalent to a norm $\| \bullet \|_0$ on X if there are positive numbers A and B such that for all $x \in X$, we have

$$A||x||_0 \le ||x|| \le B||x||_0.$$

This concept is motivated by the fact that equivalent norms on X define the same topology for X.

An isomorphism of a normed space X onto a normed space Y is a bijective linear operator $T: X \longrightarrow Y$ which preserves the norm, that is, for all $x \in X$, ||Tx|| = ||x||. (Hence T is isometric)

X is then called isomorphic with Y, and X and Y are called isomorphic normed spaces.

Let m be a non-negative integer. Then we can have the following sequence

spaces for an Orlicz function M as:

$$c_0(M,\Delta^m) = \{x = (x_k) : \lim_k M\left(\frac{|\Delta^m x_k|}{\rho}\right) = 0, \text{ for some } \rho > 0\},\$$

$$c(M,\Delta^m) = \{x = (x_k) : \lim_k M\left(\frac{|\Delta^m x_k - L|}{\rho}\right) = 0, \text{ for some } L \text{ and } \rho > 0\},\$$

$$\ell_{\infty}(M, \Delta^m) = \{ x = (x_k) : \sup_{k} M\left(\frac{|\Delta^m x_k|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \},$$

where $\Delta^m x_k = \Delta^{m-1} x_k - \Delta^{m-1} x_{k+1}$, $\Delta^m_r x_k = \sum_{i=0}^m (-1)^i {m \choose i} x_{k+i}$ for all $k \in N$. It is obvious that $c_0(M, \Delta^m) \subset c(M, \Delta^m) \subset \ell_{\infty}(M, \Delta^m)$ (1.1)

Several authors have studied different algebraic and topological properties of such spaces. In this article our main aim to compute the Köthe-Toepliz and Null duals of such spaces.

Throughout the paper X will denote one of the sequence spaces c_0 , c and ℓ_{∞} . The sequence spaces $X(M, \Delta^m)$ are Banach spaces normed by

$$\|x\|_{\Delta^m} = \sum_{i=1}^m |x_i| + \inf\left\{\rho > 0 : \sup_k M\left(\frac{|\Delta^m x_k|}{\rho}\right) \le 1\right\}$$
(1.2)

Now we take

$$\Delta^{(m)} x_k = \sum_{i=0}^{m} (-1)^i {m \choose i} x_{k-i}.$$

It is trivial that $(\Delta^m x_k) \in X(M)$ if and only if $(\Delta^{(m)} x_k) \in X(M)$. Now for $x \in X(M, \Delta^{(m)})$, we define

$$\|x\|_{\Delta^{(m)}} = \inf\left\{\rho > 0: \sup_k M\left(\frac{|\Delta^m x_k|}{\rho}\right) \le 1\right\}.$$

It can be shown that $X(M, \Delta^{(m)})$ is a BK space under the norm $||x||_{\Delta^{(m)}}$ and the norms $||x||_{\Delta^m}$ and $||x||_{\Delta^{(m)}}$ are equivalent. Obviously $\Delta^{(m)}: X(M, \Delta^{(m)}) \longrightarrow X(M)$, denoted by $\Delta^{(m)}x = y = (\Delta^{(m)}x_k)$, is isometric isomorphism.

Hence $c_0(M, \Delta^m)$, $c(M, \Delta^m)$ and $\ell_{\infty}(M, \Delta^m)$ are isometrically isomorphic to $c_0(M)$, c(M) and $\ell_{\infty}(M)$ respectively. From abstract point of view $X(M, \Delta_r^m)$ is identical with X(M), for $X = c_0$, c and ℓ_{∞} .

Now we define the spaces $\overline{c}_0(M, \Delta^m)$, $\overline{c}(M, \Delta^m)$ and $\overline{\ell}_{\infty}(M, \Delta^m)$ as follows: $\overline{c}_0(M, \Delta^m)$ is a subspace of $c_0(M, \Delta^m)$ consisting of those x in $c_0(M, \Delta^m)$ such that $\lim_k M\left(\frac{|\Delta^m x_k|}{d}\right) = 0$, for each d > 0.

Similarly we define $\overline{c}(M, \Delta^m)$ and $\overline{\ell}_{\infty}(M, \Delta^m)$ as a subspace of $c(M, \Delta^m)$ and $\ell_{\infty}(M, \Delta^m)$ respectively. The topology of $\overline{X}(M, \Delta^m)$ is the one it inherits from $\| \bullet \|_{\Delta^m}$.

It is obvious that $\overline{c}_0(M, \Delta^m) \subset \overline{c}(M, \Delta^m) \subset \overline{\ell}_\infty(M, \Delta^m).$

Also as above we can show that $\overline{c}_0(M, \Delta^m)$, $\overline{c}(M, \Delta^m)$ and $\overline{\ell}_{\infty}(M, \Delta^m)$ are isometrically isomorphic to $\overline{c}_0(M)$, $\overline{c}(M)$ and $\overline{\ell}_{\infty}(M)$ respectively.

Moreover $X(M, \Delta^i) \subset X(M, \Delta^m)$ and $\overline{X}(M, \Delta^i) \subset \overline{X}(M, \Delta^m)$ for i = 0, 1, ..., m-1. which can be shown by repeated application of the following inequality.

$$M\left(\frac{|\Delta^m x_k|}{2\rho}\right) \le \frac{1}{2}M\left(\frac{|\Delta^{m-1} x_k|}{\rho}\right) + \frac{1}{2}M\left(\frac{|\Delta^{m-1} x_{k+1}|}{\rho}\right).$$

2 Some Properties of the Spaces

Theorem 2.1. If M satisfies the Δ_2 -condition then we have $X(M, \Delta^m) = \overline{X}(M, \Delta^m)$ for $X = c_0$, c and ℓ_{∞} .

Proof. We give the proof for $X = \ell_{\infty}$ and for other spaces it will follow on applying similar arguments.

To prove the theorem it is enough to show that $\ell_{\infty}(M, \Delta^m)$ is a subspace of $\overline{\ell}_{\infty}(M, \Delta^m)$. Let $x \in \ell_{\infty}(M, \Delta^m)$, then for some $\rho > 0$, $\sup_k M\left(\frac{|\Delta^m x_k|}{\rho}\right) < \infty$ and $M\left(\frac{|\Delta^m x_k|}{\rho}\right) < \infty$ for every $k \ge 1$ Choose an arbitrary $\eta > 0$. If $\rho \le \eta$ then $M\left(\frac{|\Delta^m x_k|}{\eta}\right) < \infty$ for every $k \ge 1$. Let now $\eta < \rho$ and put $l = \frac{\rho}{\eta} > 1$. Since M satisfies the Δ_2 -condition, there exists a constant K such that $M\left(\frac{|\Delta^m x_k|}{\eta}\right) \le K \frac{\rho}{\eta} M\left(\frac{|\Delta^m x_k|}{\rho}\right) < \infty$ for every $k \ge 1$ and hence $\sup_k M\left(\frac{|\Delta^m x_k|}{\eta}\right) < \infty$ for every $\eta > 0$

Theorem 2.2. (i) $c_0(M, \Delta^m)$, $c(M, \Delta^m)$ and $\ell_{\infty}(M, \Delta^m)$ are convex sets. (ii) If M satisfies the Δ_2 -condition then $\overline{c}_0(M, \Delta^m)$, $\overline{c}(M, \Delta^m)$ and $\overline{\ell}_{\infty}(M, \Delta^m)$ are convex sets.

Proof. (i) We prove the Theorem for $c_0(M, \Delta^m)$ and for other cases it will follow on applying similar arguments.

Let $x, y \in c_0(M, \Delta^m)$. Then there exist $\rho_1, \rho_2 > 0$ such that

$$\lim_{k} M\left(\frac{|\Delta^m x_k|}{\rho_1}\right) = 0 \text{ and } \lim_{k} M\left(\frac{|\Delta^m y_k|}{\rho_2}\right) = 0$$

For $\lambda = 0$ or $\lambda = 1$, the result is obvious. Let $0 < \lambda < 1$. Considering $\rho = \max(|\lambda|\rho_1, |1-\lambda|\rho_2)$, we have

$$M\left(\frac{|\Delta^m(\lambda x_k + (1-\lambda)y_k)|}{2\rho}\right) \le \frac{1}{2}M\left(\frac{|\Delta^m(\lambda x_k)|}{\rho}\right) + \frac{1}{2}M\left(\frac{|\Delta^m(1-\lambda)y_k)|}{\rho}\right)$$

Generalized Difference Sequence Spaces Defined by Orlicz Functions...

$$\leq \frac{1}{2}M\left(\frac{|\Delta^m x_k|}{\rho_1}\right) + \frac{1}{2}M\left(\frac{|\Delta^m y_k|}{\rho_2}\right)$$

This completes the proof.

(ii) Proof follows from (i) using Theorem 2.1.

Theorem 2.3. (i) $c_0(M, \Delta^m)$ and $c(M, \Delta^m)$ are nowhere dense subsets of $\ell_{\infty}(M, \Delta^m)$. (ii) $\overline{c}_0(M, \Delta^m)$ and $\overline{c}(M, \Delta^m)$ are are nowhere dense subsets of $\overline{\ell}_{\infty}(M, \Delta^m)$.

Proof. The proof follows from (1.1) and (1.2).

3 Köthe Toeplitz and Null Dual Spaces

In this section we give the α -dual and N-(or null) dual of the sequence spaces $c_0(M, \Delta^m)$, $c(M, \Delta^m)$, $\ell_{\infty}(M, \Delta^m)$, $\overline{c}_0(M, \Delta^m)$, $\overline{c}(M, \Delta^m)$ and $\overline{\ell}_{\infty}(M, \Delta^m)$.

Let *E* and *F* be two sequence spaces. Then the *F* dual of *E* is defined as $E^F = \{(x_k) \in w : (x_k y_k) \in F \text{ for all } (y_k) \in E\}.$

For $F = \ell_1$ and c_o , the duals are termed as α -dual (Köthe Toeplitz dual) and N-(or null) dual of E and denoted by E^{α} and E^N respectively. If $X \subset Y$, then $Y^z \subset X^z$ for $z = \alpha, N$.

Lemma 3.1. [9] Let m be a positive integer. Then there exists positive constants C_1 and C_2 such that

$$C_1 k^m \le \binom{m+k}{k} \le C_2 k^m, \quad k = 0, 1, 2, \cdots$$

Lemma 3.2. $x \in \ell_{\infty}(M, \Delta^m)$ implies $\sup_{k} M\left(\frac{|k^{-1}\Delta^{m-1}x_k|}{\rho}\right) < \infty$, for some $\rho > 0$.

Proof. Let $x \in \ell_{\infty}(M, \Delta^m)$, then

$$\sup_{k} M\left(\frac{|\Delta^{m-1}x_k - \Delta^{m-1}x_{k+1}|}{\rho}\right) < \infty, \text{ for some } \rho > 0.$$

Then there exists a U > 0 such that

$$M\left(\frac{|\Delta^{m-1}x_k - \Delta^{m-1}x_{k+1}|}{\rho}\right) < U, \text{ for all } k \in N$$

On taking $\eta = k\rho$, k > 1 being arbitrary fixed number, we have

$$M\left(\frac{|\Delta^{m-1}x_1 - \Delta^{m-1}x_{k+1}|}{\eta}\right) = M\left(\frac{|\sum_{i=1}^k \Delta^{m-1}x_i - \Delta^{m-1}x_{i+1}|}{k\rho}\right)$$
$$\leq M\left(\frac{\sum_{i=1}^k |\Delta^{m-1}x_i - \Delta^{m-1}x_{i+1}|}{k\rho}\right)$$

15

$$\leq \frac{1}{k}M\left(\frac{|\Delta^{m-1}x_1-\Delta^{m-1}x_2|}{\rho}\right) + \dots + \frac{1}{k}M\left(\frac{|\Delta^{m-1}x_k-\Delta^{m-1}x_{k+1}|}{\rho}\right)$$
$$\leq \frac{1}{k}U + \frac{1}{k}U + \dots + \frac{1}{k}U = O(k)$$

Now the result follows from the following inequality using the convexity of M:

$$|\Delta^{m-1}x_{k+1}| \le |\Delta^{m-1}x_1| + |\Delta^{m-1}x_1 - \Delta^{m-1}x_{k+1}|$$

 $\begin{array}{l} \textbf{Lemma 3.3.} (i) \sup_{k} M\left(\frac{|k^{-1}\Delta^{m}x_{k}|}{\rho}\right) < \infty \ implies \sup_{k} M\left(\frac{|k^{-m}x_{k}|}{\rho}\right) < \infty \\ for \ some \ \rho > 0 \\ (ii) \ x \in \ell_{\infty}(M, \Delta^{m}) \ implies \sup_{k} M\left(\frac{|k^{-m}x_{k}|}{\rho}\right) < \infty, \ for \ some \ \rho > 0, \\ (iii) \ x \in \ell_{\infty}(M, \Delta^{m}) \ implies \sup_{k} |k^{-m}x_{k}| < \infty. \end{array}$

Proof. (i) Proof follows from Lemma 3.2 by repeated application of the same arguments.

- (ii) Combining the Lemma 3.2 and part (i).
- (iii) Proof follows from part (i).

Remark 1. Similar results as in Lemma 3.3 hold for $\overline{\ell}_{\infty}(M, \Delta^m)$ also, where the statement "for some $\rho > 0$ " should be replaced by "for every $\rho > 0$ "

Theorem 3.4. Let
$$M$$
 be an Orlicz function. Then
(i) $[c_0(M, \Delta^m)]^{\alpha} = [c(M, \Delta^m)]^{\alpha} = [\ell_{\infty}(M, \Delta^m)]^{\alpha} = D_1,$
(ii) $D_1^{\alpha} = D_2$, where
 $D_1 = \left\{ a = (a_k) : \sum_{k=1}^{\infty} |k^m a_k| < \infty \right\},$
 $D_2 = \left\{ b = (b_k) : \sup_k |k^{-m} b_k| < \infty \right\}.$

Proof. (i) Let $a \in D_1$, then $\sum_{k=1}^{\infty} |k^m a_k| < \infty$. Now for any $x \in \ell_{\infty}(M, \Delta^m)$ we have $\sup_k |k^{-m} x_k| < \infty$. Then we have

$$\sum_{k=1}^{\infty} |a_k x_k| \le \sup_k |k^{-m} x_k| \sum_{k=1}^{\infty} |k^m a_k| < \infty.$$

Hence $a \in [\ell_{\infty}(M, \Delta^m)]^{\alpha}$. Conversely suppose that $a \in [X(M, \Delta^m)]^{\alpha}$, for X = cand ℓ_{∞} . Then $\sum_{k=1}^{\infty} |a_k x_k| < \infty$, for each $x \in X(M, \Delta^m)$. So we take $x_k = k^m$, $k \ge 1$ then $\sum_{k=1}^{\infty} |k^m a_k| = \sum_{k=1}^{\infty} |a_k x_k| < \infty$. This implies that $a \in D_1$.

Again suppose that $a \in [c_0(M, \Delta^m)]^{\alpha}$ and $a \notin D_1$. Then there exists a strictly increasing sequence (n_i) of positive integers n_i with $n_1 < n_2 < \cdots$, such that

$$\sum_{k=n_i+1}^{n_{i+1}} |k^m a_k| > i.$$

Define $x \in c_0(M, \Delta^m)$ by

$$x_k = 0, \qquad 1 \le k \le n_1$$
$$= k^m \quad \frac{sgn \ a_k}{i}, \qquad n_i < k \le n_{i+1}$$

Then we have $\sum_{k=1}^{\infty} |a_k x_k| = \sum_{k=n_1+1}^{n_2} |a_k x_k| + \dots + \sum_{k=n_i+1}^{n_{i+1}} |a_k x_k| + \dots$ $=\sum_{k=n_1+1}^{n_2} |k^m a_k| + \dots + \frac{1}{i} \sum_{k=n_i+1}^{n_{i+1}} |k^m a_k| + \dots$ > 1 + 1 + \dots = \dots.

This contradicts to $a \in [c_0(M, \Delta^m)]^{\alpha}$. Hence $a \in D_1$. This completes the proof of (i).

(ii) proof is similar to proof of part (i).

Theorem 3.5. Let M be an Orlicz function. Then (i) $[\overline{c}_0(M,\Delta^m)]^{\alpha} = [\overline{c}(M,\Delta^m)]^{\alpha} = [\overline{\ell}_{\infty}(M,\Delta^m)]^{\alpha} = D_1,$ (*ii*) $D_1^{\alpha} = D_2$, where $D_1 = \left\{ a = (a_k) : \sum_{k=1}^{\infty} |k^m a_k| < \infty \right\},$ $D_2 = \left\{ b = (b_k) : \sup_k |k^{-m}b_k| < \infty \right\}.$

Proof. The proof is similar to that of Theorem 4.

If we take m = 0 in Theorem 3.4 and Theorem 3.5 then we obtain the following Corollary.

Corollary 3.6. For $X = c_0$, c and ℓ_{∞} . (i) $[X(M)]^{\alpha} = \left[\overline{X}(M)\right]^{\alpha} = H_1,$ (ii) $H_1^{\alpha} = H_2, where$ $H_1 = \left\{ a = (a_k) : \sum_{k=1}^{\infty} |a_k| < \infty \right\},$ $H_2 = \left\{ b = (b_k) : \sup_k |b_k| < \infty \right\}.$

Lemma 3.7. If $x \in c_0(M, \Delta^m)$, then $\lim_k M\left(\frac{\left\lfloor \binom{m+k}{k}^{-1}x_k\right\rfloor}{\rho}\right) = 0$, for some $\rho > 0$.

Proof. The proof follows from Lemma 3.1.

Theorem 3.8. Let M and Φ be mutually complementary Orlicz functions. Then (i) $[c(M, \Delta^m)]^N = [\ell_{\infty}(M, \Delta^m)]^N = G_1$, (*ii*) $[c_0(M, \Delta^m)]^N = \overline{G}_2$, where $G_1 = \{ a = (a_k) : \lim_{k \to \infty} k^m a_k = 0 \},$ $\overline{G}_2 = \left\{ a = (a_k) : \lim_k \Phi\left(\frac{\left|\binom{m+k}{k}a_k\right|}{d}\right) = 0, \text{ for every } d > 0 \right\}.$

Proof. (i) Proof is immediate using Lemma 3.3(iii).

(*ii*) Let $a \in \overline{G}_2$, then $\lim_k \Phi\left(\frac{\left|\binom{m+k}{k}a_k\right|}{d}\right) = 0$ for every d > 0. Now for any $x \in c_0(M, \Delta^m)$ we have

 $\lim_{k} M\left(\frac{\left|\binom{m+k}{k}\right|^{-1} x_{k}}{\rho}\right) = 0 \text{ for some } \rho > 0. \text{ Then using the inequality}$

 $|a_k x_k| \le M\left(\left|\frac{\binom{(m+k)^{-1} x_k}{k}}{\rho}\right|\right) + \Phi\left(\rho \left|\binom{(m+k)}{k} a_k\right|\right),$

we have $\lim_{k \to \infty} a_k x_k = 0$ and hence $a \in [c_0(M, \Delta^m)]^N$.

Conversely suppose that $a \in [c_0(M, \Delta^m)]^N$. Then $\lim_k a_k x_k = 0$, for each $x \in c_0(M, \Delta^m)$. So we take $x_k = \binom{m+k}{k}$, $k \ge 1$, then $\lim_k \binom{n}{k} a_k = \lim_k a_k x_k = 0$ and so

$$\lim_{k} \Phi\left(\frac{\left|\binom{m+k}{k}a_{k}\right|}{d}\right) = 0$$

for every d > 0. Hence $a \in \overline{G}_2$. This completes the proof.

Theorem 3.9. Let M and Φ be mutually complementary Orlicz functions. Then (i) $[\overline{c}(M,\Delta^m)]^N = [\overline{\ell}_{\infty}(M,\Delta^m)]^N = G_1,$ (*ii*) $[\overline{c}_0(M, \Delta^m)]^N = G_2$, where $G_1 = \{a = (a_k) : \lim_k k^m a_k = 0\},\$ $G_2 = \left\{ a = (a_k) : \lim_k \Phi\left(\frac{\left|\binom{m+k}{k}a_k\right|}{d}\right) = 0, \text{ for some } d > 0 \right\}.$

Proof. Proof is similar to that of Theorem 3.8.

If we take m = 0 in Theorem 3.8 and Theorem 3.9 then we obtain the following Corollary.

Corollary 3.10. For X = c and ℓ_{∞} , (i) $[X(M)]^N = [\overline{X}(M)]^N = L_1$, $(ii) \left[c_0(M) \right]^N = \overline{L}_2,$ (*iii*) $[\overline{c}_0(M)]^N = L_2$, where $L_1 = \left\{ a = (a_k) : \lim_k a_k = 0 \right\},\,$

 $\overline{L}_{2} = \{a = (a_{k}) : \lim_{k} \Phi(\frac{|a_{k}|}{d}) = 0, \text{ for every } d > 0\},\$ and $L_{2} = \{a = (a_{k}) : \lim_{k} \Phi(\frac{|a_{k}|}{d}) = 0, \text{ for some } d > 0\}.$

References

- P. Chandra and B.C. Tripathy, On generalized Köthe-Toeplitz duals of some sequence spaces, *Indian J. Pure Appl. Math.*, 33(8) (2002), 1301-1306.
- [2] M. Et, On some topological properties of generalized difference sequence spaces, Internat. J. Math. and Math. Sci., 24(11) (2000),785-791.
- [3] M. Et, R.Colak, On generalized difference sequence spaces, Soochow J. Math., 21(4) (1995), 377-386.
- [4] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull., 24(2) (1981), 169-176.
- [5] P.K. Kamthan and M. Gupta, Sequence Spaces and Series, Marcel Dekker Inc., New York, (1981).
- [6] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 379-390.
- [7] E. Kreyszig, Introductory Functional Analysis with Applications, Jhon Wiley and Sons, New York (1978).
- [8] I.J. Maddox, Elements of Functional Analysis, Universal Book Stall, New Delhi (1989).
- [9] E. Malkowsky and S.D. Parasar, Matrix transformation in spaces of bounded and convergent difference sequences of order m, *Analysis*, 17 (1997), 87-97.

(Received 26 September 2008)

Hemen Dutta Department of Mathematics, Gauhati University, Kokrajhar Campus, Kokrajhar-783370, Assam, India. e-mail : hemen_dutta08@rediffmail.com