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1 Introduction

Throughout this section w, £+, ¢1, ¢ and ¢y denote the spaces of all, bounded,
absolutely summable, convergent and null sequences z = () with complex terms
respectively. The notion of difference sequence space was introduced by Kizmaz
[4], who studied the difference sequence spaces £ (A), ¢(A) and ¢o(A). The notion
was further generalized by Et and Colak [3] by introducing the spaces £ (A™),
c¢(A™) and co(A™).

Let n be non-negative integers then for Z a given sequence space we have

Z(A™) ={x = (a) € w: (AMxy) € Z},
where Az = (A™xy) = (A™ 1oy — A™ Ly, ) and A%z, = 2, for all k € N,
which is equivalent to the following binomial representation.
m

Aml‘k = ZO(—l)v (T)l‘k_H).

Taking m = 1, we get the spaces {oo(A), ¢(A) and ¢o(A) introduced and studied
by Kizmaz [4].

Copyright (© 2010 by the Mathematical Association of Thailand. All rights
reserved.



12 Thai J. Math. 8(1) (2010)/ H. Dutta

An Orlicz function is a function M : [0,00) — [0, 00), which is continuous,
non-decreasing and convex with M (0) = 0, M (z) > 0, for z > 0 and M (z) — oo,
as T — 00.

An Orlicz function M is said to satisfy As—condition for all values of w, if
there exists a constant K > 0, such that

M((2u) < KM(u), where u >0
The Ay—condition is equivalent to M (lu) < KIM (u), for all values of u and for
I>1.

An Orlicz function M can always be represented in the following integral form:
M(x) = [ p(t)dt
0

where p, known as kernel of M, is right differentiable for ¢ > 0, p(0) =0, p(t) > 0
for t > 0, p is non-decreasing, and p(t) — oo as t — oc.
Consider the kernel p(t) associated with the Orlicz function M (t), and let
q(s) = sup{t : p(t) < s}
Then q possesses the same properties as the function p. Suppose now
x

O(z) = [q(s)ds

Then @ is an Orlicz funct?on. The functions M and ® are called mutually com-
plementary Orlicz functions.

Now we state the following results which can be found in [5].
Let M and ® are mutually complementary Orlicz functions. Then we have (Young’s
inequality)

(i) For z,y >0, zy < M(x)+ ®(y).
Also we have

(i) M(Az) < AM(x) for all z > 0 and A with 0 < A < 1.

Lindenstrauss and Tzafriri [6] used the Orlicz function and introduced the
sequence space £,y as follows:

by ={(zr) ew: 3 M (%) < o0, for some p > 0}.
k=1
They proved that £, is a Banach space normed by
@)l = inf{p > 0: 3 M (E2) <1
k=1

A norm || e || on a vector space X is said to be equivalent to a norm || e ||p on
X if there are positive numbers A and B such that for all x € X, we have
Allzllo < llz]| < Bllz]o.
This concept is motivated by the fact that equivalent norms on X define the same
topology for X.
An isomorphism of a normed space X onto a normed space Y is a bijective
linear operator T': X — Y which preserves the norm, that is, for all x € X,
|[Tz|| = ||z||. (Hence T is isometric)
X is then called isomorphic with Y, and X and Y are called isomorphic normed
spaces.
Let m be a non-negative integer. Then we can have the following sequence
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spaces for an Orlicz function M as:

co(M,A™) = {x = (ay) : liinM (&px’“') =0, for some p > 0},

(M, A™) ={z = (z) : liinM (W) =0, for some L and p > 0},

loo(M,A™) = {z = () : sup M (&pm’“‘) < o0, for some p > 0},
k

where A"x), = A™ Loy — A™ g, Aoy = (—1)i(7?)xk+i for all k € N.
i=0
It is obvious that  ¢co(M,A™) C (M, A™) C loo(M,A™) (1.1)
Several authors have studied different algebraic and topological properties of
such spaces. In this article our main aim to compute the Kothe-Toepliz and Null
duals of such spaces.
Throughout the paper X will denote one of the sequence spaces ¢, ¢ and {..
The sequence spaces X (M, A™) are Banach spaces normed by

2l am = xi+inf{ >0:su M(&)g} 1.2
[l ;l | p 1p 5 (1.2)

Now we take .
A(m)xk = Z(—I)Z(T)kal
i=0
It is trivial that (A™xy) € X (M) if and only if (A™z;) € X (M). Now for
r € X(M,A™) we define

l|lz]| acmy = inf {p >0 :sup M (&p”l) < 1} )
k

It can be shown that X (M, A(™)) is a BK space under the norm ||z||sm) and the
norms ||z||am and ||z||amm) are equivalent. Obviously

A X (M, A™)) — X (M), denoted by Az =y = (AU™ay), is isometric
isomorphism.

Hence co(M, A™), ¢(M,A™) and £ (M, A™) are isometrically isomorphic to
co(M), (M) and o (M) respectively. From abstract point of view X (M, A™) is
identical with X (M), for X = ¢g, ¢ and (.

Now we define the spaces ¢o(M, A™), (M, A™) and £ (M, A™) as follows:
Co(M, A™) is a subspace of ¢o(M, A™) consisting of those x in c¢o(M, A™) such

that liinM (%) =0, for each d > 0.

Similarly we define (M, A™) and lo(M,A™) as a subspace of ¢(M,A™) and
loo(M, A™) respectively. The topology of X (M, A™) is the one it inherits from
[ oflam.
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It is obvious that (M, A™) C &(M,A™) C Lo (M, A™).

Also as above we can show that 2o(M,A™), ¢(M, A™) and loo (M, A™) are
isometrically isomorphic to ¢o(M), ¢(M) and ¢s (M) respectively.

Moreover X (M, A?) C X(M,A™) and X(M,A") ¢ X(M,A™) fori=0,1,...,
m — 1. which can be shown by repeated application of the following inequality.

A"z 1 Ay 1 \Amflx |
M (18} < par (182l o fpy (1A enl)

2 Some Properties of the Spaces

Theorem 2.1. If M satisfies the Ag—condition then we have X(M,A™) =
X(M,A™) for X =cg, ¢ and lo.

Proof. We give the proof for X = ¢/, and for other spaces it will follow on
applying similar arguments.

_ To prove the theorem it is enough to show that £ (M, A™) is a subspace of
loo (M, A™). Let © € loo (M, A™), then for some p > 0,

sup M (IN:%’“‘) < oo and M (IN:%"I) < oo for every k > 1
k

Choose an arbitrary n > 0. If p <n then M (IA?:]—”‘) < oo for every k > 1. Let

nown<pandputl:%>1.
Since M satisfies the As—condition, there exists a constant K such that

M (%) < K%M (IN:%’“‘) < oo for every k > 1 and hence
sup M (IA:—”‘) < oo for every n >0 (]
k

Theorem 2.2. (i) co(M,A™), c¢(M,A™) and Lo (M, A™) are conver sets.
(13) If M satisfies the Ag—condition then To(M, A™), (M, A™) and lso (M, A™)

are convex sets.

Proof. (i) We prove the Theorem for c¢o(M,A™) and for other cases it will
follow on applying similar arguments.
Let z,y € co(M,A™). Then there exist p1, p2 > 0 such that

lim M (M) —0 and lim M (M) -0
k P1 k

P2

For A = 0 or A = 1, the result is obvious. Let 0 < A < 1. Considering p =
max (|A|p1, |1 — A|p2), we have

M (mmuzk+<m>yk>\) <1y (\Nﬂ(m)\) 1M (mm(H)ym)

2p P P
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< %M(\Amwkl) +%M(\Amyk|)

P1 P2

This completes the proof.
(73) Proof follows from (i) using Theorem 2.1. O

Theorem 2.3. (i) c¢o(M,A™) and c¢(M,A™) are nowhere dense subsets of
leo (Ma Am) -
(73) To(M,A™) and (M, A™) are are nowhere dense subsets of oo (M, A™).

Proof. The proof follows from (1.1) and (1.2). O

3 Kothe Toeplitz and Null Dual Spaces

In this section we give the a—dual and N—(or null) dual of the sequence
spaces co(M, A™), (M, A™), boo (M, A™), G (M, A™), &(M, A™) and lo, (M, A™).
Let E and F' be two sequence spaces. Then the F' dual of E is defined as

EF = {(zx) € w: (zryx) € F for all (y) € E}.
For F = ¢, and ¢, , the duals are termed as a—dual (K6the Toeplitz dual)
and N—(or null) dual of E and denoted by E* and E¥ respectively. If X C Y,
then Y* C X* for z=«, N.

Lemma 3.1. [9] Let m be a positive integer. Then there exists positive constants
C1 and Cq such that

m+k

< ("

)gCgkm, k=0,1,2,---
Lemma 3.2. = € (o (M, A™) implies sup M (W) < 00, for some p > 0.
k

Proof. Let x € {oo (M, A™), then

m—1 _AM—1
sup M ('A Th pA zk“') < 0o, for some p > 0.
k

Then there exists a U > 0 such that

M (1Rl ) < U, for all ke N,

On taking n = kp, k > 1 being arbitrary fixed number, we have

k
‘ Z Amflmi_Am—lm'H’l‘

M (‘A7n71117A7n71xk+1‘) _ M =
n

kp

k
Z ‘AM71"E»L—AM71"E»;+1‘

S M i=1

kp
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Am71$ _Am—lm I 1 |Am71:n 7A7n71x ‘
<1 | 1 2 a1 k k1
<im( - 4o iM .

1 1 1
SFU+ U+ -4+ 3U =O0(k)
Now the result follows from the following inequality using the convexity of M:

|Am_1xk+1| S |Am_1$1| + |Am_1$1 - Am_lxk+1|.

Lemma 3.3. (i) sup M (&pmm) < oo implies sup M (L:I"I) < 00
k k

for some p >0
(ii) © € Lo (M, A™) implies sup M (@) < 00, for some p >0,
k

(131) © € Loo (M, A™) implies sup |k~ x| < oo.
k

Proof. (i) Proof follows from Lemma 3.2 by repeated application of the same
arguments.
(74) Combining the Lemma 3.2 and part (7).
(7i1) Proof follows from part (7). O

Remark 1. Similar results as in Lemma 3.3 hold for oo (M, A™) also, where the
statement “for some p > 07 should be replaced by ”for every p > 07

Theorem 3.4. Let M be an Orlicz function. Then

(5) [eo(M, A™)]" = [e(M, A™)]" = [(oo (M, A™)]" = Dy,
(11) DS = Dy, where

D, = {a — () S kmag| < oo},

Dy = {b = (bg) : sup [k~™bi| < oo}.
k

o0

Proof. (i) Let a € Dy, then ) |k™ax| < co. Now for any x € loo (M, A™)
k=1
we have sup [k~™xy| < co. Then we have
k

Z lagxr| < sup |k~ Z [k ay| < .
k=1 k k=1
Hence a € [loo (M, A™)]". Conversely suppose that a € [X (M, A™)]”, for X = ¢

and ls. Then Y |agzi| < oo, for each x € X(M,A™). So we take x, = k™,
k=1

k> 1then > |k™ag| = > |agxr| < oo. This implies that a € D;.
k=1 k=1
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Again suppose that a € [co(M, A™)]” and a € D;. Then there exists a strictly

increasing sequence (n;) of positive integers n; with nqy < ns < ---, such that
Nit1
Z |kmak| > 1.

Define z € ¢o(M, A™) by
xp =0, 1<k<n

__1.m  Sgn ag

,ong <k <ni

o) no Mi41
Then we have > |agzr| = > |agze|+---+ > |awxg|+---
no MNit+1
= > |kmak|+~-~—|—% > Emag| + -
S1+14-- =o0.

This contradicts to a € [co(M, A™)]". Hence a € D;. This completes the proof of
(4)-

(1) proof is similar to proof of part (7). O

Theorem 3.5. Let M be an Orlz’cz_functz’on. Then
(1) [Co(M, A™)]* = [e(M,A™)]* = [lo(M,A™)]" = Dy,
(it) DY = Do, where

Dy — {a —(an): > kmay < oo},

k=1

Dy = {b = (bg) : sup [k~™bi| < oo}.
k
Proof. The proof is similar to that of Theorem 4. (]

If we take m = 0 in Theorem 3.4 and Theorem 3.5 then we obtain the following
Corollary.

Corollary 3.6. For X = co, ¢ and lo.
() (X(M)]" = [X(M)]" = H,
(ii) HY = Hs, where

Hy — {az(ak);§1|ak| <oo},
Hy = {bz (bk) 151;P|bk| < 00}~

(7n+k

—1
%) =0, for some p > 0.

Lemma 3.7. If x € co(M,A™), then 1i]1€nM <

Proof. The proof follows from Lemma 3.1.
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Theorem 3.8. Let M and ® be mutually complemetary Orlicz functions. Then
(i) [e(M, A™)Y = [t (M, A™)]Y = Gy,

(i) [co(M, A™)]N = Ga, where

Gi1 ={a=(ax): liin k™ay =0},

J— m-+k a
Ga = {a = (ax) : liinfl) (W) =0, for every d > 0}.

Proof. (i) Proof is immediate using Lemma 3.3(iii).
R m+k a
(73) Let a € Ga, then liin@ (W) = 0 for every d > 0. Now for any
x € co(M,A™) we have

m-+k

—1
1iinM <#> = 0 for some p > 0. Then using the inequality
k
) e o ("))
k
we have 1il£n axzr = 0 and hence a € [co(M, A™)]V.
Conversely suppose that a € [co(M,A™)]™. Then liin arry = 0, for each
x € co(M,A™). So we take x = (m;:k), k > 1, then liin (m;:k)ak = liin arrr =0
m-+k a
lim @ (7“ ) k|> ~0
k

for every d > 0. Hence a € G5. This completes the proof. 1

(mljk)*lxk

|a;€x;€| <M (

and so

Theorem 3.9. Let M and ® be mutually complemetary Orlicz functions. Then
N = N

(i) [e(M, A™N = [T (M, A™)]" = Gy,

(i3) [co(M, A™)]N = Gy, where

Gl = {(l = (ak) : hin kmak = O}7

) i (" )ax]
Gy = a—(ak).hlgnfb v =0, for some d >0 ;.
Proof. Proof is similar to that of Theorem 3.8. O

If we take m = 0 in Theorem 3.8 and Theorem 3.9 then we obtain the following
Corollary.

Corollary 3.10. For X = ¢ and {~,
() (X)) = X)) ™ = L,

(ii) [co(M)]" =T,

(iii) [eo(M))N = Lo, where

L= {a = (ay) :lillénagC = 0},
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Ly = {a= (ax) : lilgntb(%) =0, for every d > 0},
and
Ly = {a = (ag) : lilgntb(%) =0, for some d > 0}.
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