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1 Introduction

Throughout this section w, ℓ∞, ℓ1, c and c0 denote the spaces of all, bounded,
absolutely summable, convergent and null sequences x = (xk) with complex terms
respectively. The notion of difference sequence space was introduced by Kizmaz
[4], who studied the difference sequence spaces ℓ∞(∆), c(∆) and c0(∆). The notion
was further generalized by Et and Colak [3] by introducing the spaces ℓ∞(∆m),
c(∆m) and c0(∆

m).

Let n be non-negative integers then for Z a given sequence space we have
Z(∆m) = {x = (xk) ∈ w : (∆mxk) ∈ Z},

where ∆mx = (∆mxk) = (∆m−1xk − ∆m−1xk+1) and ∆0xk = xk for all k ∈ N ,
which is equivalent to the following binomial representation.

∆mxk =
m
∑

v=0
(−1)v

(

m

v

)

xk+v.

Taking m = 1, we get the spaces ℓ∞(∆), c(∆) and c0(∆) introduced and studied
by Kizmaz [4].
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An Orlicz function is a function M : [0,∞) −→ [0,∞), which is continuous,
non-decreasing and convex with M(0) = 0, M(x) > 0, for x > 0 and M(x) −→ ∞,
as x −→ ∞.

An Orlicz function M is said to satisfy ∆2−condition for all values of u, if
there exists a constant K > 0, such that

M(2u) < KM(u), where u ≥ 0
The ∆2−condition is equivalent to M(lu) ≤ KlM(u), for all values of u and for
l > 1.

An Orlicz function M can always be represented in the following integral form:

M(x) =
x
∫

0

p(t)dt

where p, known as kernel of M , is right differentiable for t ≥ 0, p(0) = 0, p(t) > 0
for t > 0, p is non-decreasing, and p(t) −→ ∞ as t −→ ∞.

Consider the kernel p(t) associated with the Orlicz function M(t), and let
q(s) = sup{t : p(t) ≤ s}

Then q possesses the same properties as the function p. Suppose now

Φ(x) =
x
∫

0

q(s)ds

Then Φ is an Orlicz function. The functions M and Φ are called mutually com-
plementary Orlicz functions.

Now we state the following results which can be found in [5].
Let M and Φ are mutually complementary Orlicz functions. Then we have (Young’s
inequality)

(i) For x, y ≥ 0, xy ≤ M(x) + Φ(y).
Also we have

(ii) M(λx) < λM(x) for all x ≥ 0 and λ with 0 < λ < 1.

Lindenstrauss and Tzafriri [6] used the Orlicz function and introduced the
sequence space ℓM as follows:

ℓM = {(xk) ∈ w :
∞
∑

k=1

M
(

|xk|
ρ

)

< ∞, for some ρ > 0}.

They proved that ℓM is a Banach space normed by

‖(xk)‖ = inf{ρ > 0 :
∞
∑

k=1

M
(

|xk|
ρ

)

≤ 1}

A norm ‖ • ‖ on a vector space X is said to be equivalent to a norm ‖ • ‖0 on
X if there are positive numbers A and B such that for all x ∈ X , we have

A‖x‖0 ≤ ‖x‖ ≤ B‖x‖0.
This concept is motivated by the fact that equivalent norms on X define the same
topology for X .

An isomorphism of a normed space X onto a normed space Y is a bijective
linear operator T : X −→ Y which preserves the norm, that is, for all x ∈ X ,

‖Tx‖ = ‖x‖. (Hence T is isometric)
X is then called isomorphic with Y , and X and Y are called isomorphic normed
spaces.

Let m be a non-negative integer. Then we can have the following sequence
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spaces for an Orlicz function M as:

c0(M, ∆m) = {x = (xk) : lim
k

M
(

|∆mxk|
ρ

)

= 0, for some ρ > 0},

c(M, ∆m) = {x = (xk) : lim
k

M
(

|∆mxk−L|
ρ

)

= 0, for some L and ρ > 0},

ℓ∞(M, ∆m) = {x = (xk) : sup
k

M
(

|∆mxk|
ρ

)

< ∞, for some ρ > 0},

where ∆mxk = ∆m−1xk − ∆m−1xk+1, ∆m
r xk =

m
∑

i=0

(−1)i
(

m
i

)

xk+i for all k ∈ N .

It is obvious that c0(M, ∆m) ⊂ c(M, ∆m) ⊂ ℓ∞(M, ∆m) (1.1)
Several authors have studied different algebraic and topological properties of

such spaces. In this article our main aim to compute the Köthe-Toepliz and Null
duals of such spaces.

Throughout the paper X will denote one of the sequence spaces c0, c and ℓ∞.
The sequence spaces X(M, ∆m) are Banach spaces normed by

‖x‖∆m =

m
∑

i=1

|xi| + inf

{

ρ > 0 : sup
k

M
(

|∆mxk|
ρ

)

≤ 1

}

(1.2)

Now we take

∆(m)xk =
m
∑

i=0

(−1)i
(

m
i

)

xk−i.

It is trivial that (∆mxk) ∈ X(M) if and only if (∆(m)xk) ∈ X(M). Now for
x ∈ X(M, ∆(m)), we define

‖x‖∆(m) = inf

{

ρ > 0 : sup
k

M
(

|∆mxk|
ρ

)

≤ 1

}

.

It can be shown that X(M, ∆(m)) is a BK space under the norm ‖x‖∆(m) and the
norms ‖x‖∆m and ‖x‖∆(m) are equivalent. Obviously
∆(m) : X(M, ∆(m)) −→ X(M), denoted by ∆(m)x = y = (∆(m)xk), is isometric
isomorphism.

Hence c0(M, ∆m), c(M, ∆m) and ℓ∞(M, ∆m) are isometrically isomorphic to
c0(M), c(M) and ℓ∞(M) respectively. From abstract point of view X(M, ∆m

r ) is
identical with X(M), for X = c0, c and ℓ∞.

Now we define the spaces c0(M, ∆m), c(M, ∆m) and ℓ∞(M, ∆m) as follows:
c0(M, ∆m) is a subspace of c0(M, ∆m) consisting of those x in c0(M, ∆m) such

that lim
k

M
(

|∆mxk|
d

)

= 0, for each d > 0.

Similarly we define c(M, ∆m) and ℓ∞(M, ∆m) as a subspace of c(M, ∆m) and
ℓ∞(M, ∆m) respectively. The topology of X(M, ∆m) is the one it inherits from
‖ • ‖∆m .
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It is obvious that c0(M, ∆m) ⊂ c(M, ∆m) ⊂ ℓ∞(M, ∆m).

Also as above we can show that c0(M, ∆m), c(M, ∆m) and ℓ∞(M, ∆m) are
isometrically isomorphic to c0(M), c(M) and ℓ∞(M) respectively.

Moreover X(M, ∆i) ⊂ X(M, ∆m) and X(M, ∆i) ⊂ X(M, ∆m) for i = 0, 1, ...,

m − 1. which can be shown by repeated application of the following inequality.

M
(

|∆mxk|
2ρ

)

≤ 1
2M

(

|∆m−1xk|
ρ

)

+ 1
2M

(

|∆m−1xk+1|
ρ

)

.

2 Some Properties of the Spaces

Theorem 2.1. If M satisfies the ∆2−condition then we have X(M, ∆m) =
X(M, ∆m) for X = c0, c and ℓ∞.

Proof. We give the proof for X = ℓ∞ and for other spaces it will follow on
applying similar arguments.

To prove the theorem it is enough to show that ℓ∞(M, ∆m) is a subspace of
ℓ∞(M, ∆m). Let x ∈ ℓ∞(M, ∆m), then for some ρ > 0,

sup
k

M
(

|∆mxk|
ρ

)

< ∞ and M
(

|∆mxk|
ρ

)

< ∞ for every k ≥ 1

Choose an arbitrary η > 0. If ρ ≤ η then M
(

|∆mxk|
η

)

< ∞ for every k ≥ 1. Let

now η < ρ and put l = ρ

η
> 1.

Since M satisfies the ∆2−condition, there exists a constant K such that

M
(

|∆mxk|
η

)

≤ K ρ

η
M

(

|∆mxk|
ρ

)

< ∞ for every k ≥ 1 and hence

sup
k

M
(

|∆mxk|
η

)

< ∞ for every η > 0 �

Theorem 2.2. (i) c0(M, ∆m), c(M, ∆m) and ℓ∞(M, ∆m) are convex sets.

(ii) If M satisfies the ∆2−condition then c0(M, ∆m), c(M, ∆m) and ℓ∞(M, ∆m)
are convex sets.

Proof. (i) We prove the Theorem for c0(M, ∆m) and for other cases it will
follow on applying similar arguments.

Let x, y ∈ c0(M, ∆m). Then there exist ρ1, ρ2 > 0 such that

lim
k

M
(

|∆mxk|
ρ1

)

= 0 and lim
k

M
(

|∆myk|
ρ2

)

= 0

For λ = 0 or λ = 1, the result is obvious. Let 0 < λ < 1. Considering ρ =
max (|λ|ρ1, |1 − λ|ρ2), we have

M
(

|∆m(λxk+(1−λ)yk)|
2ρ

)

≤ 1
2M

(

|∆m(λxk)|
ρ

)

+ 1
2M

(

|∆m(1−λ)yk)|
ρ

)
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≤ 1
2M

(

|∆mxk|
ρ1

)

+ 1
2M

(

|∆myk|
ρ2

)

This completes the proof.
(ii) Proof follows from (i) using Theorem 2.1. �

Theorem 2.3. (i) c0(M, ∆m) and c(M, ∆m) are nowhere dense subsets of

ℓ∞(M, ∆m).
(ii) c0(M, ∆m) and c(M, ∆m) are are nowhere dense subsets of ℓ∞(M, ∆m).

Proof. The proof follows from (1.1) and (1.2). �

3 Köthe Toeplitz and Null Dual Spaces

In this section we give the α−dual and N−(or null) dual of the sequence
spaces c0(M, ∆m), c(M, ∆m), ℓ∞(M, ∆m), c0(M, ∆m), c(M, ∆m) and ℓ∞(M, ∆m).

Let E and F be two sequence spaces. Then the F dual of E is defined as
EF = {(xk) ∈ w : (xkyk) ∈ F for all (yk) ∈ E}.

For F = ℓ1 and co , the duals are termed as α−dual (Köthe Toeplitz dual)
and N−(or null) dual of E and denoted by Eα and EN respectively. If X ⊂ Y ,
then Y z ⊂ Xz for z = α, N .

Lemma 3.1. [9] Let m be a positive integer. Then there exists positive constants

C1 and C2 such that

C1k
m ≤

(

m + k

k

)

≤ C2k
m, k = 0, 1, 2, · · ·

Lemma 3.2. x ∈ ℓ∞(M, ∆m) implies sup
k

M
(

|k−1∆m−1xk|
ρ

)

< ∞, for some ρ > 0.

Proof. Let x ∈ ℓ∞(M, ∆m), then

sup
k

M
(

|∆m−1xk−∆m−1xk+1|
ρ

)

< ∞, for some ρ > 0.

Then there exists a U > 0 such that

M
(

|∆m−1xk−∆m−1xk+1|
ρ

)

< U, for all k ∈ N.

On taking η = kρ, k > 1 being arbitrary fixed number, we have

M
(

|∆m−1x1−∆m−1xk+1|
η

)

= M





|
kP

i=1

∆m−1xi−∆m−1xi+1|

kρ





≤ M





kP
i=1

|∆m−1xi−∆m−1xi+1|

kρ




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≤ 1
k
M

(

|∆m−1x1−∆m−1x2|
ρ

)

+ · · · + 1
k
M

(

|∆m−1xk−∆m−1xk+1|
ρ

)

≤ 1
k
U + 1

k
U + · · · + 1

k
U = O(k)

Now the result follows from the following inequality using the convexity of M :

|∆m−1xk+1| ≤ |∆m−1x1| + |∆m−1x1 − ∆m−1xk+1|.

�

Lemma 3.3. (i) sup
k

M
(

|k−1∆mxk|
ρ

)

< ∞ implies sup
k

M
(

|k−mxk|
ρ

)

< ∞

for some ρ > 0

(ii) x ∈ ℓ∞(M, ∆m) implies sup
k

M
(

|k−mxk|
ρ

)

< ∞, for some ρ > 0,

(iii) x ∈ ℓ∞(M, ∆m) implies sup
k

|k−mxk| < ∞.

Proof. (i) Proof follows from Lemma 3.2 by repeated application of the same
arguments.

(ii) Combining the Lemma 3.2 and part (i).

(iii) Proof follows from part (i). �

Remark 1. Similar results as in Lemma 3.3 hold for ℓ∞(M, ∆m) also, where the

statement ”for some ρ > 0” should be replaced by ”for every ρ > 0”

Theorem 3.4. Let M be an Orlicz function. Then

(i) [c0(M, ∆m)]
α

= [c(M, ∆m)]
α

= [ℓ∞(M, ∆m)]
α

= D1,

(ii) Dα
1 = D2, where

D1 =

{

a = (ak) :
∞
∑

k=1

|kmak| < ∞

}

,

D2 =

{

b = (bk) : sup
k

|k−mbk| < ∞

}

.

Proof. (i) Let a ∈ D1, then
∞
∑

k=1

|kmak| < ∞. Now for any x ∈ ℓ∞(M, ∆m)

we have sup
k

|k−mxk| < ∞. Then we have

∞
∑

k=1

|akxk| ≤ sup
k

|k−mxk|

∞
∑

k=1

|kmak| < ∞.

Hence a ∈ [ℓ∞(M, ∆m)]
α
. Conversely suppose that a ∈ [X(M, ∆m)]

α
, for X = c

and ℓ∞. Then
∞
∑

k=1

|akxk| < ∞, for each x ∈ X(M, ∆m). So we take xk = km,

k ≥ 1 then
∞
∑

k=1

|kmak| =
∞
∑

k=1

|akxk| < ∞. This implies that a ∈ D1.
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Again suppose that a ∈ [c0(M, ∆m)]α and a 6∈ D1. Then there exists a strictly
increasing sequence (ni) of positive integers ni with n1 < n2 < · · · , such that

ni+1
∑

k=ni+1

|kmak| > i.

Define x ∈ c0(M, ∆m) by

xk = 0, 1 ≤ k ≤ n1

= km sgn ak

i
, ni < k ≤ ni+1

Then we have
∞
∑

k=1

|akxk| =
n2
∑

k=n1+1

|akxk| + · · · +
ni+1
∑

k=ni+1

|akxk| + · · ·

=
n2
∑

k=n1+1

|kmak| + · · · + 1
i

ni+1
∑

k=ni+1

|kmak| + · · ·

> 1 + 1 + · · · = ∞.
This contradicts to a ∈ [c0(M, ∆m)]

α
. Hence a ∈ D1. This completes the proof of

(i).
(ii) proof is similar to proof of part (i). �

Theorem 3.5. Let M be an Orlicz function. Then

(i) [c0(M, ∆m)]
α

= [c(M, ∆m)]
α

=
[

ℓ∞(M, ∆m)
]α

= D1,

(ii) Dα
1 = D2, where

D1 =

{

a = (ak) :
∞
∑

k=1

|kmak| < ∞

}

,

D2 =

{

b = (bk) : sup
k

|k−mbk| < ∞

}

.

Proof. The proof is similar to that of Theorem 4. �

If we take m = 0 in Theorem 3.4 and Theorem 3.5 then we obtain the following
Corollary.

Corollary 3.6. For X = c0, c and ℓ∞.

(i) [X(M)]
α

=
[

X(M)
]α

= H1,

(ii) Hα
1 = H2, where

H1 =

{

a = (ak) :
∞
∑

k=1

|ak| < ∞

}

,

H2 =

{

b = (bk) : sup
k

|bk| < ∞

}

.

Lemma 3.7. If x ∈ c0(M, ∆m), then lim
k

M

(

���(m+k

k )−1
xk

���
ρ

)

= 0, for some ρ > 0.

Proof. The proof follows from Lemma 3.1.
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Theorem 3.8. Let M and Φ be mutually complemetary Orlicz functions. Then

(i) [c(M, ∆m)]
N

= [ℓ∞(M, ∆m)]
N

= G1,

(ii) [c0(M, ∆m)]N = G2, where

G1 = {a = (ak) : lim
k

kmak = 0},

G2 =

{

a = (ak) : lim
k

Φ

(

|(m+k

k )ak|
d

)

= 0, for every d > 0

}

.

Proof. (i) Proof is immediate using Lemma 3.3(iii).

(ii) Let a ∈ G2, then lim
k

Φ

(

|(m+k

k )ak|
d

)

= 0 for every d > 0. Now for any

x ∈ c0(M, ∆m) we have

lim
k

M

(

���(m+k

k )
−1

xk

���
ρ

)

= 0 for some ρ > 0. Then using the inequality

|akxk| ≤ M

(∣

∣

∣

∣

(m+k

k )−1
xk

ρ

∣

∣

∣

∣

)

+ Φ

(

ρ

∣

∣

∣

∣

(

m + k

k

)

ak

∣

∣

∣

∣

)

,

we have lim
k

akxk = 0 and hence a ∈ [c0(M, ∆m)]
N

.

Conversely suppose that a ∈ [c0(M, ∆m)]
N

. Then lim
k

akxk = 0, for each

x ∈ c0(M, ∆m). So we take xk =
(

m+k

k

)

, k ≥ 1, then lim
k

(

m+k

k

)

ak = lim
k

akxk = 0

and so

lim
k

Φ

(

|(m+k

k )ak|
d

)

= 0

for every d > 0. Hence a ∈ G2. This completes the proof. �

Theorem 3.9. Let M and Φ be mutually complemetary Orlicz functions. Then

(i) [c(M, ∆m)]
N

=
[

ℓ∞(M, ∆m)
]N

= G1,

(ii) [c0(M, ∆m)]
N

= G2, where

G1 = {a = (ak) : lim
k

kmak = 0},

G2 =

{

a = (ak) : lim
k

Φ

(

|(m+k

k )ak|
d

)

= 0, for some d > 0

}

.

Proof. Proof is similar to that of Theorem 3.8. �

If we take m = 0 in Theorem 3.8 and Theorem 3.9 then we obtain the following
Corollary.

Corollary 3.10. For X = c and ℓ∞,

(i) [X(M)]
N

=
[

X(M)
]N

= L1,

(ii) [c0(M)]
N

= L2,

(iii) [c0(M)]N = L2, where

L1 =

{

a = (ak) : lim
k

ak = 0

}

,



Generalized Difference Sequence Spaces Defined by Orlicz Functions. . . 19

L2 = {a = (ak) : lim
k

Φ( |ak|
d

) = 0, for every d > 0},

and

L2 = {a = (ak) : lim
k

Φ( |ak|
d

) = 0, for some d > 0}.
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