
Thai Journal of Mathematics

Volume 8 (2010) Number 1 : 1–10

www.math.science.cmu.ac.th/thaijournal

Online ISSN 1686-0209

Some Results on Generalized

Sasakian-Space-Forms

U.C. De and A. Sarkar
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1 Introduction

The nature of a Riemannian manifold mostly depends on the curvature tensor
R of the manifold. It is well known that the sectional curvatures of a manifold
determine curvature tensor completely. A Riemannian manifold with constant
sectional curvature c is known as real-space-form and its curvature tensor is given
by

R(X, Y )Z = c{g(Y, Z)X − g(X, Z)Y }.

A Sasakian manifold with constant φ−sectional curvature is a Sasakian-space-
form and it has a specific form of its curvature tensor. Similar notion also holds
for Kenmotsu and cosymplectic space-forms. In order to generalize such space-
forms in a common frame P. Alegre, D. E. Blair and A. Carriazo introduced the
notion of generalized Sasakian-space-forms in 2004 [1]. In this connection it should
be mentioned that in 1989 Z. Olszak [12] studied generalized complex-space-forms
and proved its existence. A generalized Sasakian-space-form is defined as follows
[1]:
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Given an almost contact metric manifold M(φ, ξ, η, g), we say that M is gen-
eralized Sasakian-space-form if there exist three functions f1, f2, f3 on M such
that the curvature tensor R is given by

R(X, Y )Z = f1{g(Y, Z)X − g(X, Z)Y }
+ f2{g(X, φZ)φY − g(Y, φZ)φX + 2g(X, φY )φZ}
+ f3{η(X)η(Z)Y − η(Y )η(Z)X
+ g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ},

for any vector fields X, Y, Z on M. In such a case we denote the manifold as
M(f1, f2, f3). In [1] the authors cited several examples of such manifolds. If f1 =
c+3

4
, f2 = c−1

4
and f3 = c−1

4
then a generalized Sasakian-space-form with Sasakian

structure becomes Sasakian-space-form.
Generalized Sasakian-space-forms and Sasakian-space-forms have been studied

by several authors, viz., [1], [2], [4], [13]. Symmetry of a manifold is the most
important property among its all geometrical properties. Symmetry property of
manifolds have been studied by many authors, viz., [8], [9]. As a weaker notion
of locally symmetric manifolds T. Takahashi [16] introduced and studied locally
φ−symmetric Sasakian manifolds. Symmetry of a manifold primarily depends on
curvature tensor and Ricci tensor of the manifold. Motivated by these facts, we
study φ−symmetry of the space-form by using curvature tensor. Again using Ricci
tensor of the space-form we characterize such space-forms to have η−recurrent and
η−parallel Ricci tensor. How a three-dimensional generalized Sasakian-space-form
behaves with quasi-Sasakian structure is also discussed. The paper is organized
as follows:

Section 2 of this paper contains some preliminary results. In Section 3 we
study locally φ−symmetric generalized Sasakian-space-forms, Section 4 consists of
generalized Sasakian-space-forms with η−recurrent Ricci tensor. The last section
is devoted to study three-dimensional generalized Sasakian-space-forms with quasi-
Sasakian structure.

2 Preliminaries

This section contains some basic results and formulas which will be used in
our main results.

A (2n + 1)−dimensional Riemannian manifold (M, g) is called an almost con-
tact manifold if the following results hold [2]:

φ2(X) = −X + η(X)ξ, φξ = 0, (2.1)

η(ξ) = 1, g(X, ξ) = η(X), η(φX) = 0, (2.2)

g(φX, φY ) = g(X, Y ) − η(X)η(Y ), (2.3)

g(φX, Y ) = −g(X, φY ), g(φX, X) = 0, (2.4)
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(∇Xη)(Y ) = g(∇Xξ, Y ). (2.5)

An almost contact metric manifold is called contact metric manifold if

dη(X, Y ) = Φ(X, Y ) = g(X, φY ).

Φ is called the fundamental two form of the manifold. If in addition ξ is a Killing
vector the manifold is called a K−contact manifold. It is well known that a contact
metric manifold is K−contact if and only if ∇Xξ = −φX, for any vector field X

on M. On the other hand a normal contact metric manifold is known as Sasakian
manifold. An almost contact metric manifold is Sasakian if and only if

(∇Xφ)Y = g(X, Y )ξ − η(Y )X,

for any vector fields X, Y. In 1967 D. E. Blair introduced the notion of quasi-
Sasakian manifold to unify Sasakian and cosymplectic manifolds [6]. Again in 1986
Z. Olszak introduced and characterized three-dimensional quasi-Sasakian mani-
folds [10]. An almost contact metric manifold of dimension three is quasi-Sasakian
if and only if

∇Xξ = −βφX, (2.6)

for X ∈ TM and a function β such that ξβ = 0. Here ∇ being the operator
of the covariant differentiation with respect to the Levi-Civita connection on the
manifold. As a consequence of (2.6) we get

(∇Xη)Y = g(∇Xξ, Y ) = −βg(φX, Y ), (2.7)

(∇Xη)ξ = −βη(φX) = 0. (2.8)

Clearly, such a quasi-Sasakian manifold is cosymplectic if and only if β = 0. It is
known that [7] for a three-dimensional quasi-Sasakian manifold the Riemannian
curvature tensor satisfies

R(X, Y )ξ = β2(η(Y )X − η(X)Y ) + dβ(Y )φX − dβ(X)φY. (2.9)

For a (2n + 1)−dimensional generalized Sasakian-space-form we have [1]

R(X, Y )Z = f1{g(Y, Z)X − g(X, Z)Y }

+ f2{g(X, φZ)φY − g(Y, φZ)φX + 2g(X, φY )φZ}

+ f3{η(X)η(Z)Y − η(Y )η(Z)X

+ g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ}. (2.10)

S(X, Y ) = (2nf1 + 3f2 − f3)g(X, Y ) − (3f2 + (2n − 1)f3)η(X)η(Y ). (2.11)

r = 2n(2n + 1)f1 + 6nf2 − 4nf3. (2.12)

Here S is the Ricci tensor and r is the scalar curvature of the space-form.
A generalized Sasakian-space-form of dimension greater than three is said to be

conformally flat if its Weyl conformal curvature tensor vanishes. It is known that
[13] a (2n+1)−dimensional (n > 1) generalized Sasakian-space-form M(f1, f2, f3)
is conformally flat if and only if f2 = 0.
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3 Locally φ−symmetric generalized Sasakian

space-forms

Definition 3.1. A generalized Sasakian space form is said to be locally
φ−symmetric if

φ2(∇W R)(X, Y )Z = 0,

for all vector fields X, Y, Z orthogonal to ξ. This notion was introduced by T.
Takahashi for Sasakian manifolds [16].

Differentiating (2.10) covariantly with respect to W we get

(∇W R)(X, Y )Z = df1(W ){g(Y, Z)X − g(X, Z)Y }

+ df2(W ){g(X, φZ)φY − g(Y, φZ)φX + 2g(X, φY )φZ}

+ f2{g(X, φZ)(∇W φ)Y + g(X, (∇W φ)Z)φY

− g(Y, φZ)(∇W φX) − g(Y, (∇W φ)Z)φX

+ 2g(X, φY )(∇W φ)Z + 2g(X, (∇W φ)Y )φZ}

+ df3{η(X)η(Z)Y − η(Y )η(Z)X

+ g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ}

+ f3{(∇W η)(X)η(Z)Y + η(X)(∇W η)(Z)Y

− (∇W η)(Y )η(Z)X − η(Y )(∇W η)(Z)X

+ g(X, Z)(∇W η)(Y )ξ + g(X, Z)η(Y )(∇W ξ)

− g(Y, Z)X(∇W η)(X)ξ − g(Y, Z)η(X)(∇W ξ)}. (3.1)

Taking X, Y, Z orthogonal to ξ, applying φ2 on both sides of (3.1) and using (2.1)
we get

φ2(∇W R)(X, Y )Z = df1(W ){g(X, Z)Y − g(Y, Z)X}

+ df2{g(Y, φZ)φX − 2g(X, φY )φZ − g(X, φZ)φY }

+ f2{g(X, φZ)φ2((∇W φ)Y ) − g(X, (∇W φ)φZ)φY

− g(Y, φZ)φ2((∇W φ)X) + g(Y, (∇W φ)Z)φX

+ 2g(X, φY )φ2((∇W φ)Z) − 2g(X, (∇W φ)Y )φZ}. (3.2)

If the manifold is conformally flat then f2 = 0. Therefore, (3.2) yields

φ2(∇W R)(X, Y )Z = df1{g(X, Z)Y − g(Y, Z)X}, (3.3)

where X, Y, Z are orthogonal to ξ. In view of (3.3) we obtain the following:
Theorem 3.1. A (2n + 1)−dimensional (n > 1) conformally flat generalized

Sasakian-space-form is locally φ−symmetric if and only if f1 is constant.
Remark 3.1. In [13], U. K. Kim studied generalized Sasakian-space-forms

and proved that if a generalized Sasakian-space-form M(f1, f2, f3) of dimension
greater than three is conformally flat and ξ is Killing, then it is locally symmetric.
Moreover, if M(f1, f2, f3) is locally symmetric, then f1 − f3 is constant. In the
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above theorem it is shown that a conformally flat generalized Sasakian-space-form
of dimension greater than three is locally φ−symmetric if and only if f1 is constant.
Thus we observe the difference between locally symmetric generalized Sasakian-
space forms and locally φ−symmetric generalized Sasakian-space-forms.

Example 3.1. In [1] it is shown that R×f Cm is a generalized Sasakian-space-
form with

f1 = −
(f ′)2

f2
, f2 = 0, f3 = −

(f ′)2

f2
+

f ′′

f
,

where f = f(t). If we choose f(t) = et, then it follows that f1 is constant.
Hence by Theorem 3.1 this manifold becomes locally φ−symmetric.

4 η−recurrent generalized Sasakian-space-forms

Definition 4.1. A (2n + 1)−dimensional generalized Sasakian-space-form is
said to have η−recurrent Ricci tensor if there exists a non-zero 1−form A(X) such
that

(∇XS)(φY, φZ) = A(X)S(Y, Z). (4.1)

If the 1−form vanishes on M then the space-form is said to have η−parallel Ricci
tensor. The notion of η−parallel Ricci tensor was introduced by Kon in the context
of Sasakian geometry [14].

From (2.11) we have

(∇W S)(φX, φY ) = d(2nf1 + 3f2 − f3)(W )(g(X, Y ) − η(X)η(Y ))

− (2nf1 + 3f2 − f3)((∇W η)(X)η(Y )

+ η(X)(∇W η)(Y )). (4.2)

Suppose that the space-form has η−recurrent Ricci tensor. Then in view of
(4.1) and (4.2) it follows that

d(2nf1 + 3f2 − f3)(W )(g(X, Y ) − η(X)η(Y ))

− (2nf1 + 3f2 − f3)((∇W η)(X)η(Y ) + η(X)(∇W η)(Y ))

= A(W )((2nf1 + 3f2 − f3)g(X, Y )

− (3f2 + (2n − 1)f3)η(X)η(Y )). (4.3)

In (4.3) replacing X by φX and Y by φY we have

d(2nf1 + 3f2 − f3)(W ) = A(W )(2nf1 + 3f2 − f3). (4.4)

Let 2nf1 + 3f2 − f3 = f. Then (4.4) reduces to

fA(W ) = df(W ). (4.5)

From (4.5) we get

df(Y )A(W ) + (∇Y A)(W )f = d2f(W, Y ). (4.6)
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Interchanging Y and W we get from the above equation

df(W )A(Y ) + (∇W A)(Y )f = d2f(Y, W ). (4.7)

Subtracting (4.7) from (4.6) we get

(∇W A)(Y ) − (∇Y A)(W ) = 0.

Hence the 1−form A(W ) is closed.

Thus we have the following:

Theorem 4.1. In an η−recurrent generalized Sasakian-space-form the 1−form
A is closed.

Since A(W ) is non-zero, equation (4.4) leads us to state the following:

Theorem 4.2. If a (2n+1)−dimensional generalized Sasakian space form has
η−recurrent Ricci tensor then 2nf1 + 3f2 − f3 can never be a non-zero constant.

In view of (4.4) we also have

Theorem 4.3. A (2n + 1)−dimensional generalized Sasakian-space-form
M(f1, f2, f3) has η−parallel Ricci tensor if and only if 2nf1 + 3f2 − f3 is con-
stant.

We know that if a (2n + 1)−dimensional generalized Sasakian-space-form ad-
mits contact metric structure then, f1 − f3 is constant [1]. Hence f3 is constant if
and only if f1 is constant. If f2 = 0 then we see that 2nf1 − f3 is constant if and
only if f1 is constant.

Thus combining Theorem 3.1 and Theorem 4.3 we get

Corollary 4.1. A (2n + 1)−dimensional (n > 1) conformally flat contact
metric generalized Sasakian space-form has η−parallel Ricci tensor if and only if
it is locally φ−symmetric.

For three-dimensional generalized Sasakian-space-form we obtain from (2.12)

r = 2(2f1 + 3f2 − f3) + 2(f1 − f3).

If the manifold admits contact metric structure, then f1 − f3 is constant. Hence
r is constant if and only if 2f1 + 3f2 − f3 is constant. From [2] it is known
that if the contact metric is non-Sasakian, then 2f1 + 3f2 − f3 = 0. Hence for
a three-dimensional non-Sasakian contact metric generalized Sasakian-space-form
the scalar curvature is always constant. Now we are in a position to state the
following:

Corollary 4.2. A three-dimensional generalized Sasakian-space-form with
non-Sasakian contact metric has η−parallel Ricci tensor if and only if its scalar
curvature is constant.

In case of Sasakian manifold the above corollary was proved by Kon [14] in
another way.

From (2.11) we see that

S(X, Y ) = ag(X, Y ) + bη(X)η(Y ), (4.8)
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where a = 2nf1 + 3f2 − f3 and b = 3f2 + (2n − 1)f3. If l2 denotes the square of
the length of the Ricci tensor, then

l2 =
2n+1∑

i=1

S(Qei, ei), (4.9)

where Q is the symmetric endomorphism of the tangent space at a point corre-
sponding to the Ricci tensor S and {ei}, i = 1, 2, ...., 2n + 1, is an orthonormal
basis of the tangent space at each point of the manifold. If we put X = Y = ei in
(4.8) we get

r = (2n + 1)a + b, (4.10)

where r is the scalar curvature of the manifold. Again from (4.8)

S(ξ, ξ) = a + b. (4.11)

From (4.9), (4.10) and (4.11) it follows that

l2 = 2na2 + (a + b)2. (4.12)

If the manifold has η−parallel Ricci tensor then by Theorem 4.3 we have

2nf1 + 3f2 − f3 (4.13)

is constant. Hence a is constant. If the space-form admits contact metric structure
then

f3 − k = f1, (4.14)

where k is a constant. In view of (4.13) and (4.14) we obtain 3f2 + (2n − 1)f3 is
constant. That is b is constant. Then it follows from (4.10) that r is constant.
Also from (4.12) we see that l2 is constant. Then consequently £X l2 = 0, where
£X denotes Lie differentiation. Now we know that if a compact Riemannian
manifold of dimension greater than 2 with constant scalar curvature admits an
infinitesimal non-isometric conformal transformation X such that £X l2 = 0, then
it is an Einstein manifold [18]. Thus we see, from (4.8), that if a generalized
Sasakian-space-form admits an infinitesimal non-isometric conformal transforma-
tion X, then b = 0. From this we can conclude the following:

Theorem 4.4. If a (2n+1)−dimensional contact metric generalized Sasakian-
space-form with η−parallel Ricci tensor admits an infinitesimal non-isometric con-
formal transformation, then f3 = 3f2

1−2n
.

It is known that a (2n + 1)−dimensional generalized Sasakian-space-form is
Ricci semisymmetric if and only if f3 = 3f2

1−2n
[15]. Thus we are in a position to

state the following:
Corollary 4.3. If a (2n+1)−dimensional contact metric generalized Sasakian-

space-form with η−parallel Ricci tensor admits an infinitesimal non-isometric con-
formal transformation then it is Ricci semisymmetric.
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5 Three-dimensional quasi-Sasakian generalized

Sasakian space-form.

Let us assume that a three-dimensional generalized Sasakian-space-form ad-
mits quasi-Sasakian structure. In view of (2.9) we obtain

R(X, ξ)ξ = β2(X − η(X)ξ). (5.1)

But in view of (2.10) it follows that

R(X, ξ)ξ = (f1 − f3)X. (5.2)

R(X, φX)ξ = 0. (5.3)

From (5.1) and (5.2) we see that

(f1 − f3)X = β2(X − η(X)ξ). (5.4)

Changing X by φX we get from (5.4)

(f1 − f3) = β2. (5.5)

In view of (5.5) we have
Theorem 5.1. In a three-dimensional quasi-Sasakian generalized Sasakian-

space-form f1 − f3 is constant if and only if β is constant.
If β = 0 the quasi-Sasakian structure becomes cosymplectic. Hence we can

state the following corollary:
Corollary 5.1. In a three dimensional cosymplectic generalized Sasakian-

space-form f1 = f3.
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