Thai Journal of Mathematics
Volume 8 (2010) Number 1 : 1-10

www.math.science.cmu.ac.th/thaijournal
Online ISSN 1686-0209

Some Results on Generalized
Sasakian-Space-Forms

U.C. De and A. Sarkar

Abstract : The object of the present paper is to study locally ¢p—symmetric gener-
alized Sasakian-space-forms and generalized Sasakian-space-forms with n—recurrent
Ricci tensor. Such space-forms with three-dimensional quasi-Sasakian structure
are also considered.
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1 Introduction

The nature of a Riemannian manifold mostly depends on the curvature tensor
R of the manifold. It is well known that the sectional curvatures of a manifold
determine curvature tensor completely. A Riemannian manifold with constant
sectional curvature ¢ is known as real-space-form and its curvature tensor is given
by
R(X,Y)Z = c{g(Y, 2)X — g(X, Z)Y}.

A Sasakian manifold with constant ¢—sectional curvature is a Sasakian-space-
form and it has a specific form of its curvature tensor. Similar notion also holds
for Kenmotsu and cosymplectic space-forms. In order to generalize such space-
forms in a common frame P. Alegre, D. E. Blair and A. Carriazo introduced the
notion of generalized Sasakian-space-forms in 2004 [1]. In this connection it should
be mentioned that in 1989 Z. Olszak [12] studied generalized complex-space-forms
and proved its existence. A generalized Sasakian-space-form is defined as follows

[1]:

The second author is supported by U. G. C. Minor Research Project, India

Copyright (©) 2010 by the Mathematical Association of Thailand. All rights
reserved.



2 Thai J. Math. 8(1) (2010)/ U.C. De and A. Sarkar

Given an almost contact metric manifold M (¢, &, n, g), we say that M is gen-
eralized Sasakian-space-form if there exist three functions fy, f2, f3 on M such
that the curvature tensor R is given by

R(X,Y)Z gV, 2)X —g(X, Z2)Y}
f2A9(X,0Z)Y — g(Y,02)pX +29(X, ¢Y)0Z}
fs{n(X)n(2)Y —n(Y)n(Z2)X
9(X, Zm(Y)E — g(Y, Z)n(X)&},

for any vector fields X,Y,Z on M. In such a case we denote the manifold as
M(f1, f2, f3). In [1] the authors cited several examples of such manifolds. If f; =
013, fo= 011 and f3 = czl then a generalized Sasakian-space-form with Sasakian
structure becomes Sasakian-space-form.

Generalized Sasakian-space-forms and Sasakian-space-forms have been studied
by several authors, viz., [1], [2], [4], [13]. Symmetry of a manifold is the most
important property among its all geometrical properties. Symmetry property of
manifolds have been studied by many authors, viz., [8], [9]. As a weaker notion
of locally symmetric manifolds T. Takahashi [16] introduced and studied locally
¢—symmetric Sasakian manifolds. Symmetry of a manifold primarily depends on
curvature tensor and Ricci tensor of the manifold. Motivated by these facts, we
study ¢—symmetry of the space-form by using curvature tensor. Again using Ricci
tensor of the space-form we characterize such space-forms to have n—recurrent and
n—parallel Ricci tensor. How a three-dimensional generalized Sasakian-space-form
behaves with quasi-Sasakian structure is also discussed. The paper is organized
as follows:

Section 2 of this paper contains some preliminary results. In Section 3 we
study locally ¢—symmetric generalized Sasakian-space-forms, Section 4 consists of
generalized Sasakian-space-forms with n—recurrent Ricci tensor. The last section
is devoted to study three-dimensional generalized Sasakian-space-forms with quasi-
Sasakian structure.

+ 4+

2 Preliminaries

This section contains some basic results and formulas which will be used in
our main results.

A (2n +1)—dimensional Riemannian manifold (M, g) is called an almost con-
tact manifold if the following results hold [2]:

P*(X) ==X +n(X)¢, ¢¢=0, (2.1)
n() =1, g(X,§)=n(X), n(¢X)=0, (2:2)
9(¢X,0Y) = g(X,Y) — n(X)n(Y), (2.3)
9(¢X.Y) = —g(X,9Y), g(¢X,X)=0, (2.4)
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(Vxm)(Y) = g(Vx&Y). (2.5)
An almost contact metric manifold is called contact metric manifold if

dn(X,Y) =®(X,Y) = g(X, ¢Y).

® is called the fundamental two form of the manifold. If in addition £ is a Killing
vector the manifold is called a K —contact manifold. It is well known that a contact
metric manifold is K —contact if and only if Vx& = —¢X, for any vector field X
on M. On the other hand a normal contact metric manifold is known as Sasakian
manifold. An almost contact metric manifold is Sasakian if and only if

(Vxo)Y =g(X,Y){ —n(Y)X,

for any vector fields X,Y. In 1967 D. E. Blair introduced the notion of quasi-
Sasakian manifold to unify Sasakian and cosymplectic manifolds [6]. Again in 1986
Z. Olszak introduced and characterized three-dimensional quasi-Sasakian mani-
folds [10]. An almost contact metric manifold of dimension three is quasi-Sasakian
if and only if

V&= —BéX, (2.6)
for X € TM and a function 8 such that {8 = 0. Here V being the operator
of the covariant differentiation with respect to the Levi-Civita connection on the
manifold. As a consequence of (2.6) we get

(Vxn)Y =g(Vx&Y) = —Bg(¢X,Y), (2.7)

(Vxn)§ = —pn(¢X) = 0. (2.8)
Clearly, such a quasi-Sasakian manifold is cosymplectic if and only if § = 0. It is

known that [7] for a three-dimensional quasi-Sasakian manifold the Riemannian
curvature tensor satisfies

RIX,Y)e = )X —n(X)Y)+dB(Y)¢X —dB(X)gY.  (2.9)

For a (2n 4+ 1)—dimensional generalized Sasakian-space-form we have [1]

RX,)Y)Z = fi{g(Y,2)X —g(X,2)Y}
+  folg(X,02)0Y — g(Y,0Z)p X +29(X, ¢Y)9Z}
+  fsn(Xn(2)Y —n(Y)n(Z2)X

+ 9(X, Z)n(Y)€ = g(Y, Z)n(X)E}. (2.10)
S(X,Y) = (2nfr +3f2 = f3)9(X,Y) = Bf2 + (2n = 1) fs)n(X)n(Y).  (2.11)
r=2n(2n+1)f1 +6nfs —4nfs. (2.12)

Here S is the Ricci tensor and r is the scalar curvature of the space-form.

A generalized Sasakian-space-form of dimension greater than three is said to be
conformally flat if its Weyl conformal curvature tensor vanishes. It is known that
[13] a (2n+ 1)—dimensional (n > 1) generalized Sasakian-space-form M (f1, f2, f3)
is conformally flat if and only if fo = 0.
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3 Locally ¢—symmetric generalized Sasakian
space-forms

Definition 3.1. A generalized Sasakian space form is said to be locally
¢—symmetric if
¢»*(VwR)(X,Y)Z =0,

for all vector fields X,Y, Z orthogonal to £. This notion was introduced by T
Takahashi for Sasakian manifolds [16].
Differentiating (2.10) covariantly with respect to W we get

(VwR)(X,Y)Z = dfi(W){g(Y,2)X —g(X,Z)Y}
df2x(W){g(X,02)9Y — g(Y,02)pX +29(X, dY)dpZ}
FA9(X,0Z2)(Vwo)Y + g(X, (Vwe)Z)pY
9(Y,02)(Vw o X) — g(Y, (V) Z)p X
29(X, Y )(Vwo)Z +29(X, (Vwe)Y)9Z}
dfs{n(X)n(Z2)Y —n(Y')n(Z)X
9(X, Z)n(Y)E — g(Y, Z)n(X)E}
LA (Vwn)(X)n(2)Y +n(X)(Vwn)(Z2)Y
= (Vwn)Y)m(Z)X —n(Y)(Vwn)(2)X

9(X, Z)(Vwn)(Y)E + g(X, Z)n(Y)(Vwé)
- gV, 2) X (Vwn)(X)€ — g(Y, Z)n(X)(Vwé)}. (3.1)

Taking X, Y, Z orthogonal to £, applying ¢? on both sides of (3.1) and using (2.1)
we get

|+ +

+ + + +

_|_

P*(VwR)(X,Y)Z = dri(W){g(X,2)Y —g(Y,Z)X}

dfo{g(Y,0Z)pX —29(X, Y )9Z — g(X, 9 Z)$Y'}
F2A9(X,02)8*(Vwo)Y) — g(X, (Vw$)¢Z)¢Y

= 9(Y.02)¢*(Vwo)X) + g(Y, (Vwe) Z)pX

+ 29(X,0Y)6*(Vw)Z) — 29(X, (Vwo)Y)oZ}. (3.2)

If the manifold is conformally flat then fo = 0. Therefore, (3.2) yields

+
+

¢2(VWR)(X7Y)Z:dfl{g(sz)Y_g(sz)X}v (3'3)

where XY, Z are orthogonal to £. In view of (3.3) we obtain the following:
Theorem 3.1. A (2n + 1)—dimensional (n > 1) conformally flat generalized
Sasakian-space-form is locally ¢—symmetric if and only if f; is constant.
Remark 3.1. In [13], U. K. Kim studied generalized Sasakian-space-forms
and proved that if a generalized Sasakian-space-form M (f1, f2, f3) of dimension
greater than three is conformally flat and ¢ is Killing, then it is locally symmetric.
Moreover, if M(f1, fo, f3) is locally symmetric, then f; — f3 is constant. In the
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above theorem it is shown that a conformally flat generalized Sasakian-space-form
of dimension greater than three is locally ¢—symmetric if and only if f; is constant.
Thus we observe the difference between locally symmetric generalized Sasakian-
space forms and locally ¢p—symmetric generalized Sasakian-space-forms.

Example 3.1. In [1] it is shown that R x y C™ is a generalized Sasakian-space-
form with (12 G g

flz_f27 f2:07 f3:_f2 +77

where f = f(t). If we choose f(t) = e, then it follows that f; is constant.

Hence by Theorem 3.1 this manifold becomes locally ¢p—symmetric.

4 n—recurrent generalized Sasakian-space-forms

Definition 4.1. A (2n 4 1)—dimensional generalized Sasakian-space-form is
said to have n—recurrent Ricci tensor if there exists a non-zero 1—form A(X) such
that

(VxS)(¢Y, 9Z) = A(X)S(Y, Z). (4.1)

If the 1—form vanishes on M then the space-form is said to have n—parallel Ricci
tensor. The notion of n—parallel Ricci tensor was introduced by Kon in the context
of Sasakian geometry [14].

From (2.11) we have

(VwS)(9X,0Y) = d2nf1+3f2— f3)(W)(g(X,Y) —n(X)n(Y))
— @nfi+3fo = f5)((Vwn)(X)n(Y)
+ (X)) (Vwn)(Y)). (4.2)

Suppose that the space-form has n—recurrent Ricci tensor. Then in view of
(4.1) and (4.2) it follows that

d2nfi +3f2 = fs)(W)(g(X,Y) = n(X)n(Y))

@nfi+3f2 = f)((Vwn)(X)nY) +n(X)(Vwn)(Y))
AW)((2nf1 +3f2 — f3)9(X,Y)

(Bf2 + (2n = 1) f3)n(X)n(Y)). (4.3)

In (4.3) replacing X by ¢X and Y by ¢Y we have
d2nfy + 3f2 — f3)(W) = AW)(2nf1 + 3f2 — f3). (4.4)

Let 2nf, + 3f2 — f3 = f. Then (4.4) reduces to
FAW) = df (W). (4.5)

From (4.5) we get
AV VAGW) + (Ty A) (W) = & F(W,Y). (46)
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Interchanging Y and W we get from the above equation
WA + (Vi A)(Y)f = d (Y, V). (4.7)
Subtracting (4.7) from (4.6) we get
(VwA)(Y) — (Vy A)(W) = 0.

Hence the 1—form A(W) is closed.

Thus we have the following:

Theorem 4.1. In an n—recurrent generalized Sasakian-space-form the 1—form
A is closed.

Since A(W) is non-zero, equation (4.4) leads us to state the following:

Theorem 4.2. If a (2n+1)—dimensional generalized Sasakian space form has
n—recurrent Ricci tensor then 2n f; + 3 fo — f3 can never be a non-zero constant.

In view of (4.4) we also have

Theorem 4.3. A (2n + 1)—dimensional generalized Sasakian-space-form
M(f1, f2, f3) has n—parallel Ricci tensor if and only if 2nf; + 3f2 — f3 is con-
stant.

We know that if a (2n + 1)—dimensional generalized Sasakian-space-form ad-
mits contact metric structure then, f; — f3 is constant [1]. Hence f3 is constant if
and only if f; is constant. If fo = 0 then we see that 2nf; — f3 is constant if and
only if f; is constant.

Thus combining Theorem 3.1 and Theorem 4.3 we get

Corollary 4.1. A (2n + 1)—dimensional (n > 1) conformally flat contact
metric generalized Sasakian space-form has n—parallel Ricci tensor if and only if
it is locally ¢—symmetric.

For three-dimensional generalized Sasakian-space-form we obtain from (2.12)

r=22f1+3f>— f3) +2(f1 — f3).

If the manifold admits contact metric structure, then f; — f3 is constant. Hence
r is constant if and only if 2f; + 3fy — f3 is constant. From [2] it is known
that if the contact metric is non-Sasakian, then 2f; + 3fo — f3 = 0. Hence for
a three-dimensional non-Sasakian contact metric generalized Sasakian-space-form
the scalar curvature is always constant. Now we are in a position to state the
following:

Corollary 4.2. A three-dimensional generalized Sasakian-space-form with
non-Sasakian contact metric has n—parallel Ricci tensor if and only if its scalar
curvature is constant.

In case of Sasakian manifold the above corollary was proved by Kon [14] in
another way.

From (2.11) we see that

S(X,Y) =ag(X,Y)+ n(X)n(Y), (4.8)
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where a = 2nf; + 3fa — f3 and b = 3fo + (2n — 1) f3. If [? denotes the square of
the length of the Ricci tensor, then

2n+1

>=" S(Qeiei), (4.9)

=1

where @ is the symmetric endomorphism of the tangent space at a point corre-
sponding to the Ricci tensor S and {e;}, i = 1,2,....,2n + 1, is an orthonormal
basis of the tangent space at each point of the manifold. If we put X =Y =¢; in
(4.8) we get

r=(2n+1)a+b, (4.10)

where 7 is the scalar curvature of the manifold. Again from (4.8)
S, =a+b. (4.11)
From (4.9), (4.10) and (4.11) it follows that
1? =2na* + (a +b)> (4.12)
If the manifold has n—parallel Ricci tensor then by Theorem 4.3 we have

2nfi+3f2— fs (4.13)

is constant. Hence a is constant. If the space-form admits contact metric structure
then

fs—k= /i, (4.14)

where k is a constant. In view of (4.13) and (4.14) we obtain 3f; + (2n — 1) f3 is
constant. That is b is constant. Then it follows from (4.10) that r is constant.
Also from (4.12) we see that 12 is constant. Then consequently £ xi? = 0, where
£x denotes Lie differentiation. Now we know that if a compact Riemannian
manifold of dimension greater than 2 with constant scalar curvature admits an
infinitesimal non-isometric conformal transformation X such that £x{? = 0, then
it is an Einstein manifold [18]. Thus we see, from (4.8), that if a generalized
Sasakian-space-form admits an infinitesimal non-isometric conformal transforma-
tion X, then b = 0. From this we can conclude the following:

Theorem 4.4. If a (2n+1)—dimensional contact metric generalized Sasakian-
space-form with n—parallel Ricci tensor admits an infinitesimal non-isometric con-
formal transformation, then f3 = 133;2”.

It is known that a (2n + 1)—dimensional generalized Sasakian-space-form is
Ricci semisymmetric if and only if f3 = 133;2” [15]. Thus we are in a position to
state the following:

Corollary 4.3. If a (2n+1)—dimensional contact metric generalized Sasakian-
space-form with n—parallel Ricci tensor admits an infinitesimal non-isometric con-
formal transformation then it is Ricci semisymmetric.




8 Thai J. Math. 8(1) (2010)/ U.C. De and A. Sarkar
5 Three-dimensional quasi-Sasakian generalized

Sasakian space-form.

Let us assume that a three-dimensional generalized Sasakian-space-form ad-
mits quasi-Sasakian structure. In view of (2.9) we obtain

R(X, )¢ = (X —n(X)¢). (5.1)
But in view of (2.10) it follows that
R(X,8)¢ = (f1 — fs)X. (5.2)
R(X,¢0X)¢=0. (5.3)
From (5.1) and (5.2) we see that

(fr = f5)X = (X = n(X)§). (5-4)

Changing X by ¢X we get from (5.4)
(fr = f3) = p% (5.5)

In view of (5.5) we have

Theorem 5.1. In a three-dimensional quasi-Sasakian generalized Sasakian-
space-form f; — f3 is constant if and only if § is constant.

If B = 0 the quasi-Sasakian structure becomes cosymplectic. Hence we can
state the following corollary:

Corollary 5.1. In a three dimensional cosymplectic generalized Sasakian-
space-form f; = fs.
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