www.math.science.cmu.ac.th/thaijournal
Online ISSN 1686-0209

г-Group Congruences on E -Inversive г-Semigroups

S. Sattayaporn

Abstract

In this paper, we give a characterization and some properties of E inversive Γ-semigroup. Moveover, we also introduce a Γ-group congruence on any E-inversive Γ-semigroup and give its characterizations. Our main results improve and extend many results obtained by Seth [1].

Keywords : E-inversive Γ-semigroup, Γ-group congruence.
2000 Mathematics Subject Classification : 20M10.

1 Introduction

The characterization of Γ-semigroup has been studied by Sen and Saha [3], they gave some characterizations of orthodox Γ-semigroups and extended different results of orthodox semigroups to orthodox Γ-semigroups. They also studied some properties of orthodox Γ-semigroups interm of (α, β)-inverse and regular Γ-semigroups. In 1992, Seth [1] gave the sufficient condition of being Γ-group congruences and the least Γ-group congruence on regular Γ-semigroups. In 2005, Chattopadhyay [4] introduced the concept of right (left) orthodox Γ-semigroup and gave some interesting results of this kind of Γ-semigroup. In this paper, we extend some results of E-inversive semigroup as in [5] to E-inversive Γ-semigroup.

Sen and Saha [3] defined the concepts of Γ-semigroup and regular Γ semigroup as follows : For two non-empty sets S and Γ, S is said to be a Γ-semigroup if for all $a, b, c \in S$ and $\alpha, \beta \in \Gamma$, (i) $a \alpha b \in S$ and (ii) $(a \alpha b) \beta c=a \alpha(b \beta c)$. A Γ-semigroup S is called a regular Γ-semigroup if for any $a \in S$ there exist $a^{\prime} \in S, \alpha, \beta \in \Gamma$ such that $a=a \alpha a^{\prime} \beta a$. An element $a^{\prime} \in S$ is called an (α, β)-inverse of an element $a \in S$ if $a=a \alpha a^{\prime} \beta a$ and

[^0]$a^{\prime}=a^{\prime} \beta a \alpha a^{\prime}$. In this case, $a^{\prime} \in V_{\alpha}^{\beta}(a)$. If S is regular Γ-semigroup then $V_{\alpha}^{\beta}(a) \neq \emptyset$ for some $\alpha, \beta \in \Gamma$. An element $e \in S$ is called an α-idempotent, where $\alpha \in \Gamma$, if eae $=e$. We denote the set of all α-idempotents of S by E_{α}. Now, for any $a \in S, \alpha, \beta \in \Gamma$ if $a^{\prime} \in V_{\alpha}^{\beta}(a)$ then $a \alpha a^{\prime}$ is β-idempotent and $a^{\prime} \beta a$ is α-idempotent. A non-empty set H of Γ-semigroup S is said to be a Γ-subsemigroup of S if $H \Gamma H \subseteq H$. In 2005, Siripitukdet and Sattayaporn [5] showed that every regular, orthodox and inverse semigroups are E-inversive semigroup.

A Γ-semigroup S is said to be an E-inversive Γ-semigroup if for all $a \in S$ there exist $x \in S, \alpha, \beta \in \Gamma$ such that $a \alpha x$ is β-idempotent. In this research, for $\alpha, \beta \in \Gamma$ we define weak (α, β)-inverse of an element $a \in S$ as follows : $W_{\alpha}^{\beta}(a):=\{x \in S \mid x=x \beta a \alpha x\}$ the set of all weak (α, β)-inverses of an element a. In this paper, we replace regular Γ-semigroup in [1] by E-inversive Γ-semigroup and replace the set of all (α, β)-inverses $V_{\alpha}^{\beta}(a)$ by the set of all weak (α, β)-inverses $W_{\alpha}^{\beta}(a)$ of an E-inversive Γ-semigroup.

Example 1.1. Let Q^{*} be the set of all non-zero rational numbers and Γ be the set of all positive integers $\left(\mathbb{Z}^{+}\right)$. For $a, b \in Q^{*}$ and $\alpha \in \Gamma$, we define, $a \alpha b=|a| \alpha b$. We will show that Q^{*} is Γ-semigroup.

Let $\frac{p}{q} \in Q^{*}, p \neq 0, q \neq 0$ and $|p|,|q| \in \Gamma$. Then $E_{\beta=|p|}=\left\{-\frac{1}{p}, \frac{1}{p}\right\}$ and $E_{\alpha=|q|}=\left\{-\frac{1}{q}, \frac{1}{q}\right\}$. Hence $\frac{1}{|p|} \in Q^{*}$ and $\frac{p}{q}|q| \frac{1}{|p|}=\frac{|p|}{|q|}|q| \frac{1}{|p|}=1 \in E_{(1)}$. Therefore Q^{*} is E-inversive Γ-semigroup and $\frac{1}{|p|} \in W_{|q|}^{1}\left(\frac{p}{q}\right)$ where $|p|,|q|, 1 \in$ Γ.

2 Some Auxiliary Results

In this section, we give some conditions and some results of E-inversive Γ-semigroups.
Proposition 2.1. S is an E-inversive Γ-semigroup if and only if $W_{\alpha}^{\beta}(a) \neq$ \emptyset for all $a \in S$ and for some $\alpha, \beta \in \Gamma$.

Proof. Suppose that S is an E-inversive Γ-semigroup and $a \in S$. Then there exist $x \in S, \alpha, \beta \in \Gamma$ such that $a \alpha x \in E_{\beta}$. Thus

$$
\begin{aligned}
(a \alpha x) \beta(a \alpha x) & =a \alpha x \\
(x \beta a \alpha x) \beta a \alpha(x \beta a \alpha x) & =x \beta(a \alpha x \beta a \alpha x \beta a \alpha x)=x \beta a \alpha x .
\end{aligned}
$$

Therefore $x \beta a \alpha x \in W_{\alpha}^{\beta}(a)$.
Now, let $a \in S$ and $x \in W_{\alpha}^{\beta}(a)$ for some $\alpha, \beta \in \Gamma$. Then $x=x \beta a \alpha x$ and $a \alpha x=(a \alpha x) \beta(a \alpha x)$, hence $a \alpha x \in E_{\beta}$ and so S is an E-inversive Γ semigroup.

Proposition 2.2. Every regular Γ-semigroup is an E-inversive Γ-semigroup.
Proof. Let S be regular Γ-semigroup and $a \in S$. Then there exist $x \in S$ and $\alpha, \beta \in \Gamma$ such that $V_{\alpha}^{\beta}(a) \neq \emptyset$. Note that $V_{\alpha}^{\beta}(a) \subseteq W_{\alpha}^{\beta}(a)$, we have $W_{\alpha}^{\beta}(a) \neq \emptyset$. The result is obtained by Theorem 2.1.

Theorem 2.3. [1] A regular Γ-semigroup S is Γ-group if and only if for all $\alpha, \beta \in \Gamma, e \alpha f=f \alpha e=f$ and $e \beta f=f \beta e=e$ for any $e \in E_{\alpha}$ and $f \in E_{\beta}$.

The following definition is needed for our consideration.
Definition 2.4. Let S be a Γ-semigroup and $\alpha \in \Gamma$, and let $H:=\left\{H_{\alpha} \mid\right.$ $\alpha \in \Gamma\}$ where H_{α} are subsets of S, for all $\alpha \in \Gamma$. H is called full and weakly-conjugate family of S if
(1) $E_{\alpha} \subseteq H_{\alpha}$ for all $\alpha \in \Gamma$,
(2) for each $a \in H_{\alpha}$ and $b \in H_{\beta}, \alpha, \beta \in \Gamma, a \alpha b \in H_{\beta}$ and $a \beta b \in H_{\alpha}$,
(3) for each $a^{\prime} \in W_{\alpha}^{\beta}(a)$ and $c \in H_{\gamma}, \alpha, \beta, \gamma \in \Gamma, a \alpha c \gamma a^{\prime}, a \gamma c \alpha a^{\prime} \in H_{\beta}$ and $a^{\prime} \beta c \gamma a, a^{\prime} \gamma c \beta a \in H_{\alpha}$.

Example 2.5. By Example 1.1, let $\frac{p}{q} \in Q^{*}$ where $p, q \neq 0$. We have $|q|,|p|, 1 \in \Gamma$ and
(1) $E_{|q|}=\left\{-\frac{1}{q}, \frac{1}{q}\right\}, E_{|p|}=\left\{-\frac{1}{p}, \frac{1}{p}\right\}$. and $E_{(1)}=\{1\}$
$H_{|q|}=\left\{-\frac{1}{q}, \frac{1}{q}, 1\right\}$ and $H_{|p|}=\left\{-\frac{1}{p}, \frac{1}{p}, 1\right\}$.
Therefore $E_{|q|} \subseteq H_{|q|}, E_{|p|} \subseteq H_{|p|}$ and $H_{(1)}=\{1\}=E_{(1)}$.
(2) Let $\frac{1}{|q|} \in H_{|q|}$ and $\frac{1}{p} \in H_{|p|}$.

Then $\frac{1}{|q|}|q| \cdot \frac{1}{p}=\frac{1}{p} \in H_{|p|}$ and $\frac{1}{|q|}|p| \cdot \frac{1}{p} \in H_{|q|}$.
(3) Let $a=\frac{p}{q} \in Q^{*}$ where $p, q \neq 0$. Note that $\frac{1}{|p|} \in W_{|q|}^{(1)}\left(\frac{p}{q}\right)$ and $\frac{1}{p} \in H_{|p|}$, we have $\alpha=|q|, \beta=1, \gamma=|p|$. Choose $a^{\prime}=\frac{1}{|p|}$ and $c=\frac{1}{p}$.

Hence $a \alpha c \gamma a^{\prime}, a \gamma c \alpha a^{\prime} \in H_{\beta}$ and $a^{\prime} \alpha c \gamma a, a^{\prime} \gamma c \alpha a \in H_{\alpha}$. Let $H=\left\{H_{|q|}, H_{|p|}\right.$, $\left.H_{(1)}\right\}$. Then H is full and weakly-conjugate family of Q^{*}.

Proposition 2.6. Let S be an E-inversive Γ-semigroup and $a, b \in S, \theta \in \Gamma$. If $x \in W_{\gamma}^{\delta}(a \theta b)$ for some $\gamma, \delta \in \Gamma$ then $b \gamma x \delta a$ is θ-idempotent of S.

Proof. Let $x \in W_{\gamma}^{\delta}(a \theta b)$ for some $\gamma, \delta \in \Gamma$. Then $(b \gamma x \delta a) \theta(b \gamma x \delta a)=b \gamma(x \delta a \theta b \gamma x) \delta a=b \gamma x \delta a$, hence $b \gamma x \delta a \in E_{\theta}$.

4 Main Results

The purpose of this section is to give some characterizations of Γ-group congruences on E-inversive Γ-semigroup and those of the least Γ-group congruence.

Theorem 4.1. Let S be an E-inversive Γ-semigroup and $H:=\left\{H_{\alpha}, \alpha \in \Gamma\right\}$ be full and weakly-conjugate family of S. Then
$\rho_{H}:=\left\{(a, b) \in S \times S \mid\right.$ a $\alpha x=y \beta b$ for some $x \in H_{\alpha}, y \in H_{\beta}$ and $\left.\alpha, \beta \in \Gamma\right\}$
is a Γ-group congruence on S.
Proof. Let $a \in S$ and $a^{\prime} \in W_{\alpha}^{\beta}(a)$ for some $\alpha, \beta \in \Gamma$. Now, $a \alpha\left(a^{\prime} \beta a\right)=$ $\left(a \alpha a^{\prime}\right) \beta a$. Since $a^{\prime} \beta a \in E_{\alpha} \subseteq H_{\alpha}$ and $a \alpha a^{\prime} \in E_{\beta} \subseteq H_{\beta}$, we have $(a, a) \in$ ρ_{H}. Let $a, b \in S$ and $(a, b) \in \rho_{H}$. Then there exist $x \in H_{\alpha}$ and $y \in H_{\beta}$ where $\alpha, \beta \in \Gamma$ such that $a \alpha x=y \beta b$. Let $a^{\prime} \in W_{\gamma}^{\delta}(a)$ and $b^{\prime} \in W_{\theta}^{\phi}(b)$ for some $\gamma, \delta, \theta, \phi \in \Gamma$. Now, $b \theta\left[\left(b^{\prime} \phi y \beta b\right) \gamma\left(a^{\prime} \delta a\right)\right]=\left[\left(b \theta b^{\prime}\right) \phi\left(a \alpha x \gamma a^{\prime}\right)\right] \delta a$. Since $a^{\prime} \delta a \in E_{\gamma} \subseteq H_{\gamma}$, by Definition $2.4(3)$, we have $b^{\prime} \phi y \beta b \in H_{\theta}$, we get $\left(b^{\prime} \phi y \beta b\right) \gamma\left(a^{\prime} \delta a\right) \in H_{\theta}$. Again $b \theta b^{\prime} \in E_{\phi} \subseteq H_{\phi}$ and by Definition 2.4(3), $a \alpha x \gamma a^{\prime} \in H_{\delta}$, and by Definition $2.4(2)$, we have $\left(b \theta b^{\prime}\right) \phi\left(a \alpha x \gamma a^{\prime}\right) \in H_{\delta}$. Therefore $(b, a) \in \rho_{H}$.

Let $a, b, c \in S$ be such that $(a, b) \in \rho_{H}$ and $(b, c) \in \rho_{H}$. Then there exist $x \in H_{\alpha}, y \in H_{\beta}, z \in H_{\gamma}$ and $w \in H_{\delta}$ for some $\alpha, \beta, \gamma, \delta \in \Gamma$ such that $a \alpha x=y \beta b$ and $b \gamma z=w \delta c$. Now, $a \alpha(x \gamma z)=(a \alpha x) \gamma z=(y \beta b) \gamma z=$ $y \beta(b \gamma z)=y \beta(w \delta c)=(y \beta w) \delta c$. Since $x \gamma z \in H_{\alpha}$ and $y \beta w \in H_{\delta}$, so $(a, c) \in \rho_{H}$, hence ρ_{H} is an equivalence relation on S.

To show that ρ_{H} is compatible, let $(a, b) \in \rho_{H}$ and $\theta \in \Gamma, c \in S$. Then there exist $x \in H_{\alpha}$ and $y \in H_{\beta}$ for some $\alpha, \beta \in \Gamma$ such that $a \alpha x=y \beta b$. Let $c^{\prime} \in W_{\gamma}^{\delta}(c)$ and $g \in W_{\gamma_{1}}^{\delta_{1}}(b \theta c), h \in W_{\gamma_{2}}^{\delta_{2}}(a \theta c)$. By Proposition 2.6, $\left(c \gamma_{2} h \delta_{2} a\right) \in E_{\theta} \subseteq H_{\theta}$, so $\left(c \gamma_{2} h \delta_{2} a\right) \alpha x \in H_{\theta}$ and by Definition $2.4(3), c^{\prime} \delta\left[c \gamma_{2} h \delta_{2} a \alpha x\right] \theta c \in H_{\gamma}$. Again $g \delta_{1}(b \theta c) \in E_{\gamma_{1}} \subseteq H_{\gamma_{1}}$ and by Definition $2.4(3), c^{\prime} \delta\left[c \gamma_{2} h \delta_{2} a \alpha x \theta c\right] \gamma_{1}\left(g \delta_{1} b \theta c\right) \in H_{\gamma}$. Similarly, since $c^{\prime} \delta c \in E_{\gamma} \subseteq H_{\gamma}$ and by Definition $2.4(2), y \beta\left[(b \theta c) \gamma_{1} g\right] \in H_{\delta_{1}}$ and so $\left((a \theta c) \gamma c^{\prime} \delta c \gamma_{2} h\right) \delta_{2}\left(y \beta b \theta c \gamma_{1} g\right) \in H_{\delta_{1}}$.

Now, $(a \theta c) \gamma\left[c^{\prime} \delta c \gamma_{2} h \delta_{2} a \alpha x \theta c \gamma_{1} g \delta_{1} b \theta c\right]=\left[a \theta c \gamma c^{\prime} \delta c \gamma_{2} h \delta_{2} y \beta b \theta c \gamma_{1} g\right] \delta_{1}(b \theta c)$. Therefore $(a \theta c, b \theta c) \in \rho_{H}$.

Next, we show that $(c \theta a, c \theta b) \in \rho_{H}$. Let $c^{\prime} \in W_{\gamma}^{\delta}(c), \theta \in \Gamma$ and $w \in W_{\gamma_{1}}^{\delta_{1}}(c \theta b), z \in W_{\gamma_{2}}^{\delta_{2}}(c \theta a)$ for some $\gamma_{1}, \gamma_{2}, \delta_{1}, \delta_{2} \in \Gamma$. Since $z \delta_{2}(c \theta a) \in$ $E_{\gamma_{2}} \subseteq H_{\gamma_{2}}$ and by Definition 2.4(2), z $\delta_{2} c \theta a \alpha x \in H_{\gamma_{2}}, c \gamma c^{\prime} \in E_{\delta} \subseteq H_{\delta}$, by Definition 2.4(3), $w \delta_{1}\left(c \gamma c^{\prime}\right) \delta(c \theta b) \in H_{\gamma_{1}}$.

Then $\left(z \delta_{2} c \theta a \alpha x\right) \gamma_{1}\left(w \delta_{1}\left(c \gamma c^{\prime}\right) \delta(c \theta b)\right) \in H_{\gamma_{2}}$. Similarly, by Proposition 2.6, $a \gamma_{2} z \delta_{2} c \in E_{\theta} \subseteq H_{\theta}$ and by Definition 2.4(2), $\left(a \gamma_{2} z \delta_{2} c\right) \theta y \in H_{\beta}$ because $y \in H_{\beta}$. Again by Proposition 2.6, $b \gamma_{1} w \delta_{1} c \in E_{\theta} \subseteq H_{\theta}$, then $\left(a \gamma_{2} z \delta_{2} c \theta y\right) \beta\left(b \gamma_{1} w \delta_{1} c\right) \in H_{\theta}$ and so $c \theta\left(a \gamma_{2} z \delta_{2} c \theta y \beta b \gamma_{1} w \delta_{1} c\right) \gamma c^{\prime} \in H_{\delta}$. Now, $(c \theta a) \gamma_{2}\left[z \delta_{2} c \theta a \alpha x \gamma_{1} w \delta_{1} c \gamma c^{\prime} \delta c \theta b\right]=\left[c \theta a \gamma_{2} z \delta_{2} c \theta y \beta b \gamma_{1} w \delta_{1} c \gamma c^{\prime}\right] \delta(c \theta b)$. Hence $(c \theta a, c \theta b) \in \rho_{H}$ and so ρ_{H} is a congruence on S.

To show that S / ρ_{H} is Γ-group, we will show that S / ρ_{H} is a regular Γ-semigroup. Let $a^{\prime} \in W_{\alpha}^{\beta}(a)$ where $\alpha, \beta \in \Gamma$. Then
$a \alpha\left(a^{\prime} \beta a\right)=a \alpha\left(a^{\prime} \beta a \alpha a^{\prime}\right) \beta a=\left(a \alpha a^{\prime}\right) \beta\left(a \alpha a^{\prime} \beta a\right)$. Since $a^{\prime} \beta a \in E_{\alpha} \subseteq H_{\alpha}$ and $a \alpha a^{\prime} \in E_{\beta} \subseteq H_{\beta}$, we get that $\left(a, a \alpha a^{\prime} \beta a\right) \in \rho_{H}$. Hence S / ρ_{H} is a regular Γ-semigroup.

Let $\alpha, \beta \in \Gamma$ and $e \in E_{\alpha}, f \in E_{\beta}$. Since $E_{\alpha} \subseteq H_{\alpha}$ and $E_{\beta} \subseteq H_{\beta}$ by Definition 2.4(2), we get $e \alpha f, f \alpha e \in H_{\beta}$. Now, $(e \alpha f) \beta f=(e \alpha f) \beta f$, hence $(e \alpha f, f) \in \rho_{H}$ and $(f \alpha e) \beta f=(f \alpha e) \beta f$, hence $(f \alpha e, f) \in \rho_{H}$. Thus $\left(e \rho_{H}\right) \alpha\left(f \rho_{H}\right)=f \rho_{H}=\left(f \rho_{H}\right) \alpha\left(e \rho_{H}\right)$. Similarly, we can show that $(e \beta f) \alpha e=(e \beta f) \alpha e$, hence $(e \beta f, e) \in \rho_{H}$ and $(f \beta e) \alpha e=(f \beta e) \alpha e$, hence $(f \beta e, e) \in \rho_{H}$. Thus $\left(e \rho_{H}\right) \beta\left(f \rho_{H}\right)=e \rho_{H}=\left(f \rho_{H}\right) \beta\left(e \rho_{H}\right)$. Therefore S / ρ_{H} is a Γ-group, and ρ_{H} is a Γ-group congruence on S.

The following theorem, we give some characterizations of Γ-group congruence on E-inversive Γ-semigroup S by using a full and weakly-conjugate family of S and the following concept.
Definition 4.2. Let S be Γ-semigroup. If $H:=\left\{H_{\alpha}, \alpha \in \Gamma\right\}$ is a full and weakly-conjugate family of subset of S, the closure H_{ω} of H is the family defined by

$$
\begin{aligned}
& H_{\omega}:=\left\{\left(H_{\omega}\right)_{\gamma} \mid \gamma \in \Gamma\right\} \quad \text { where } \\
& \left(H_{\omega}\right)_{\gamma}=\left\{a \in S \mid h \alpha a \in H_{\gamma} \text { for some } h \in H_{\alpha}, \alpha \in \Gamma\right\} .
\end{aligned}
$$

Then H is closed if $H=H_{\omega}$.
Remark. Let S be a Γ-semigroup with $H:=\left\{H_{\alpha}, \alpha \in \Gamma\right\}$ is a full and weakly-conjugate family of S. Then for all $e \in E_{\alpha}, \alpha \in \Gamma, e \alpha e=e \in E_{\alpha} \subseteq$ H_{α}, hence $e \in\left(H_{\omega}\right)_{\alpha}$ and for all $h \in H_{\alpha}$, if $h \alpha h \in H_{\alpha}$, we get $H_{\alpha} \subseteq\left(H_{\omega}\right)_{\alpha}$ for all $\alpha \in \Gamma$.

Theorem 4.3. Let S be an E-inversive Γ-semigroup such that $H:=\left\{H_{\alpha}\right.$, $\alpha \in \Gamma\}$ is a full and weakly-conjugate family of S. Then

$$
\rho_{H}^{*}:=\left\{(a, b) \in S \times S \mid a \gamma b^{\prime} \in\left(H_{\omega}\right)_{\delta} \text { for some } b^{\prime} \in W_{\gamma}^{\delta}(b)\right\},
$$

hence $\rho_{H}^{*}=\rho_{H}$.
Proof. By Theorem 4.1, $\rho_{H}:=\{(a, b) \in S \times S \mid a \alpha x=y \beta b$ for some $x \in H_{\alpha}, y \in H_{\beta}$ and $\left.\alpha, \beta \in \Gamma\right\}$.

Let $(a, b) \in \rho_{H}$. Then $(b, a) \in \rho_{H}$ and there exist $x \in H_{\alpha}, y \in H_{\beta}, \alpha, \beta \in$ Γ such that $b \alpha x=y \beta a$. Let $b^{\prime} \in W_{\gamma}^{\delta}(b), \gamma, \delta \in \Gamma$. Then $(y \beta a) \gamma b^{\prime}=$ $(b \alpha x) \gamma b^{\prime}$. By Definition 2.4(3), b $\alpha x \gamma b^{\prime} \in H_{\delta}$. Since $y \in H_{\beta}$ and $y \beta\left(a \gamma b^{\prime}\right) \in$ H_{δ}, we get that $a \gamma b^{\prime} \in\left(H_{\omega}\right)_{\delta}$ and so $(a, b) \in \rho_{H}^{*}$, hence $\rho_{H} \subseteq \rho_{H}^{*}$. Let $(a, b) \in \rho_{H}^{*}$. Then there exist $b^{\prime} \in W_{\gamma}^{\delta}(b), \gamma, \delta \in \Gamma$ such that $a \gamma b^{\prime} \in\left(H_{\omega}\right)_{\delta}$. Then there exist $h \in H, \alpha \in \Gamma$ such that $h \alpha\left(a \gamma b^{\prime}\right) \in H_{\delta}$. Put $f=h \alpha a \gamma b^{\prime} \in$ H_{δ}. Note that, $b \theta\left(a^{\prime} \phi h \alpha a \gamma b^{\prime}\right) \delta a=b \theta a^{\prime} \phi f \delta a$ for some $a^{\prime} \in W_{\theta}^{\phi}(a)$. Since $a^{\prime} \phi h \alpha a \in H_{\theta}, h \in H_{\alpha}, b \theta\left(a^{\prime} \phi h \alpha a\right) \gamma b^{\prime} \in H_{\delta}$ and $a^{\prime} \phi f \delta a \in H_{\theta}$, it follows that $b \theta\left(a^{\prime} \phi f \delta a\right)=\left(b \theta a^{\prime} \phi h \alpha a \gamma b^{\prime}\right) \delta a$. Hence $(b, a) \in \rho_{H}$ and $(a, b) \in \rho_{H}$. Therefore $\rho_{H}^{*} \subseteq \rho_{H}$ and consequently $\rho_{H}^{*}=\rho_{H}$.

Now, we introduce the concept of the set Ker ρ.
Definition 4.4. [1] Let ρ be a congruence on Γ-semigroup S, and let $\operatorname{Ker} \rho:=\left\{(\operatorname{Ker} \rho)_{\alpha}, \alpha \in \Gamma\right\}$ where $(\operatorname{Ker} \rho)_{\alpha}:=\{a \in S \mid$ epa for some $\left.e \in E_{\alpha}\right\}$.

Example 4.5. Let ρ be a congruence on Γ-semigroup S with $E_{\alpha} \neq \emptyset$ for some $\alpha \in \Gamma$. Let $e \in E_{\alpha}$. Then epe for all $e \in E_{\alpha}$, and so $e \in(\operatorname{Ker} \rho)_{\alpha}$. Therefore $(\text { Ker } \rho)_{\alpha} \neq \emptyset$.

Theorem 4.6. Let S be an E-inversive Γ-semigroup such that $H:=\left\{H_{\alpha}\right.$, $\alpha \in \Gamma\}$ is a full and weakly-conjugate family of S. Then $\operatorname{Ker}_{\rho_{H}}=H_{\omega}$ where ρ_{H} defined as in Theorem 4.1.

Proof. To show that $\left(\operatorname{Ker} \rho_{H}\right)_{\alpha}=\left(H_{\omega}\right)_{\alpha}$ for all $\alpha \in \Gamma$, let $x \in\left(\operatorname{Ker} \rho_{H}\right)_{\alpha}$ for some $\alpha \in \Gamma$. Then $e \rho_{H} x$ for some $e \in E_{\alpha}$ and by Theorem 4.1, then exist $y \in H_{\beta}, z \in H_{\gamma}, \beta, \gamma \in \Gamma$ such that $e \beta y=z \gamma x$. Since $e \beta y \in H_{\alpha}$, we get that $z \gamma x \in H_{\alpha}$ and so $x \in\left(H_{\omega}\right)_{\alpha}$. Since $y \in\left(H_{\omega}\right)_{\alpha}, \alpha \in \Gamma$. then there exist $g \in H_{\gamma}, \gamma \in \Gamma$ such that $g \gamma y \in H_{\alpha}$. Now, for some $e \in E_{\alpha}, e \alpha(g \gamma y)=$ (eag) γy where $g \gamma y \in H_{\alpha}$ and $e \alpha g \in H_{\gamma}$, it follows that $(e, y) \in \rho_{H}$ and by Definition 4.4, $y \in\left(\operatorname{Ker} \rho_{H}\right)_{\alpha}$. Therefore $\left(\operatorname{Ker} \rho_{H}\right)_{\alpha}=\left(H_{\omega}\right)_{\alpha}$ for all $\alpha \in \Gamma$. Hence $\operatorname{Ker}_{\boldsymbol{H}}=H_{\omega}$.

Theorem 4.7. Let S be an E-inversive Γ-semigroup such that $H:=\left\{H_{\alpha}\right.$, $\alpha \in \Gamma\}$ is a full and weakly-conjugate family of S. Then $a \rho_{H} b$ if and only if one of the following equivalent conditions hold.
(1) $a \gamma b^{\prime} \in\left(H_{\omega}\right)_{\delta}$ for some $b^{\prime} \in W_{\gamma}^{\delta}(b)$,
(2) $b^{\prime} \delta a \in\left(H_{\omega}\right)_{\gamma}$ for some $b^{\prime} \in W_{\gamma}^{\delta}(b)$,
(3) $a^{\prime} \phi b \in\left(H_{\omega}\right)_{\theta}$ for some $a^{\prime} \in W_{\theta}^{\phi}(b)$, and
(4) $b \theta a^{\prime} \in\left(H_{\omega}\right)_{\phi}$ for some $a^{\prime} \in W_{\theta}^{\phi}(b)$.

Proof. (1) $\Leftrightarrow(3)$ Let H be a full and weakly-conjugate family of S and suppose that $a \gamma b^{\prime} \in\left(H_{\omega}\right) \delta$ for some $b^{\prime} \in W_{\gamma}^{\delta}(b)$ where $\alpha, \delta \in \Gamma$. Then there exist $h \in H_{\alpha}, \alpha \in \Gamma$ such that $h \alpha\left(a \gamma b^{\prime}\right) \in H_{\delta}$. Let $a^{\prime} \in W_{\theta}^{\phi}(a)$ for some $\theta, \phi \in \Gamma$. Then $a^{\prime} \phi\left(h \alpha a \gamma b^{\prime}\right) \delta a \in H_{\theta}$ and $\left(a^{\prime} \phi h \alpha a \gamma b^{\prime} \delta a\right) \theta a^{\prime} \phi b=$ $\left(a^{\prime} \phi h \alpha a\right) \gamma b^{\prime} \delta a \theta a^{\prime} \phi b \in H_{\theta}$ Therefore $a^{\prime} \phi b \in\left(H_{\omega}\right)_{\theta}$.

Suppose that $a^{\prime} \phi b \in\left(H_{\omega}\right)_{\theta}$ for some $a^{\prime} \in W_{\theta}^{\phi}(a), \theta, \phi \in \Gamma$. Then there exist $h \in H_{\beta}, \beta \in \Gamma$ such that $h \beta\left(a^{\prime} \phi b\right) \in H_{\theta}$ and $a \theta\left(h \beta a^{\prime} \phi b\right) \theta a^{\prime} \in H_{\phi}$. Therefore for some $b^{\prime} \in W_{\gamma}^{\delta}(b)$,

$$
\left(a \theta h \beta a^{\prime} \phi b \theta a^{\prime}\right) \phi\left(a \gamma b^{\prime}\right)=\left(a \theta h \beta a^{\prime}\right) \phi b \theta\left(a^{\prime} \phi a\right) \gamma b^{\prime} \in H_{\delta} .
$$

Therefore $a \gamma b^{\prime} \in\left(H_{\omega}\right)_{\delta}$.
To show (2) $\Leftrightarrow(4)$, let $b^{\prime} \delta a \in\left(H_{\omega}\right)_{\gamma}$ for some $b^{\prime} \in W_{\gamma}^{\delta}(b), \gamma, \delta \in \Gamma$. Then there exist $h \in H_{\alpha}, \alpha \in \Gamma$ such that $h \alpha\left(b^{\prime} \delta a\right) \in H_{\gamma}$. Let $a^{\prime} \in W_{\theta}^{\phi}(a)$ for some $\theta, \phi \in \Gamma$. By Definition 2.4(3), $a \gamma\left(h \alpha b^{\prime} \delta a\right) \theta a^{\prime} \in H_{\phi}$ and $b^{\prime} \delta a \theta a^{\prime} \phi b \in$ $H_{\gamma}, h \alpha\left(b^{\prime} \delta a \theta a^{\prime} \phi b\right) \in H_{\gamma}$, again $a \gamma\left(h \alpha b^{\prime} \delta a \theta a^{\prime} \phi b\right) \theta a^{\prime} \in H_{\phi}$.

Now, $\left(a \gamma h \alpha b^{\prime} \delta a \theta a^{\prime}\right) \phi\left(b \theta a^{\prime}\right)=a \gamma\left(h \alpha b^{\prime} \delta a \theta a^{\prime} \phi b\right) \theta a^{\prime} \in H_{\phi}$. Therefore $b \theta a^{\prime} \in\left(H_{\omega}\right)_{\phi}$.

Suppose that $b \theta a^{\prime} \in\left(H_{\omega}\right)_{\phi}$ for some $a^{\prime} \in W_{\theta}^{\phi}(a), \theta, \phi \in \Gamma$. Then there exist $h \in H_{\alpha}, \alpha \in \Gamma$ such that $h \alpha\left(b \theta a^{\prime}\right) \in H_{\phi}$. Let $b^{\prime} \in W_{\gamma}^{\delta}(b)$ for some $\gamma, \delta \in \Gamma$. Now, $\left(b^{\prime} \delta h \alpha b \theta a^{\prime} \phi b\right) \gamma\left(b^{\prime} \delta a\right)=\left(b^{\prime} \delta h \alpha b\right) \theta\left(a^{\prime} \phi b \gamma b^{\prime} \delta a\right)$. By Definition $2.4(3), b^{\prime} \delta\left(h \alpha b \theta a^{\prime}\right) \phi b \in H_{\gamma}$ and $b^{\prime} \delta h \alpha b \in H_{\gamma}, a^{\prime} \phi b \gamma b^{\prime} \delta a \in H_{\theta}$. Thus $\left(b^{\prime} \delta h \alpha b\right) \theta\left(a^{\prime} \phi b \gamma b^{\prime} \delta a\right) \in H_{\gamma}$, so $\left(b^{\prime} \delta h \alpha b \theta a^{\prime} \phi b\right) \gamma\left(b^{\prime} \delta a\right) \in H_{\gamma}$, hence $b^{\prime} \delta a \in\left(H_{\omega}\right)_{\gamma}$.

To show (4) $\Leftrightarrow(1)$, let $b \theta a^{\prime} \in\left(H_{\omega}\right)_{\phi}$ for some $a^{\prime} \in W_{\theta}^{\phi}(a), \theta, \phi \in \Gamma$. Then there exist $h \in H_{\alpha}, \alpha \in \Gamma$ such that $h \alpha\left(b \theta a^{\prime}\right) \in H_{\phi}$. Let $b^{\prime} \in W_{\gamma}^{\delta}(b)$ for some $\gamma, \delta \in \Gamma$. By Definition 2.4(3), b $\theta\left(a^{\prime} \phi a\right) \gamma b^{\prime} \in H_{\delta}$ and $h \alpha\left(b \theta a^{\prime} \phi a \gamma b^{\prime}\right) \in H_{\delta}$. Now, $\left(h \alpha b \theta a^{\prime}\right) \phi\left(a \gamma b^{\prime}\right)=h \alpha\left(b \theta a^{\prime} \phi a \gamma b^{\prime}\right) \in H_{\delta}$. Therefore $a \gamma b^{\prime} \in\left(H_{\omega}\right)_{\delta}$.

Suppose that $a \gamma b^{\prime} \in\left(H_{\omega}\right)_{\delta}$ for some $b^{\prime} \in W_{\gamma}^{\delta}(b), \gamma, \delta \in \Gamma$. Then there exist $h \in H_{\alpha}, \alpha \in \Gamma$ such that $h \alpha\left(a \gamma b^{\prime}\right) \in H_{\delta}$. Let $a^{\prime} \in W_{\theta}^{\phi}(a)$ for some $\theta, \phi \in \Gamma$. Since $b^{\prime} \delta b \in E_{\gamma} \subseteq H_{\gamma}$ and by Definition 2.4(3), $a \gamma\left(b^{\prime} \delta b\right) \theta a^{\prime} \in H_{\phi}$ and $h \alpha\left(a \gamma b^{\prime} \delta b \theta a^{\prime} \in H_{\phi}\right.$. Now $\left(h \alpha a \gamma b^{\prime}\right) \delta\left(b \theta a^{\prime}\right)=h \alpha\left(a \gamma b^{\prime} \delta b \theta a^{\prime}\right) \in H_{\phi}$ for
some $\theta, \phi \in \Gamma$. Therefore $b \theta a^{\prime} \in\left(H_{\omega}\right)_{\phi}$.
Moreover, the symmetric property of ρ_{H} shows that $a \gamma b^{\prime} \in\left(H_{\omega}\right)_{\delta}$ for some (all) $b^{\prime} \in W_{\gamma}^{\delta}(b)$ if and only if $b \theta a^{\prime} \in\left(H_{\omega}\right)_{\phi}$ for some (all) $a^{\prime} \in W_{\theta}^{\phi}(a)$. Therefore the proof is completed.

To prove the least Γ-group congruence on E-inversive Γ-group S by using the smallest element of full and weakly-conjugate family of S. Now the following Lemma easily follows :

Lemma 4.8. Let \mathcal{C} be the collection of all full and weakly-conjugate families H_{i} of $S,(i \in \Lambda)$ where $H_{i}=\left\{H_{i \alpha}, \alpha \in \Gamma\right\}$.

Let $U_{\alpha}:=\bigcap_{i \in \Lambda} H_{i \alpha}$ and $U:=\left\{U_{\alpha} \mid \alpha \in \Gamma\right\}$. Then U is a full and weakly-conjugate family of S and U is the smallest element in \mathcal{C}.

Proof. Clearly, $E_{\alpha} \subseteq U_{\alpha}$ for all $\alpha \in \Gamma$. Let $a \in U_{\alpha}$ and $b \in U_{\beta}, \alpha, \beta \in \Gamma$. Then $a \in H_{i \alpha}$ for all $i \in \Lambda$ and $b \in H_{i \beta}$ for all $i \in \Lambda$, and since $H_{i \alpha}, H_{i \beta} \in H_{i}$ for all $i \in \Lambda$, we get $a \alpha b \in H_{i \beta}$ and $a \beta b \in H_{i \alpha}$ for all $i \in \Lambda$, it implies $a \alpha b \in U_{\beta}$ and $a \beta b \in U_{\alpha}$.

If $a^{\prime} \in W_{\alpha}^{\beta}(a)$ and $c \in U_{\gamma}, \alpha, \beta, \gamma \in \Gamma$, then $c \in H_{i \gamma}$ for all $i \in \Lambda$. Thus $a \alpha c \gamma a^{\prime}, a \gamma c \alpha a^{\prime} \in H_{i \beta}$ for all $i \in \Lambda$ and $a^{\prime} \beta c \gamma a, a^{\prime} \gamma c \beta a \in H_{i \alpha}$ for all $i \in \Lambda$, hence $a \alpha c \gamma a^{\prime}, a \gamma c \alpha a^{\prime} \in \bigcap_{i \in \Lambda} H_{i \beta}=U_{\beta}$ and $a^{\prime} \beta c \gamma a, a^{\prime} \gamma c \beta a \in \bigcap_{i \in \Lambda} H_{i \alpha}=U_{\alpha}$.

Therefore U is a full and weakly-conjugate family of S and U is the smallest element in \mathcal{C}.

Theorem 4.9. Let S be an E-inversive Γ-semigroup. If σ is a Γ-group congruence on S, then Ker σ is closed, full and weakly-conjugate of S. Moreover $\sigma=\rho_{\text {Ker } \sigma}$.

Proof. Suppose that σ is a Γ-group congruence on S and let $K=\operatorname{ker} \sigma:=$ $\left\{(\operatorname{Ker} \sigma)_{\alpha}, \alpha \in \Gamma\right\}=\left\{K_{\alpha}, \alpha \in \Gamma\right\}$ where $K_{\alpha}:=\{a \in S \mid e \sigma a$ for some $\left.e \in E_{\alpha}, \alpha \in \Gamma\right\}$. Let $e \in E_{\alpha}, \alpha \in \Gamma$. Then eqe and so $e \in K_{\alpha}$ for all $\alpha \in \Gamma$. Thus $E_{\alpha} \subseteq K_{\alpha}$ for all $\alpha \in \Gamma$. Let $a \in K_{\alpha}$ and $b \in K_{\beta}$ for some $\alpha, \beta \in \Gamma$. Then there exist $e \in E_{\alpha}$ and $f \in E_{\beta}$ such that $e \sigma a$ and $f \sigma b$. Thus $(a \alpha b) \sigma=(a \sigma) \alpha(b \sigma)=(e \sigma) \alpha(f \sigma)=(e \alpha f) \sigma=f \sigma$, because σ is Γ group congruence. Then $(a \alpha b, f) \in \sigma$ where $f \in E_{\beta}$ and $a \alpha b \in K_{\beta}$. Thus $(a \beta b) \sigma=(a \sigma) \beta(b \sigma)=(e \sigma) \beta(f \sigma)=(e \beta b) \sigma=e \sigma$, because σ is Γ-group congruence. Therefore $(a \beta b, e) \in \sigma$ where $e \in E_{\alpha}$, hence $a \beta b \in K_{\alpha}$.

Next, let $a^{\prime} \in W_{\alpha}^{\beta}(a)$ for some $\alpha, \beta \in \Gamma$ and $c \in K_{\gamma}, \gamma \in \Gamma$. Then there exists $g \in E_{\gamma}$ such that $(c, g) \in \sigma$. Thus $\left(a \alpha c \gamma a^{\prime}\right) \sigma=(a \sigma) \alpha(c \sigma) \gamma\left(a^{\prime} \sigma\right)=$
$\left.(a \sigma) \alpha\left((g \sigma) \gamma\left(a^{\prime} \sigma\right)\right)=(a \sigma) \alpha\left(a^{\prime} \sigma\right)=\left(a \alpha a^{\prime}\right) \sigma\right)$ because σ is Γ-group congruence. Therefore $\left(a \alpha c \gamma a^{\prime}, a \alpha a^{\prime}\right)$ where $a \alpha a^{\prime} \in E_{\beta}$, so $a \alpha c \gamma a^{\prime} \in K_{\beta}$. Similarly, we can show that $a \gamma c \alpha a^{\prime} \in K_{\beta}$ and $a^{\prime} \beta c \gamma a, a^{\prime} \gamma c \beta a \in K_{\alpha}$. Therefore K is full and weakly-conjugate family of S.

To show that $K_{\gamma}=\left(K_{\omega}\right)_{\gamma}$ for all $r \in \Gamma$. Clearly, $K_{\gamma} \subseteq\left(K_{\omega}\right)_{\gamma}$, by Definition 4.2 and 4.4. To show that $\left(K_{\omega}\right)_{\gamma} \subseteq K_{\gamma}$, let $x \in\left(K_{\omega}\right)_{\gamma}$. Then there exist $h \in K_{\alpha}, \alpha \in \Gamma$ such that $h \alpha x \in K_{\gamma}$. Consequently, $(h \alpha x) \sigma=g \sigma$ where $g \in E_{\gamma}$ or $(h \sigma) \alpha(x \sigma)=g \sigma$. Since $h \in K_{\alpha}, \alpha \in \Gamma$, we get $(h, e) \in \sigma$ where $e \in E_{\alpha}$, so $h \sigma=e \sigma$ and $e \sigma$ is an identity of S / σ for all $\alpha, \alpha \in \Gamma$. Then $g \sigma=(h \sigma) \alpha(x \sigma)=(e \sigma) \alpha(x \sigma)=x \sigma$ because σ is Γ-group congruence. Thus $x \in K_{\gamma}$, hence $K_{\gamma}=\left(K_{\omega}\right)_{\gamma}$. To show that $\sigma=\rho_{K}$, by Theorem 4.3 and K is full and weakly-conjugate family of S, it follows that
$\rho_{K}:=\left\{(a, b) \in S \times S \mid a \gamma b^{\prime} \in\left(K_{\omega}\right)_{\delta}=K_{\delta}\right.$ for some $\left.b^{\prime} \in W_{\gamma}^{\delta}(b), \gamma, \delta \in \Gamma\right\}$. Let $(a, b) \in \rho_{K}$. Then $a \gamma b^{\prime} \in K_{\delta}$ for some $b^{\prime} \in W_{\gamma}^{\delta}(b), \gamma, \delta \in \Gamma$. It implies that $\left(a \gamma b^{\prime}, e\right) \in \sigma$ where $e \in E_{\delta}$ and $\left(a \gamma b^{\prime} \delta b, e \delta b\right) \in \sigma$. Since $b^{\prime} \delta b \in E_{\gamma}$, we get $a \sigma=(a \sigma) \gamma\left(b^{\prime} \delta b\right) \sigma=(e \sigma) \delta(b \sigma)=b \sigma$, so $(a, b) \in \sigma$ and $\rho_{K} \subseteq \sigma$.

Finally, we shall show that $\sigma \subseteq \rho_{K}$, let $(a, b) \in \sigma$ and $b^{\prime} \in W_{\gamma}^{\delta}(b)$ for some $\gamma, \delta \in \Gamma$. Then $\left(a \gamma b^{\prime}, b \gamma b^{\prime}\right) \in \sigma$. Since $b \gamma b^{\prime} \in E_{\delta}$, we get $a \gamma b^{\prime} \in E_{\delta} \subseteq K_{\delta}$. Thus $(a, b) \in \rho_{K}$. Therefore $\sigma=\rho_{K}$.

Theorem 4.10. Let S be an E-inversive Γ-semigroup with $H \in \mathcal{C}$ and let ρ_{H} be defined as in Theorem 4.1. Then ρ_{U} is the least Γ-group congruence on S and $\operatorname{Ker} \rho_{U}=U_{\omega}$.

Proof. Let σ be an arbitrary Γ-group congruence on S. By Theorem 4.9, we obtain $\sigma=\rho_{K}$ where $K=K e r \sigma$ and K is a full and weakly-conjugate family of S. Since U is the smallest full and weakly-conjugate family of S, we get that $U \subseteq K$.

Let $(a, b) \in \rho_{U}$. Then there exist $x \in U_{\alpha} \subseteq K_{\alpha}, \alpha \in \Gamma$ and $y \in U_{\beta} \subseteq$ $K_{\beta}, \beta \in \Gamma$ such that $a \alpha x=y \beta b$. Thus $(a, b) \in \rho_{K}=\sigma$. Hence ρ_{U} is the least Γ-group congruence on S. By Theorem 4.6, $\operatorname{Ker} \rho_{U}=U_{\omega}$.

Now, we obtain the following theorems for characterizations of Γ-group congruences on E-inversive Γ-semigroups as obtained for regular Γ-semigroup in [1].

Theorem 4.11. Let S be an E-inversive Γ-semigroup with ρ_{H} a Γ-group congruence on S where H is a full and weakly-conjugate family of S. The
following statements are equivalent.
(1) $a \rho_{H} b$,
(2) $a \mu x \gamma b^{\prime} \in H_{\delta}$, for some $x \in H_{\mu}, \mu \in \Gamma$ and for some (all) $b^{\prime} \in W_{\gamma}^{\delta}(b)$,
(3) $a^{\prime} \phi x \mu b \in H_{\theta}$, for some $x \in H_{\mu}, \mu \in \Gamma$ and for some (all) $a^{\prime} \in W_{\theta}^{\phi}(a)$,
(4) b $b x \theta a^{\prime} \in H_{\phi}$, for some $x \in H_{\mu}, \mu \in \Gamma$ and for some (all) $a^{\prime} \in W_{\theta}^{\phi}(a)$,
(5) $b^{\prime} \delta x \mu a \in H_{\gamma}$, for some $x \in H_{\mu}, \mu \in \Gamma$ and for some (all) $b^{\prime} \in W_{\gamma}^{\delta}(b)$,
(6) $a \alpha x=y \beta b$ for some $\alpha, \beta \in \Gamma$ and for some $x \in H_{\alpha}, y \in H_{\beta}$,
(7) $x \alpha a=b \beta y$ for some $\alpha, \beta \in \Gamma$ and for some $x \in H_{\alpha}, y \in H_{\beta}$, and
(8) $H_{\beta} \beta a \alpha H_{\alpha} \cap H_{\beta} \beta b \alpha H_{\alpha} \neq \emptyset$ for some $\alpha, \beta \in \Gamma$.

Proof. (2) \Rightarrow (3) Suppose that $a \mu x \gamma b^{\prime} \in H_{\delta}$ for some $x \in H_{\mu}$ and $b^{\prime} \in$ $W_{\gamma}^{\delta}(b), \gamma, \delta, \mu \in \Gamma$. If $a^{\prime} \in W_{\theta}^{\phi}(a)$ for some $\theta, \phi \in \Gamma$, then $a^{\prime} \phi a \in E_{\theta} \subseteq H_{\theta}$ and $b^{\prime} \delta x \mu b \in H_{\gamma}$. Since $\left(a \mu x \gamma b^{\prime}\right) \delta x \in H_{\mu}$ and $x \gamma\left(b^{\prime} \delta x \mu b\right) \in H_{\mu}$, we have $a^{\prime} \phi\left(a \mu x \gamma b^{\prime} \delta x\right) \mu b=\left(a^{\prime} \phi a\right) \mu\left(x \gamma\left(b^{\prime} \delta x \mu b\right)\right) \in H_{\theta}$.
(3) \Rightarrow (6) Let $a^{\prime} \phi x \mu b \in H_{\theta}$, for some $a^{\prime} \in W_{\theta}^{\phi}(a)$ and $x \in H_{\mu}, \theta, \phi, \mu \in$ Γ. Thus $a \theta\left(a^{\prime} \phi x \mu b\right)=\left(a \theta a^{\prime} \phi x\right) \mu b$, where $a^{\prime} \phi x \mu b \in H_{\theta}$ and $a \theta a^{\prime} \phi x \in H_{\mu}$. Hence (6) holds.
(6) \Rightarrow (8) Let $a \alpha x=y \beta b$ for some $\alpha, \beta \in \Gamma$ and $x \in H_{\alpha}, y \in H_{\beta}$. Then $y \beta(a \alpha x)=(y \beta b) \alpha x$. Since $y \beta a \alpha x \in H_{\beta} \beta a \alpha H_{\alpha}$ and $y \beta b \alpha x \in H_{\beta} \beta b \alpha H_{\alpha}$, we get that $H_{\beta} \beta a \alpha H_{\alpha} \cap H_{\beta} \beta b \alpha H_{\alpha} \neq \emptyset$, for some $\alpha, \beta \in \Gamma$.
(8) \Rightarrow (2) Let $H_{\beta} \beta a \alpha H_{\alpha} \cap H_{\beta} \beta b \alpha H_{\alpha} \neq \emptyset$ for some $\alpha, \beta \in \Gamma$. Then $x \beta a \alpha y=x_{1} \beta b \alpha y_{1}$ for some $x, x_{1} \in H_{\beta}$ and $y, y_{1} \in H_{\alpha}$. Let $a^{\prime} \in W_{\theta}^{\phi}(a)$ for some $\theta, \phi \in \Gamma$ and $b^{\prime} \in W_{\gamma}^{\delta}(b)$ for some $\gamma, \delta \in \Gamma$. Then $a^{\prime} \phi x \beta a \in H_{\theta}$ and $\left(a^{\prime} \phi x \beta a\right) \alpha y \in H_{\theta}$. Since $a \theta a^{\prime} \in H_{\phi}, a \theta a^{\prime} \phi x_{1} \in H_{\beta}$ and $b \alpha y_{1} \gamma b^{\prime} \in$ H_{δ}, we get that $\left(a \theta a^{\prime} \phi x_{1}\right) \beta\left(b \alpha y_{1} \gamma b^{\prime}\right) \in H_{\delta}$. Then $a \theta\left(a^{\prime} \phi x \beta a \alpha y\right) \gamma b^{\prime}=$ $\left(a \theta a^{\prime}\right) \phi(x \beta a \alpha y) \gamma b^{\prime}=\left(a \theta a^{\prime}\right) \phi\left(x_{1} \beta b \alpha y_{1}\right) \gamma b^{\prime}=\left(a \theta a^{\prime}\right) \phi x_{1} \beta\left(b \alpha y_{1} \gamma b^{\prime}\right) \in H_{\delta}$, hence (2), (3), (6) and (8) are equivalent.
(2) \Rightarrow (4) Suppose that $a \mu x \gamma b^{\prime} \in H_{\delta}$ for some $x \in H_{\mu}$ and $b^{\prime} \in$ $W_{\gamma}^{\delta}(b), \gamma, \delta, \mu \in \Gamma$. Let $b^{\prime} \in W_{\gamma}^{\delta}(b)$ for $\gamma, \delta \in \Gamma$.
Now, $b \mu\left(x \theta a^{\prime} \phi a \mu x \gamma b^{\prime} \delta a\right) \theta a^{\prime}=\left(b \mu x \theta a^{\prime} \phi a \mu x \gamma b^{\prime}\right) \delta\left(a \theta a^{\prime}\right)$. By Definition 2.4 (3), we have $a^{\prime} \phi\left(a \mu x \gamma b^{\prime}\right) \delta a \in H_{\theta}$, so $x \theta\left(a^{\prime} \phi a \mu x \gamma b^{\prime} \delta a\right) \in H_{\mu}$. Since $a \theta a^{\prime} \in$ H_{ϕ} and again, Definition 2.4(3), we have $\left.b \mu x \theta a^{\prime} \phi a \mu x \gamma b^{\prime}\right) \in H_{\delta}$, then $\left(b \mu x \theta a^{\prime} \phi a \mu x \gamma b^{\prime}\right) \delta\left(a \theta a^{\prime}\right) \in H_{\phi}$. Hence $b \mu\left(x \theta a^{\prime} \phi a \mu x \gamma b^{\prime} \delta a\right) \theta a^{\prime} \in H_{\phi}$.
(4) \Rightarrow (5) Suppose that $b \mu x \theta a^{\prime} \in H_{\phi}$ for some $x \in H_{\mu}$ and $a^{\prime} \in$ $W_{\theta}^{\phi}(a), \theta, \phi, \mu \in \Gamma$. Let $b^{\prime} \in W_{\gamma}^{\delta}(b)$ for some $\gamma, \delta \in \Gamma$.
Now, $b^{\prime} \delta\left(b \mu x \theta a^{\prime} \phi x\right) \mu a=\left(b^{\prime} \delta b\right) \mu x \theta\left(a^{\prime} \phi x \mu a\right)$. Since $\left(b \mu x \theta a^{\prime}\right) \phi x \in H_{\mu}$ and $b^{\prime} \delta b \in H_{\gamma}, a^{\prime} \phi x \mu a \in H_{\theta}$, we get that $\left(b^{\prime} \delta b\right) \mu\left[x \theta\left(a^{\prime} \phi x \mu a\right)\right] \in H_{\gamma}$. Hence
$b^{\prime} \delta\left(b \mu x \theta a^{\prime} \phi x\right) \mu a \in H_{\gamma}$.
$(5) \Rightarrow(7)$ Let $b^{\prime} \delta x \mu a \in H_{\gamma}$ for some $b^{\prime} \in W_{\gamma}^{\delta}(b), x \in H_{\mu}$ and $\gamma, \delta, \mu \in \Gamma$. Now, $\left(b \gamma b^{\prime} \delta x\right) \mu a=b \gamma\left(b^{\prime} \delta x \mu a\right)$. Since $b \gamma b^{\prime} \delta x \in H_{\mu}$ and $b^{\prime} \delta x \mu a \in H_{\gamma}$, we have (7).
$(7) \Rightarrow(1)$ Let $x \alpha a=b \beta y$ for some $\alpha, \beta \in \Gamma$ and $x \in H_{\alpha}, y \in H_{\beta}$. Let $a^{\prime} \in W_{\theta}^{\phi}(a)$ for some $\theta, \phi \in \Gamma$ and $b^{\prime} \in W_{\gamma}^{\delta}(b)$. Now, $a \theta\left(a^{\prime} \phi x \alpha a \gamma b^{\prime} \delta b\right)=$ $\left(a \theta a^{\prime} \phi b \beta y \gamma b^{\prime}\right) \delta b$. Since $b^{\prime} \delta b \in H_{\gamma}$ and $a^{\prime} \phi x \alpha a \in H_{\theta}$, we have $(a \phi x \alpha a) \gamma\left(b^{\prime} \delta b\right)$ $\in H_{\theta}$. Since $a \theta a^{\prime} \in H_{\phi}$ and $b \beta y \gamma b^{\prime} \in H_{\delta}$, we have $\left(a \theta a^{\prime}\right) \phi\left(b \beta y \gamma b^{\prime}\right) \in H_{\delta}$. Then $(a, b) \in \rho_{H}$. Hence (2), (4), (5) and (7) are equivalent.

Also (1) $\Leftrightarrow(6)$ by Theorem 4.1.

References

[1] A. Seth, Γ-group Congruences on Regular Γ-semigroups. Internat. J. of Math. \& Math. Sci. Vol. 15 No. 1, (1992). 103-106.
[2] M.K. Sen, \& N.K. Saha, Orthodox Γ-semigroups. Internat. J. of Math. \& Math. Sci. Vol. 13 No. 3 (1990), 527-534.
[3] M.K. Sen, \& N.K. Saha, On Γ-semigroup. Bull. Cal. Math. Soc. 78 (1986), 180-186.
[4] S. Chattopadhyay, Right Orthodox Γ-semigroup. Southeast Asian Bull. of Math., 29 (2005), 23-30.
[5] M. Siripitukdet, \& S. Sattayaporn, The Least Group Congruence on E-inversive semigroups and E-inversive E-semigroups. Thai Journal of Mathematics. Vol. 3 No. 2 (2005), 163-169.
(Received 25 August 2009)

Supavinee Sattayaporn
Department of Mathematics
Faculty Science and technology
Uttaradit Rajabhat University
Uttaradit 53000, Thailand.
e-mail: supavinee_uru@windowslive.com

[^0]: Copyright (c) 2009 by the Mathematical Association of Thailand. All
 rights reserved.

