Thai Journal of Mathematics Volume 7 (2009) Number 2 : 405–415

www.math.science.cmu.ac.th/thaijournal Online ISSN 1686-0209

$\Gamma -Group Congruences on E-Inversive$ $\Gamma-Semigroups$

S. Sattayaporn

Abstract: In this paper, we give a characterization and some properties of E-inversive Γ -semigroup. Moveover, we also introduce a Γ -group congruence on any E-inversive Γ -semigroup and give its characterizations. Our main results improve and extend many results obtained by Seth [1].

Keywords : *E*-inversive Γ-semigroup, Γ-group congruence. **2000 Mathematics Subject Classification** : 20M10.

1 Introduction

The characterization of Γ -semigroup has been studied by Sen and Saha [3], they gave some characterizations of orthodox Γ -semigroups and extended different results of orthodox semigroups to orthodox Γ -semigroups. They also studied some properties of orthodox Γ -semigroups interm of (α, β) -inverse and regular Γ -semigroups. In 1992, Seth [1] gave the sufficient condition of being Γ -group congruences and the least Γ -group congruence on regular Γ -semigroups. In 2005, Chattopadhyay [4] introduced the concept of right (left) orthodox Γ -semigroup and gave some interesting results of this kind of Γ -semigroup. In this paper, we extend some results of *E*-inversive semigroup as in [5] to *E*-inversive Γ -semigroup.

Sen and Saha [3] defined the concepts of Γ -semigroup and regular Γ semigroup as follows : For two non-empty sets S and Γ , S is said to be a Γ -semigroup if for all $a, b, c \in S$ and $\alpha, \beta \in \Gamma$, (i) $a\alpha b \in S$ and (ii) $(a\alpha b)\beta c = a\alpha(b\beta c)$. A Γ -semigroup S is called a regular Γ -semigroup if for any $a \in S$ there exist $a' \in S, \alpha, \beta \in \Gamma$ such that $a = a\alpha a'\beta a$. An element $a' \in S$ is called an (α, β) -inverse of an element $a \in S$ if $a = a\alpha a'\beta a$ and

Copyright \bigodot 2009 by the Mathematical Association of Thailand. All rights reserved.

 $a' = a'\beta a\alpha a'$. In this case, $a' \in V_{\alpha}^{\beta}(a)$. If S is regular Γ -semigroup then $V_{\alpha}^{\beta}(a) \neq \emptyset$ for some $\alpha, \beta \in \Gamma$. An element $e \in S$ is called an α -idempotent, where $\alpha \in \Gamma$, if $e\alpha e = e$. We denote the set of all α -idempotents of S by E_{α} . Now, for any $a \in S, \alpha, \beta \in \Gamma$ if $a' \in V_{\alpha}^{\beta}(a)$ then $a\alpha a'$ is β -idempotent and $a'\beta a$ is α -idempotent. A non-empty set H of Γ -semigroup S is said to be a Γ -subsemigroup of S if $H\Gamma H \subseteq H$. In 2005, Siripitukdet and Sattayaporn [5] showed that every regular, orthodox and inverse semigroups are E-inversive semigroup.

A Γ -semigroup S is said to be an E-inversive Γ -semigroup if for all $a \in S$ there exist $x \in S, \alpha, \beta \in \Gamma$ such that $a\alpha x$ is β -idempotent. In this research, for $\alpha, \beta \in \Gamma$ we define weak (α, β) -inverse of an element $a \in S$ as follows : $W^{\beta}_{\alpha}(a) := \{x \in S \mid x = x\beta a\alpha x\}$ the set of all weak (α, β) -inverses of an element a. In this paper, we replace regular Γ -semigroup in [1] by E-inversive Γ -semigroup and replace the set of all (α, β) -inverses $V^{\beta}_{\alpha}(a)$ by the set of all weak (α, β) -inverses $W^{\beta}_{\alpha}(a)$ of an E-inversive Γ -semigroup.

Example 1.1. Let Q^* be the set of all non-zero rational numbers and Γ be the set of all positive integers (\mathbb{Z}^+) . For $a, b \in Q^*$ and $\alpha \in \Gamma$, we define, $a\alpha b = |a|\alpha b$. We will show that Q^* is Γ -semigroup.

Let $\frac{p}{q} \in Q^*, p \neq 0, q \neq 0$ and $|p|, |q| \in \Gamma$. Then $E_{\beta=|p|} = \{-\frac{1}{p}, \frac{1}{p}\}$ and $E_{\alpha=|q|} = \{-\frac{1}{q}, \frac{1}{q}\}$. Hence $\frac{1}{|p|} \in Q^*$ and $\frac{p}{q}|q|\frac{1}{|p|} = \frac{|p|}{|q|}|q|\frac{1}{|p|} = 1 \in E_{(1)}$. Therefore Q^* is E-inversive Γ -semigroup and $\frac{1}{|p|} \in W^1_{|q|}(\frac{p}{q})$ where $|p|, |q|, 1 \in \Gamma$.

2 Some Auxiliary Results

In this section, we give some conditions and some results of E-inversive Γ -semigroups.

Proposition 2.1. *S* is an *E*-inversive Γ -semigroup if and only if $W^{\beta}_{\alpha}(a) \neq \emptyset$ for all $a \in S$ and for some $\alpha, \beta \in \Gamma$.

Proof. Suppose that S is an *E*-inversive Γ -semigroup and $a \in S$. Then there exist $x \in S, \alpha, \beta \in \Gamma$ such that $a\alpha x \in E_{\beta}$. Thus

$$(a\alpha x)\beta(a\alpha x) = a\alpha x$$
$$(x\beta a\alpha x)\beta a\alpha(x\beta a\alpha x) = x\beta(a\alpha x\beta a\alpha x\beta a\alpha x) = x\beta a\alpha x$$

Therefore $x\beta a\alpha x \in W^{\beta}_{\alpha}(a)$.

Now, let $a \in S$ and $x \in W^{\beta}_{\alpha}(a)$ for some $\alpha, \beta \in \Gamma$. Then $x = x\beta a\alpha x$ and $a\alpha x = (a\alpha x)\beta(a\alpha x)$, hence $a\alpha x \in E_{\beta}$ and so S is an E-inversive Γ semigroup.

Proposition 2.2. Every regular Γ -semigroup is an E-inversive Γ -semigroup.

Proof. Let S be regular Γ -semigroup and $a \in S$. Then there exist $x \in S$ and $\alpha, \beta \in \Gamma$ such that $V_{\alpha}^{\beta}(a) \neq \emptyset$. Note that $V_{\alpha}^{\beta}(a) \subseteq W_{\alpha}^{\beta}(a)$, we have $W_{\alpha}^{\beta}(a) \neq \emptyset$. The result is obtained by Theorem 2.1.

Theorem 2.3. [1] A regular Γ -semigroup S is Γ -group if and only if for all $\alpha, \beta \in \Gamma, e\alpha f = f \alpha e = f$ and $e\beta f = f\beta e = e$ for any $e \in E_{\alpha}$ and $f \in E_{\beta}$.

The following definition is needed for our consideration.

Definition 2.4. Let S be a Γ -semigroup and $\alpha \in \Gamma$, and let $H := \{H_{\alpha} \mid \alpha \in \Gamma\}$ where H_{α} are subsets of S, for all $\alpha \in \Gamma$. H is called *full and weakly-conjugate family of* S if

- (1) $E_{\alpha} \subseteq H_{\alpha}$ for all $\alpha \in \Gamma$,
- (2) for each $a \in H_{\alpha}$ and $b \in H_{\beta}, \alpha, \beta \in \Gamma, a\alpha b \in H_{\beta}$ and $a\beta b \in H_{\alpha}$,
- (3) for each $a' \in W^{\beta}_{\alpha}(a)$ and $c \in H_{\gamma}, \alpha, \beta, \gamma \in \Gamma, a\alpha c\gamma a', a\gamma c\alpha a' \in H_{\beta}$ and $a'\beta c\gamma a, a'\gamma c\beta a \in H_{\alpha}$.

Example 2.5. By Example 1.1, let $\frac{p}{q} \in Q^*$ where $p, q \neq 0$. We have $|q|, |p|, 1 \in \Gamma$ and (1) $E_{|q|} = \{-\frac{1}{q}, \frac{1}{q}\}, E_{|p|} = \{-\frac{1}{p}, \frac{1}{p}\}$. and $E_{(1)} = \{1\}$ $H_{|q|} = \{-\frac{1}{q}, \frac{1}{q}, 1\}$ and $H_{|p|} = \{-\frac{1}{p}, \frac{1}{p}, 1\}$. Therefore $E_{|q|} \subseteq H_{|q|}, E_{|p|} \subseteq H_{|p|}$ and $H_{(1)} = \{1\} = E_{(1)}$. (2) Let $\frac{1}{|q|} \in H_{|q|}$ and $\frac{1}{p} \in H_{|p|}$. Then $\frac{1}{|q|}|q| \cdot \frac{1}{p} = \frac{1}{p} \in H_{|p|}$ and $\frac{1}{|q|}|p| \cdot \frac{1}{p} \in H_{|q|}$. (3) Let $a = \frac{p}{q} \in Q^*$ where $p, q \neq 0$. Note that $\frac{1}{|p|} \in W_{|q|}^{(1)}(\frac{p}{q})$ and $\frac{1}{p} \in H_{|p|}$, we have $\alpha = |q|, \beta = 1, \gamma = |p|$. Choose $a' = \frac{1}{|p|}$ and $c = \frac{1}{p}$. Hence $a\alpha c\gamma a', a\gamma c\alpha a' \in H_{\beta}$ and $a'\alpha c\gamma a, a'\gamma c\alpha a \in H_{\alpha}$. Let $H = \{H_{|q|}, H_{|p|}, H_{|p|}, H_{(1)}\}$. Then H is full and weakly-conjugate family of Q^* . **Proposition 2.6.** Let S be an E-inversive Γ -semigroup and $a, b \in S, \theta \in \Gamma$. If $x \in W^{\delta}_{\gamma}(a\theta b)$ for some $\gamma, \delta \in \Gamma$ then $b\gamma x \delta a$ is θ -idempotent of S.

Proof. Let $x \in W^{\delta}_{\gamma}(a\theta b)$ for some $\gamma, \delta \in \Gamma$. Then $(b\gamma x \delta a)\theta(b\gamma x \delta a) = b\gamma(x \delta a \theta b \gamma x)\delta a = b\gamma x \delta a$, hence $b\gamma x \delta a \in E_{\theta}$.

4 Main Results

The purpose of this section is to give some characterizations of Γ -group congruences on *E*-inversive Γ -semigroup and those of the least Γ -group congruence.

Theorem 4.1. Let S be an E-inversive Γ -semigroup and $H := \{H_{\alpha}, \alpha \in \Gamma\}$ be full and weakly-conjugate family of S. Then

 $\rho_H := \{(a,b) \in S \times S \mid a\alpha x = y\beta b \text{ for some } x \in H_\alpha, y \in H_\beta \text{ and } \alpha, \beta \in \Gamma\}$

is a Γ -group congruence on S.

Proof. Let $a \in S$ and $a' \in W_{\alpha}^{\beta}(a)$ for some $\alpha, \beta \in \Gamma$. Now, $a\alpha(a'\beta a) = (a\alpha a')\beta a$. Since $a'\beta a \in E_{\alpha} \subseteq H_{\alpha}$ and $a\alpha a' \in E_{\beta} \subseteq H_{\beta}$, we have $(a, a) \in \rho_{H}$. Let $a, b \in S$ and $(a, b) \in \rho_{H}$. Then there exist $x \in H_{\alpha}$ and $y \in H_{\beta}$ where $\alpha, \beta \in \Gamma$ such that $a\alpha x = y\beta b$. Let $a' \in W_{\gamma}^{\delta}(a)$ and $b' \in W_{\theta}^{\phi}(b)$ for some $\gamma, \delta, \theta, \phi \in \Gamma$. Now, $b\theta[(b'\phi y\beta b)\gamma(a'\delta a)] = [(b\theta b')\phi(a\alpha x\gamma a')]\delta a$. Since $a'\delta a \in E_{\gamma} \subseteq H_{\gamma}$, by Definition 2.4(3), we have $b'\phi y\beta b \in H_{\theta}$, we get $(b'\phi y\beta b)\gamma(a'\delta a) \in H_{\theta}$. Again $b\theta b' \in E_{\phi} \subseteq H_{\phi}$ and by Definition 2.4(3), $a\alpha x\gamma a' \in H_{\delta}$, and by Definition 2.4(2), we have $(b\theta b')\phi(a\alpha x\gamma a') \in H_{\delta}$. Therefore $(b, a) \in \rho_{H}$.

Let $a, b, c \in S$ be such that $(a, b) \in \rho_H$ and $(b, c) \in \rho_H$. Then there exist $x \in H_\alpha, y \in H_\beta, z \in H_\gamma$ and $w \in H_\delta$ for some $\alpha, \beta, \gamma, \delta \in \Gamma$ such that $a\alpha x = y\beta b$ and $b\gamma z = w\delta c$. Now, $a\alpha(x\gamma z) = (a\alpha x)\gamma z = (y\beta b)\gamma z =$ $y\beta(b\gamma z) = y\beta(w\delta c) = (y\beta w)\delta c$. Since $x\gamma z \in H_\alpha$ and $y\beta w \in H_\delta$, so $(a, c) \in \rho_H$, hence ρ_H is an equivalence relation on S.

To show that ρ_H is compatible, let $(a, b) \in \rho_H$ and $\theta \in \Gamma, c \in S$. Then there exist $x \in H_{\alpha}$ and $y \in H_{\beta}$ for some $\alpha, \beta \in \Gamma$ such that $a\alpha x = y\beta b$. Let $c' \in W_{\gamma}^{\delta}(c)$ and $g \in W_{\gamma_1}^{\delta_1}(b\theta c), h \in W_{\gamma_2}^{\delta_2}(a\theta c)$. By Proposition 2.6, $(c\gamma_2h\delta_2a) \in E_{\theta} \subseteq H_{\theta}$, so $(c\gamma_2h\delta_2a)\alpha x \in H_{\theta}$ and by Definition 2.4(3), $c'\delta[c\gamma_2h\delta_2a\alpha x]\theta c \in H_{\gamma}$. Again $g\delta_1(b\theta c) \in E_{\gamma_1} \subseteq H_{\gamma_1}$ and by Definition 2.4(3), $c'\delta[c\gamma_2h\delta_2a\alpha x\theta c]\gamma_1(g\delta_1b\theta c) \in H_{\gamma}$. Similarly, since $c'\delta c \in E_{\gamma} \subseteq H_{\gamma}$ and by Definition 2.4(2), $y\beta[(b\theta c)\gamma_1g] \in H_{\delta_1}$ and so $((a\theta c)\gamma c'\delta c\gamma_2 h)\delta_2(y\beta b\theta c\gamma_1g) \in H_{\delta_1}$. Now, $(a\theta c)\gamma[c'\delta c\gamma_2h\delta_2a\alpha x\theta c\gamma_1g\delta_1b\theta c] = [a\theta c\gamma c'\delta c\gamma_2h\delta_2y\beta b\theta c\gamma_1g]\delta_1(b\theta c).$ Therefore $(a\theta c, b\theta c) \in \rho_H.$

Next, we show that $(c\theta a, c\theta b) \in \rho_H$. Let $c' \in W^{\delta}_{\gamma}(c), \theta \in \Gamma$ and $w \in W^{\delta_1}_{\gamma_1}(c\theta b), z \in W^{\delta_2}_{\gamma_2}(c\theta a)$ for some $\gamma_1, \gamma_2, \delta_1, \delta_2 \in \Gamma$. Since $z\delta_2(c\theta a) \in E_{\gamma_2} \subseteq H_{\gamma_2}$ and by Definition 2.4(2), $z\delta_2c\theta a\alpha x \in H_{\gamma_2}, c\gamma c' \in E_{\delta} \subseteq H_{\delta}$, by Definition 2.4(3), $w\delta_1(c\gamma c')\delta(c\theta b) \in H_{\gamma_1}$.

Then $(z\delta_2c\theta a\alpha x)\gamma_1(w\delta_1(c\gamma c')\delta(c\theta b)) \in H_{\gamma_2}$. Similarly, by Proposition 2.6, $a\gamma_2 z\delta_2 c \in E_\theta \subseteq H_\theta$ and by Definition 2.4(2), $(a\gamma_2 z\delta_2 c)\theta y \in H_\beta$ because $y \in H_\beta$. Again by Proposition 2.6, $b\gamma_1 w\delta_1 c \in E_\theta \subseteq H_\theta$, then $(a\gamma_2 z\delta_2 c\theta y)\beta(b\gamma_1 w\delta_1 c) \in H_\theta$ and so $c\theta(a\gamma_2 z\delta_2 c\theta y\beta b\gamma_1 w\delta_1 c)\gamma c' \in H_\delta$. Now, $(c\theta a)\gamma_2[z\delta_2 c\theta a\alpha x\gamma_1 w\delta_1 c\gamma c'\delta c\theta b] = [c\theta a\gamma_2 z\delta_2 c\theta y\beta b\gamma_1 w\delta_1 c\gamma c']\delta(c\theta b)$. Hence $(c\theta a, c\theta b) \in \rho_H$ and so ρ_H is a congruence on S.

To show that S/ρ_H is Γ -group, we will show that S/ρ_H is a regular Γ -semigroup. Let $a' \in W^{\beta}_{\alpha}(a)$ where $\alpha, \beta \in \Gamma$. Then

 $a\alpha(a'\beta a) = a\alpha(a'\beta a\alpha a')\beta a = (a\alpha a')\beta(a\alpha a'\beta a)$. Since $a'\beta a \in E_{\alpha} \subseteq H_{\alpha}$ and $a\alpha a' \in E_{\beta} \subseteq H_{\beta}$, we get that $(a, a\alpha a'\beta a) \in \rho_H$. Hence S/ρ_H is a regular Γ -semigroup.

Let $\alpha, \beta \in \Gamma$ and $e \in E_{\alpha}, f \in E_{\beta}$. Since $E_{\alpha} \subseteq H_{\alpha}$ and $E_{\beta} \subseteq H_{\beta}$ by Definition 2.4(2), we get $e\alpha f, f\alpha e \in H_{\beta}$. Now, $(e\alpha f)\beta f = (e\alpha f)\beta f$, hence $(e\alpha f, f) \in \rho_H$ and $(f\alpha e)\beta f = (f\alpha e)\beta f$, hence $(f\alpha e, f) \in \rho_H$. Thus $(e\rho_H)\alpha(f\rho_H) = f\rho_H = (f\rho_H)\alpha(e\rho_H)$. Similarly, we can show that $(e\beta f)\alpha e = (e\beta f)\alpha e$, hence $(e\beta f, e) \in \rho_H$ and $(f\beta e)\alpha e = (f\beta e)\alpha e$, hence $(f\beta e, e) \in \rho_H$. Thus $(e\rho_H)\beta(f\rho_H) = e\rho_H = (f\rho_H)\beta(e\rho_H)$. Therefore S/ρ_H is a Γ -group, and ρ_H is a Γ -group congruence on S.

The following theorem, we give some characterizations of Γ -group congruence on *E*-inversive Γ -semigroup *S* by using a full and weakly-conjugate family of *S* and the following concept.

Definition 4.2. Let S be Γ -semigroup. If $H := \{H_{\alpha}, \alpha \in \Gamma\}$ is a full and weakly-conjugate family of subset of S, the *closure* H_{ω} of H is the family defined by

$$H_{\omega} := \{ (H_{\omega})_{\gamma} \mid \gamma \in \Gamma \} \text{ where} \\ (H_{\omega})_{\gamma} = \{ a \in S \mid h \alpha a \in H_{\gamma} \text{ for some } h \in H_{\alpha}, \alpha \in \Gamma \}.$$

Then H is closed if $H = H_{\omega}$.

Remark. Let S be a Γ -semigroup with $H := \{H_{\alpha}, \alpha \in \Gamma\}$ is a full and weakly-conjugate family of S. Then for all $e \in E_{\alpha}, \alpha \in \Gamma, e\alpha e = e \in E_{\alpha} \subseteq H_{\alpha}$, hence $e \in (H_{\omega})_{\alpha}$ and for all $h \in H_{\alpha}$, if $h\alpha h \in H_{\alpha}$, we get $H_{\alpha} \subseteq (H_{\omega})_{\alpha}$ for all $\alpha \in \Gamma$.

Theorem 4.3. Let S be an E-inversive Γ -semigroup such that $H := \{H_{\alpha}, \alpha \in \Gamma\}$ is a full and weakly-conjugate family of S. Then

$$\rho_H^* := \{(a,b) \in S \times S \mid a\gamma b' \in (H_\omega)_\delta \text{ for some } b' \in W_\gamma^\delta(b)\},\$$

hence $\rho_H^* = \rho_H$.

Proof. By Theorem 4.1, $\rho_H := \{(a, b) \in S \times S \mid a\alpha x = y\beta b \text{ for some } x \in H_\alpha, y \in H_\beta \text{ and } \alpha, \beta \in \Gamma\}.$

Let $(a, b) \in \rho_H$. Then $(b, a) \in \rho_H$ and there exist $x \in H_\alpha, y \in H_\beta, \alpha, \beta \in \Gamma$ such that $b\alpha x = y\beta a$. Let $b' \in W^{\delta}_{\gamma}(b), \gamma, \delta \in \Gamma$. Then $(y\beta a)\gamma b' = (b\alpha x)\gamma b'$. By Definition 2.4(3), $b\alpha x\gamma b' \in H_\delta$. Since $y \in H_\beta$ and $y\beta(a\gamma b') \in H_\delta$, we get that $a\gamma b' \in (H_\omega)_\delta$ and so $(a, b) \in \rho_H^*$, hence $\rho_H \subseteq \rho_H^*$. Let $(a, b) \in \rho_H^*$. Then there exist $b' \in W^{\delta}_{\gamma}(b), \gamma, \delta \in \Gamma$ such that $a\gamma b' \in (H_\omega)_\delta$. Then there exist $h \in H, \alpha \in \Gamma$ such that $h\alpha(a\gamma b') \in H_\delta$. Put $f = h\alpha a\gamma b' \in H_\delta$. Note that, $b\theta(a'\phi h\alpha a\gamma b')\delta a = b\theta a'\phi f\delta a$ for some $a' \in W^{\phi}_{\theta}(a)$. Since $a'\phi h\alpha a \in H_\theta, h \in H_\alpha, b\theta(a'\phi h\alpha a\gamma b')\delta a$. Hence $(b, a) \in \rho_H$ and $(a, b) \in \rho_H$. Therefore $\rho_H^* \subseteq \rho_H$ and consequently $\rho_H^* = \rho_H$.

Now, we introduce the concept of the set $Ker\rho$.

Definition 4.4. [1] Let ρ be a congruence on Γ -semigroup S, and let $Ker\rho := \{(Ker\rho)_{\alpha}, \alpha \in \Gamma\}$ where $(Ker\rho)_{\alpha} := \{a \in S \mid e\rho a \text{ for some } e \in E_{\alpha}\}.$

Example 4.5. Let ρ be a congruence on Γ -semigroup S with $E_{\alpha} \neq \emptyset$ for some $\alpha \in \Gamma$. Let $e \in E_{\alpha}$. Then $e\rho e$ for all $e \in E_{\alpha}$, and so $e \in (Ker\rho)_{\alpha}$. Therefore $(Ker\rho)_{\alpha} \neq \emptyset$.

Theorem 4.6. Let S be an E-inversive Γ -semigroup such that $H := \{H_{\alpha}, \alpha \in \Gamma\}$ is a full and weakly-conjugate family of S. Then $Ker\rho_H = H_{\omega}$ where ρ_H defined as in Theorem 4.1.

Proof. To show that $(Ker\rho_H)_{\alpha} = (H_{\omega})_{\alpha}$ for all $\alpha \in \Gamma$, let $x \in (Ker\rho_H)_{\alpha}$ for some $\alpha \in \Gamma$. Then $e\rho_H x$ for some $e \in E_{\alpha}$ and by Theorem 4.1, then exist $y \in H_{\beta}, z \in H_{\gamma}, \beta, \gamma \in \Gamma$ such that $e\beta y = z\gamma x$. Since $e\beta y \in H_{\alpha}$, we get that $z\gamma x \in H_{\alpha}$ and so $x \in (H_{\omega})_{\alpha}$. Since $y \in (H_{\omega})_{\alpha}, \alpha \in \Gamma$. then there exist $g \in H_{\gamma}, \gamma \in \Gamma$ such that $g\gamma y \in H_{\alpha}$. Now, for some $e \in E_{\alpha}, e\alpha(g\gamma y) =$ $(e\alpha g)\gamma y$ where $g\gamma y \in H_{\alpha}$ and $e\alpha g \in H_{\gamma}$, it follows that $(e, y) \in \rho_H$ and by Definition 4.4, $y \in (Ker\rho_H)_{\alpha}$. Therefore $(Ker\rho_H)_{\alpha} = (H_{\omega})_{\alpha}$ for all $\alpha \in \Gamma$. Hence $Ker\rho_H = H_{\omega}$. **Theorem 4.7.** Let S be an E-inversive Γ -semigroup such that $H := \{H_{\alpha}, \alpha \in \Gamma\}$ is a full and weakly-conjugate family of S. Then $a\rho_H b$ if and only if one of the following equivalent conditions hold.

(1) $a\gamma b' \in (H_{\omega})_{\delta}$ for some $b' \in W_{\gamma}^{\delta}(b)$,

- (2) $b'\delta a \in (H_{\omega})_{\gamma}$ for some $b' \in W_{\gamma}^{\dot{\delta}}(b)$,
- (3) $a'\phi b \in (H_{\omega})_{\theta}$ for some $a' \in W^{\phi}_{\theta}(b)$, and
- (4) $b\theta a' \in (H_{\omega})_{\phi}$ for some $a' \in W^{\phi}_{\theta}(b)$.

Proof. (1) \Leftrightarrow (3) Let H be a full and weakly-conjugate family of S and suppose that $a\gamma b' \in (H_{\omega})\delta$ for some $b' \in W^{\delta}_{\gamma}(b)$ where $\alpha, \delta \in \Gamma$. Then there exist $h \in H_{\alpha}, \alpha \in \Gamma$ such that $h\alpha(a\gamma b') \in H_{\delta}$. Let $a' \in W^{\phi}_{\theta}(a)$ for some $\theta, \phi \in \Gamma$. Then $a'\phi(h\alpha a\gamma b')\delta a \in H_{\theta}$ and $(a'\phi h\alpha a\gamma b'\delta a)\theta a'\phi b =$ $(a'\phi h\alpha a)\gamma b'\delta a\theta a'\phi b \in H_{\theta}$ Therefore $a'\phi b \in (H_{\omega})_{\theta}$.

Suppose that $a'\phi b \in (H_{\omega})_{\theta}$ for some $a' \in W^{\phi}_{\theta}(a), \theta, \phi \in \Gamma$. Then there exist $h \in H_{\beta}, \beta \in \Gamma$ such that $h\beta(a'\phi b) \in H_{\theta}$ and $a\theta(h\beta a'\phi b)\theta a' \in H_{\phi}$. Therefore for some $b' \in W^{\delta}_{\gamma}(b)$,

$$(a\theta h\beta a'\phi b\theta a')\phi(a\gamma b') = (a\theta h\beta a')\phi b\theta(a'\phi a)\gamma b' \in H_{\delta}.$$

Therefore $a\gamma b' \in (H_{\omega})_{\delta}$.

To show (2) \Leftrightarrow (4), let $b'\delta a \in (H_{\omega})_{\gamma}$ for some $b' \in W^{\delta}_{\gamma}(b), \gamma, \delta \in \Gamma$. Then there exist $h \in H_{\alpha}, \alpha \in \Gamma$ such that $h\alpha(b'\delta a) \in H_{\gamma}$. Let $a' \in W^{\phi}_{\theta}(a)$ for some $\theta, \phi \in \Gamma$. By Definition 2.4(3), $a\gamma(h\alpha b'\delta a)\theta a' \in H_{\phi}$ and $b'\delta a\theta a'\phi b \in H_{\gamma}, h\alpha(b'\delta a\theta a'\phi b) \in H_{\gamma}$, again $a\gamma(h\alpha b'\delta a\theta a'\phi b)\theta a' \in H_{\phi}$.

Now, $(a\gamma h\alpha b'\delta a\theta a')\phi(b\theta a') = a\gamma(h\alpha b'\delta a\theta a'\phi b)\theta a' \in H_{\phi}$. Therefore $b\theta a' \in (H_{\omega})_{\phi}$.

Suppose that $b\theta a' \in (H_{\omega})_{\phi}$ for some $a' \in W^{\phi}_{\theta}(a), \theta, \phi \in \Gamma$. Then there exist $h \in H_{\alpha}, \alpha \in \Gamma$ such that $h\alpha(b\theta a') \in H_{\phi}$. Let $b' \in W^{\delta}_{\gamma}(b)$ for some $\gamma, \delta \in \Gamma$. Now, $(b'\delta h\alpha b\theta a'\phi b)\gamma(b'\delta a) = (b'\delta h\alpha b)\theta(a'\phi b\gamma b'\delta a)$. By Definition 2.4(3), $b'\delta(h\alpha b\theta a')\phi b \in H_{\gamma}$ and $b'\delta h\alpha b \in H_{\gamma}, a'\phi b\gamma b'\delta a \in H_{\theta}$. Thus $(b'\delta h\alpha b)\theta(a'\phi b\gamma b'\delta a) \in H_{\gamma}$, so $(b'\delta h\alpha b\theta a'\phi b)\gamma(b'\delta a) \in H_{\gamma}$, hence $b'\delta a \in (H_{\omega})_{\gamma}$.

To show (4) \Leftrightarrow (1), let $b\theta a' \in (H_{\omega})_{\phi}$ for some $a' \in W^{\phi}_{\theta}(a), \theta, \phi \in \Gamma$. Then there exist $h \in H_{\alpha}, \alpha \in \Gamma$ such that $h\alpha(b\theta a') \in H_{\phi}$. Let $b' \in W^{\delta}_{\gamma}(b)$ for some $\gamma, \delta \in \Gamma$. By Definition 2.4(3), $b\theta(a'\phi a)\gamma b' \in H_{\delta}$ and $h\alpha(b\theta a'\phi a\gamma b') \in H_{\delta}$. Now, $(h\alpha b\theta a')\phi(a\gamma b') = h\alpha(b\theta a'\phi a\gamma b') \in H_{\delta}$. Therefore $a\gamma b' \in (H_{\omega})_{\delta}$.

Suppose that $a\gamma b' \in (H_{\omega})_{\delta}$ for some $b' \in W^{\delta}_{\gamma}(b), \gamma, \delta \in \Gamma$. Then there exist $h \in H_{\alpha}, \alpha \in \Gamma$ such that $h\alpha(a\gamma b') \in H_{\delta}$. Let $a' \in W^{\phi}_{\theta}(a)$ for some $\theta, \phi \in \Gamma$. Since $b'\delta b \in E_{\gamma} \subseteq H_{\gamma}$ and by Definition 2.4(3), $a\gamma(b'\delta b)\theta a' \in H_{\phi}$ and $h\alpha(a\gamma b'\delta b\theta a' \in H_{\phi}$. Now $(h\alpha a\gamma b')\delta(b\theta a') = h\alpha(a\gamma b'\delta b\theta a') \in H_{\phi}$ for some $\theta, \phi \in \Gamma$. Therefore $b\theta a' \in (H_{\omega})_{\phi}$.

Moreover, the symmetric property of ρ_H shows that $a\gamma b' \in (H_{\omega})_{\delta}$ for some (all) $b' \in W^{\delta}_{\gamma}(b)$ if and only if $b\theta a' \in (H_{\omega})_{\phi}$ for some (all) $a' \in W^{\phi}_{\theta}(a)$. Therefore the proof is completed.

To prove the least Γ -group congruence on *E*-inversive Γ -group *S* by using the smallest element of full and weakly-conjugate family of *S*. Now the following Lemma easily follows :

Lemma 4.8. Let C be the collection of all full and weakly-conjugate families H_i of $S, (i \in \Lambda)$ where $H_i = \{H_{i\alpha}, \alpha \in \Gamma\}$.

Let $U_{\alpha} := \bigcap_{i \in \Lambda} H_{i\alpha}$ and $U := \{U_{\alpha} \mid \alpha \in \Gamma\}$. Then U is a full and

weakly-conjugate family of S and U is the smallest element in C.

Proof. Clearly, $E_{\alpha} \subseteq U_{\alpha}$ for all $\alpha \in \Gamma$. Let $a \in U_{\alpha}$ and $b \in U_{\beta}, \alpha, \beta \in \Gamma$. Then $a \in H_{i\alpha}$ for all $i \in \Lambda$ and $b \in H_{i\beta}$ for all $i \in \Lambda$, and since $H_{i\alpha}, H_{i\beta} \in H_i$ for all $i \in \Lambda$, we get $a\alpha b \in H_{i\beta}$ and $a\beta b \in H_{i\alpha}$ for all $i \in \Lambda$, it implies $a\alpha b \in U_{\beta}$ and $a\beta b \in U_{\alpha}$.

If $a' \in W_{\alpha}^{\beta}(a)$ and $c \in U_{\gamma}, \alpha, \beta, \gamma \in \Gamma$, then $c \in H_{i\gamma}$ for all $i \in \Lambda$. Thus $a\alpha c\gamma a', a\gamma c\alpha a' \in H_{i\beta}$ for all $i \in \Lambda$ and $a'\beta c\gamma a, a'\gamma c\beta a \in H_{i\alpha}$ for all $i \in \Lambda$, hence $a\alpha c\gamma a', a\gamma c\alpha a' \in \bigcap_{i \in \Lambda} H_{i\beta} = U_{\beta}$ and $a'\beta c\gamma a, a'\gamma c\beta a \in \bigcap_{i \in \Lambda} H_{i\alpha} = U_{\alpha}$.

Therefore U is a full and weakly-conjugate family of $\stackrel{i \in \Lambda}{S}$ and U is the smallest element in \mathcal{C} .

Theorem 4.9. Let S be an E-inversive Γ -semigroup. If σ is a Γ -group congruence on S, then Ker σ is closed, full and weakly-conjugate of S. Moreover $\sigma = \rho_{Ker\sigma}$.

Proof. Suppose that σ is a Γ -group congruence on S and let $K = \ker \sigma := \{(Ker \ \sigma)_{\alpha}, \alpha \in \Gamma\} = \{K_{\alpha}, \alpha \in \Gamma\}$ where $K_{\alpha} := \{a \in S \mid e\sigma a \text{ for some } e \in E_{\alpha}, \alpha \in \Gamma\}$. Let $e \in E_{\alpha}, \alpha \in \Gamma$. Then $e\sigma e$ and so $e \in K_{\alpha}$ for all $\alpha \in \Gamma$. Thus $E_{\alpha} \subseteq K_{\alpha}$ for all $\alpha \in \Gamma$. Let $a \in K_{\alpha}$ and $b \in K_{\beta}$ for some $\alpha, \beta \in \Gamma$. Then there exist $e \in E_{\alpha}$ and $f \in E_{\beta}$ such that $e\sigma a$ and $f\sigma b$. Thus $(a\alpha b)\sigma = (a\sigma)\alpha(b\sigma) = (e\sigma)\alpha(f\sigma) = (e\alpha f)\sigma = f\sigma$, because σ is Γ -group congruence. Then $(a\alpha b, f) \in \sigma$ where $f \in E_{\beta}$ and $a\alpha b \in K_{\beta}$. Thus $(a\beta b)\sigma = (a\sigma)\beta(b\sigma) = (e\sigma)\beta(f\sigma) = (e\beta b)\sigma = e\sigma$, because σ is Γ -group congruence. Therefore $(a\beta b, e) \in \sigma$ where $e \in E_{\alpha}$, hence $a\beta b \in K_{\alpha}$.

Next, let $a' \in W_{\alpha}^{\beta}(a)$ for some $\alpha, \beta \in \Gamma$ and $c \in K_{\gamma}, \gamma \in \Gamma$. Then there exists $g \in E_{\gamma}$ such that $(c,g) \in \sigma$. Thus $(a\alpha c\gamma a')\sigma = (a\sigma)\alpha(c\sigma)\gamma(a'\sigma) =$

 $(a\sigma)\alpha((g\sigma)\gamma(a'\sigma)) = (a\sigma)\alpha(a'\sigma) = (a\alpha a')\sigma)$ because σ is Γ -group congruence. Therefore $(a\alpha c\gamma a', a\alpha a')$ where $a\alpha a' \in E_{\beta}$, so $a\alpha c\gamma a' \in K_{\beta}$. Similarly, we can show that $a\gamma c\alpha a' \in K_{\beta}$ and $a'\beta c\gamma a$, $a'\gamma c\beta a \in K_{\alpha}$. Therefore K is full and weakly-conjugate family of S.

To show that $K_{\gamma} = (K_{\omega})_{\gamma}$ for all $r \in \Gamma$. Clearly, $K_{\gamma} \subseteq (K_{\omega})_{\gamma}$, by Definition 4.2 and 4.4. To show that $(K_{\omega})_{\gamma} \subseteq K_{\gamma}$, let $x \in (K_{\omega})_{\gamma}$. Then there exist $h \in K_{\alpha}, \alpha \in \Gamma$ such that $h\alpha x \in K_{\gamma}$. Consequently, $(h\alpha x)\sigma = g\sigma$ where $g \in E_{\gamma}$ or $(h\sigma)\alpha(x\sigma) = g\sigma$. Since $h \in K_{\alpha}, \alpha \in \Gamma$, we get $(h, e) \in \sigma$ where $e \in E_{\alpha}$, so $h\sigma = e\sigma$ and $e\sigma$ is an identity of S/σ for all $\alpha, \alpha \in \Gamma$. Then $g\sigma = (h\sigma)\alpha(x\sigma) = (e\sigma)\alpha(x\sigma) = x\sigma$ because σ is Γ -group congruence. Thus $x \in K_{\gamma}$, hence $K_{\gamma} = (K_{\omega})_{\gamma}$. To show that $\sigma = \rho_K$, by Theorem 4.3 and K is full and weakly-conjugate family of S, it follows that $\rho_K := \{(a, b) \in S \times S \mid a\gamma b' \in (K_{\omega})_{\delta} = K_{\delta}$ for some $b' \in W^{\delta}_{\gamma}(b), \gamma, \delta \in \Gamma\}$.

Let $(a,b) \in \sigma \times b + a/b \in (H\omega)_{\delta} = H_{\delta}$ for some $b' \in W_{\gamma}(b), \gamma, \delta \in \Gamma$. It implies that $(a\gamma b', e) \in \sigma$ where $e \in E_{\delta}$ and $(a\gamma b'\delta b, e\delta b) \in \sigma$. Since $b'\delta b \in E_{\gamma}$, we get $a\sigma = (a\sigma)\gamma(b'\delta b)\sigma = (e\sigma)\delta(b\sigma) = b\sigma$, so $(a,b) \in \sigma$ and $\rho_K \subseteq \sigma$.

Finally, we shall show that $\sigma \subseteq \rho_K$, let $(a, b) \in \sigma$ and $b' \in W^{\delta}_{\gamma}(b)$ for some $\gamma, \delta \in \Gamma$. Then $(a\gamma b', b\gamma b') \in \sigma$. Since $b\gamma b' \in E_{\delta}$, we get $a\gamma b' \in E_{\delta} \subseteq K_{\delta}$. Thus $(a, b) \in \rho_K$. Therefore $\sigma = \rho_K$.

Theorem 4.10. Let S be an E-inversive Γ -semigroup with $H \in C$ and let ρ_H be defined as in Theorem 4.1. Then ρ_U is the least Γ -group congruence on S and $Ker\rho_U = U_{\omega}$.

Proof. Let σ be an arbitrary Γ -group congruence on S. By Theorem 4.9, we obtain $\sigma = \rho_K$ where $K = Ker\sigma$ and K is a full and weakly-conjugate family of S. Since U is the smallest full and weakly-conjugate family of S, we get that $U \subseteq K$.

Let $(a, b) \in \rho_U$. Then there exist $x \in U_\alpha \subseteq K_\alpha, \alpha \in \Gamma$ and $y \in U_\beta \subseteq K_\beta, \beta \in \Gamma$ such that $a\alpha x = y\beta b$. Thus $(a, b) \in \rho_K = \sigma$. Hence ρ_U is the least Γ -group congruence on S. By Theorem 4.6, $Ker\rho_U = U_\omega$.

Now, we obtain the following theorems for characterizations of Γ -group congruences on *E*-inversive Γ -semigroups as obtained for regular Γ -semigroup in [1].

Theorem 4.11. Let S be an E-inversive Γ -semigroup with ρ_H a Γ -group congruence on S where H is a full and weakly-conjugate family of S. The

following statements are equivalent.

(1) $a\rho_H b$,

- (2) $a\mu x\gamma b' \in H_{\delta}$, for some $x \in H_{\mu}, \mu \in \Gamma$ and for some (all) $b' \in W^{\delta}_{\gamma}(b)$,
- (3) $a'\phi x\mu b \in H_{\theta}$, for some $x \in H_{\mu}, \mu \in \Gamma$ and for some (all) $a' \in W^{\phi}_{\theta}(a)$,
- (4) $b\mu x\theta a' \in H_{\phi}$, for some $x \in H_{\mu}, \mu \in \Gamma$ and for some (all) $a' \in W^{\phi}_{\theta}(a)$,
- (5) $b' \delta x \mu a \in H_{\gamma}$, for some $x \in H_{\mu}, \mu \in \Gamma$ and for some (all) $b' \in W_{\gamma}^{\delta}(b)$,
- (6) $a\alpha x = y\beta b$ for some $\alpha, \beta \in \Gamma$ and for some $x \in H_{\alpha}, y \in H_{\beta}$,
- (7) $x\alpha a = b\beta y$ for some $\alpha, \beta \in \Gamma$ and for some $x \in H_{\alpha}, y \in H_{\beta}$, and
- (8) $H_{\beta}\beta a\alpha H_{\alpha} \cap H_{\beta}\beta b\alpha H_{\alpha} \neq \emptyset$ for some $\alpha, \beta \in \Gamma$.

Proof. (2) \Rightarrow (3) Suppose that $a\mu x\gamma b' \in H_{\delta}$ for some $x \in H_{\mu}$ and $b' \in W_{\gamma}^{\delta}(b), \gamma, \delta, \mu \in \Gamma$. If $a' \in W_{\theta}^{\phi}(a)$ for some $\theta, \phi \in \Gamma$, then $a'\phi a \in E_{\theta} \subseteq H_{\theta}$ and $b'\delta x\mu b \in H_{\gamma}$. Since $(a\mu x\gamma b')\delta x \in H_{\mu}$ and $x\gamma(b'\delta x\mu b) \in H_{\mu}$, we have $a'\phi(a\mu x\gamma b'\delta x)\mu b = (a'\phi a)\mu(x\gamma(b'\delta x\mu b)) \in H_{\theta}$.

(3) \Rightarrow (6) Let $a'\phi x\mu b \in H_{\theta}$, for some $a' \in W_{\theta}^{\phi}(a)$ and $x \in H_{\mu}, \theta, \phi, \mu \in \Gamma$. Thus $a\theta(a'\phi x\mu b) = (a\theta a'\phi x)\mu b$, where $a'\phi x\mu b \in H_{\theta}$ and $a\theta a'\phi x \in H_{\mu}$. Hence (6) holds.

(6) \Rightarrow (8) Let $a\alpha x = y\beta b$ for some $\alpha, \beta \in \Gamma$ and $x \in H_{\alpha}, y \in H_{\beta}$. Then $y\beta(a\alpha x) = (y\beta b)\alpha x$. Since $y\beta a\alpha x \in H_{\beta}\beta a\alpha H_{\alpha}$ and $y\beta b\alpha x \in H_{\beta}\beta b\alpha H_{\alpha}$, we get that $H_{\beta}\beta a\alpha H_{\alpha} \cap H_{\beta}\beta b\alpha H_{\alpha} \neq \emptyset$, for some $\alpha, \beta \in \Gamma$.

(8) \Rightarrow (2) Let $H_{\beta}\beta a\alpha H_{\alpha} \cap H_{\beta}\beta b\alpha H_{\alpha} \neq \emptyset$ for some $\alpha, \beta \in \Gamma$. Then $x\beta a\alpha y = x_1\beta b\alpha y_1$ for some $x, x_1 \in H_{\beta}$ and $y, y_1 \in H_{\alpha}$. Let $a' \in W_{\theta}^{\phi}(a)$ for some $\theta, \phi \in \Gamma$ and $b' \in W_{\gamma}^{\delta}(b)$ for some $\gamma, \delta \in \Gamma$. Then $a'\phi x\beta a \in H_{\theta}$ and $(a'\phi x\beta a)\alpha y \in H_{\theta}$. Since $a\theta a' \in H_{\phi}, a\theta a'\phi x_1 \in H_{\beta}$ and $b\alpha y_1\gamma b' \in H_{\delta}$, we get that $(a\theta a'\phi x_1)\beta(b\alpha y_1\gamma b') \in H_{\delta}$. Then $a\theta(a'\phi x\beta a\alpha y)\gamma b' = (a\theta a')\phi(x_1\beta b\alpha y_1)\gamma b' = (a\theta a')\phi x_1\beta(b\alpha y_1\gamma b') \in H_{\delta}$, hence (2), (3), (6) and (8) are equivalent.

(2) \Rightarrow (4) Suppose that $a\mu x\gamma b' \in H_{\delta}$ for some $x \in H_{\mu}$ and $b' \in W_{\gamma}^{\delta}(b), \gamma, \delta, \mu \in \Gamma$. Let $b' \in W_{\gamma}^{\delta}(b)$ for $\gamma, \delta \in \Gamma$.

Now, $b\mu(x\theta a'\phi a\mu x\gamma b'\delta a)\theta a' = (b\mu x\theta a'\phi a\mu x\gamma b')\delta(a\theta a')$. By Definition 2.4 (3), we have $a'\phi(a\mu x\gamma b')\delta a \in H_{\theta}$, so $x\theta(a'\phi a\mu x\gamma b'\delta a) \in H_{\mu}$. Since $a\theta a' \in H_{\phi}$ and again, Definition 2.4(3), we have $b\mu x\theta a'\phi a\mu x\gamma b') \in H_{\delta}$, then $(b\mu x\theta a'\phi a\mu x\gamma b')\delta(a\theta a') \in H_{\phi}$. Hence $b\mu(x\theta a'\phi a\mu x\gamma b'\delta a)\theta a' \in H_{\phi}$.

(4) \Rightarrow (5) Suppose that $b\mu x\theta a' \in H_{\phi}$ for some $x \in H_{\mu}$ and $a' \in W^{\phi}_{\theta}(a), \theta, \phi, \mu \in \Gamma$. Let $b' \in W^{\delta}_{\gamma}(b)$ for some $\gamma, \delta \in \Gamma$.

Now, $b'\delta(b\mu x\theta a'\phi x)\mu a = (b'\delta b)\mu x\theta(a'\phi x\mu a)$. Since $(b\mu x\theta a')\phi x \in H_{\mu}$ and $b'\delta b \in H_{\gamma}, a'\phi x\mu a \in H_{\theta}$, we get that $(b'\delta b)\mu [x\theta(a'\phi x\mu a)] \in H_{\gamma}$. Hence

 $b'\delta(b\mu x\theta a'\phi x)\mu a \in H_{\gamma}.$

(5) \Rightarrow (7) Let $b'\delta x\mu a \in H_{\gamma}$ for some $b' \in W^{\delta}_{\gamma}(b), x \in H_{\mu}$ and $\gamma, \delta, \mu \in \Gamma$. Now, $(b\gamma b'\delta x)\mu a = b\gamma (b'\delta x\mu a)$. Since $b\gamma b'\delta x \in H_{\mu}$ and $b'\delta x\mu a \in H_{\gamma}$, we have (7).

(7) \Rightarrow (1) Let $x\alpha a = b\beta y$ for some $\alpha, \beta \in \Gamma$ and $x \in H_{\alpha}, y \in H_{\beta}$. Let $a' \in W^{\phi}_{\theta}(a)$ for some $\theta, \phi \in \Gamma$ and $b' \in W^{\delta}_{\gamma}(b)$. Now, $a\theta(a'\phi x\alpha a\gamma b'\delta b) =$ $(a\theta a'\phi b\beta y\gamma b')\delta b$. Since $b'\delta b \in H_{\gamma}$ and $a'\phi x\alpha a \in H_{\theta}$, we have $(a\phi x\alpha a)\gamma(b'\delta b)$ $\in H_{\theta}$. Since $a\theta a' \in H_{\phi}$ and $b\beta y\gamma b' \in H_{\delta}$, we have $(a\theta a')\phi(b\beta y\gamma b') \in H_{\delta}$. Then $(a, b) \in \rho_H$. Hence (2), (4), (5) and (7) are equivalent.

Also (1) \Leftrightarrow (6) by Theorem 4.1.

References

- [1] A. Seth, Γ -group Congruences on Regular Γ -semigroups. Internat. J. of Math. & Math. Sci. Vol. 15 No. 1, (1992). 103-106.
- [2] M.K. Sen, & N.K. Saha, Orthodox Γ-semigroups. Internat. J. of Math. & Math. Sci. Vol. 13 No. 3 (1990), 527-534.
- [3] M.K. Sen, & N.K. Saha, On Γ-semigroup. Bull. Cal. Math. Soc. 78 (1986), 180-186.
- [4] S. Chattopadhyay, Right Orthodox Γ -semigroup. Southeast Asian Bull. of Math., **29** (2005), 23-30.
- [5] M. Siripitukdet, & S. Sattayaporn, The Least Group Congruence on E-inversive semigroups and E-inversive E-semigroups. Thai Journal of Mathematics. Vol. 3 No. 2 (2005), 163-169.

(Received 25 August 2009)

Supavinee Sattayaporn Department of Mathematics Faculty Science and technology Uttaradit Rajabhat University Uttaradit 53000, Thailand. e-mail : supavinee uru@windowslive.com