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1. Introduction

In this paper, we consider the following initial boundary problem for a nonlinear pseu-
doparabolic equation

ut +

(
1 +

∂

∂t

)
Au−

∫ t

0
g(t− s)Au(s)ds = f (x, t, u), 1 < x < R, 0 < t < T,

ux(1, t)− h1u(1, t) = u(R, t) = 0,
u(x, 0) = ũ0(x),

(1.1)
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where R > 1, h1 ≥ 0 are given constants and f, g, ũ0 are given functions satisfying
conditions specified later; Au ≡ −

(
uxx + 1

xux

)
with u = u(x, t) is the unknown function.

Pseudoparabolic equations have been widely studied since the works of Ting [1], [2],
such as [3]-[22] among others and the references given therein. In these works, the results
of existence, asymptotic behavior, blow up and decay of solutions have been investigated.
It takes into account that Eq. (1.1) is also regarded as a Sobolev-type equation or a
Sobolev–Galpern type equation, and arisen in areas of mathematics and physics. One of
the most important linear models in equations of this type is Benjamin-Bona-Mahony-
Burgers (BBMB) equation

ut + ux + uux − νuxx − α2uxxt = 0, (1.2)

it was studied by Amick et al. in [3] with ν > 0, α = 1, x ∈ R, t ≥ 0, in which the solution
of (1.2) with initial data in L1 ∩H2 decays to zero in L2 norm as t → +∞. With ν > 0,
α > 0, x ∈ [0, 1], t ≥ 0, Eq. (1.2) was also investigated earlier by Bona and Dougalis [8],
where uniqueness, global existence and continuous dependence of solutions on initial and
boundary data were established and the solutions were shown to depend continuously on
ν ≥ 0 and on α > 0. Medeiros and Miranda [17] studied a nonlinear equation of Sobolev
type, namely

ut + f(u)x − uxxt = g(x, t), (1.3)

where u = u(x, t), 0 < x < 1, and t ≥ 0 is the time. They proved existence, uniqueness
of solutions for f in C1 and regularity in the case f(s) = s2/2.

In [13], the well-poseness and solvability of solutions were established by Dai and Huang
for the nonlinear pseudoparabolic equation

ut + (a(x, t)uxt)x = F (x, t, u, ux, uxx) , α < x < β, 0 < t < T, (1.4)

associated with the nonlocal moment boundary conditions∫ β

α

u(x, t)dx =

∫ β

α

xu(x, t)dx = 0, 0 ≤ t ≤ T. (1.5)

In [20], Shang and Guo proved the existence, uniqueness, and regularities of the global
strong solution and gave some conditions of the nonexistence of global solution of the
nonlinear pseudoparabolic equation with Volterra integral term

ut − f(u)xx − uxxt −
∫ t

0

λ(t− s) (σ (u(x, s), ux(x, s)))x ds

= f (x, t, u, ux) , 0 < x < 1, t > 0.

(1.6)

In [12], Y. Cao et al. established the global existence of classical solutions and the
blow-up in a finite time for the viscous diffusion equation of higher order ut + k1uxxxx − k2utxx − (Φ (ux))x +A(u) = 0, 0 < x < 1, t > 0,

u(0, t) = u(1, t) = uxx(0, t) = uxx(1, t) = 0, t > 0,
u(x, 0) = u0(x), 0 < x < 1,

(1.7)

where k1 > 0, k2 > 0 and Φ(s), A(s) are appropriately smooth, u0 ∈ C1+β with β ∈ (0, 1)
and u0(0) = u0(1) = u0xx(0) = u0xx(1) = 0.

For more physical explanations, it is well known that pseudo-parabolic equations de-
scribe a variety of important physical processes (see [11]), such as the seepage of homoge-
neous fluids through a fissured rock [6] (where k is a characteristic of the fissured rock, a
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decrease of k corresponds to a reduction in block dimension and an increase in the degree
of fissuring), the unidirectional propagation of nonlinear, dispersive, long waves [7] (where
u is typically the amplitude or velocity), and the aggregation of populations [18] (where u
represents the population density). Also, Eq. (1.1) can be considered as a general model
of third-grade fluid flows or second-grade fluid flows, of which the mathematical models
can be found in [2], [4], [5], [14]-[16], [19] and references therein. In [5], the following
equation of motions for the unsteady flow of third-grade fluid over the rigid plate with
porous medium was investigated

ρ
∂U

∂t
= µ

∂2U

∂y2
+ α1

∂3U

∂y2∂t
+ 6β3

(
∂U

∂y

)2
∂2U

∂y2

− ϕ

k

[
µ+ α1

∂

∂t
+ 2β3

(
∂U

∂y

)2
]
U, y > 0, t > 0,

(1.8)

where U is the velocity component, ρ is the density, µ the coefficient of viscosity, α1

and β3 are the material constants. In [14], some problems of second-grade unsteady fluid
flows were also considered. These flows are generated by the sudden application of a
constant pressure gradient or by the impulsive motion of a boundary. Here, the velocities
of the flows are described by the partial differential equations, of which the exact analytic
solutions are obtained. Suppose that the second-grade fluid is in a circular cylinder and
is initially at rest, and the fluid starts suddenly due to the motion of the cylinder parallel
to its length. The axis of the cylinder is chosen as the z-axis. Using cylindrical polar
coordinates, the governing partial differential equation is

∂w
∂t = (ν + α ∂

∂t )
(

∂2

∂r2 + 1
r

∂
∂r

)
w(r, t)−Nw, 0 < r < a, t > 0,

w(a, t) = W, t > 0,
w(r, 0) = 0, 0 ≤ r < a,

(1.9)

where w(r, t) is the velocity along the z-axis, ν is the kinematic viscosity, α is the material
parameter, and N is the imposed magnetic field. In the boundary and initial conditions,
W is the constant velocity at r = a and a is the radius of the cylinder. In [16], A. Mahmood
et. al. considered the longitudinal oscillatory motion of second-grade fluid between two
infinite coaxial circular cylinders, oscillating along their common axis with given constant
angular frequencies Ω1 and Ω2. Velocity field and associated tangential stress of the
motion were determined by using Laplace and Hankel transforms. In order to find the
exact analytic solutions for the flow of second-grade fluid between two longitudinally
oscillating cylinders, the following problem was studied

∂v
∂t = (µ+ α ∂

∂t )
(

∂2

∂r2 + 1
r

∂
∂r

)
v(r, t), R1 < r < R2, t > 0,

v(R1, t) = V1 sin(Ω1t), v(R2, t) = V2 sin(Ω2t),
u(r, 0) = 0, R1 ≤ r ≤ R2,

(1.10)

where 0 < R1 < R2, µ, α, V2, Ω1, Ω2 are positive constants. The obtained exact solutions
have been presented under series form in terms of Bessel functions J0(x), Y0(x), J1(x),
Y1(x), J2(x) and Y2(x), satisfying the governing equation and all imposed initial and
boundary conditions.

As we know, the linearization method is one of useful methods to study the prob-
lems with a general nonlinear term, in which a linear or quadratic reccurent sequence
is constructed and its convergence is respectively called 1-order convergence or 2-order
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convergence, for example [23], [24] and the references given therein. Later, the extend-
ing results of [23] and [24] have been continuously considered by Truong et. al [25], in
which a N -order iterative scheme has been established in order to prove the existence and
uniqueness of solutions for the following nonlinear wave equation of Kirchhoff-Carrier type

utt − µ
(
t, ∥u(t)∥2 , ∥ux(t)∥2

)
uxx = f (x, t, u) , 0 < x < 1, 0 < t < T,

ux(0, t)− h0u(0, t) = ux(1, t) + h1u(1, t) = 0,
u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x),

(1.11)

where µ, f, ũ0, ũ1 are given functions and h0 > 0, h1 ≥ 0 are given constants. In the
paper, they associated with Eq. (1.11)1 a recurrent sequence {um} defined by

∂2um

∂t2
− µ

(
t, ∥um(t)∥2 , ∥umx(t)∥2

)
umxx

=

N∑
i=0

1

i!

∂if

∂ui
(x, t, um−1) (um − um−1)

i
, 0 < x < 1, 0 < t < T,

(1.12)

with um satisfying (1.11)2,3. Recently, the authors in [26] have also used the similar
method given in [25] to construct a N -order convergent recurrent sequence for a nolinear
wave equation in annular of Carrier type associated with Robin-Dirichlet conditions as
below 

utt − µ
(
∥u(t)∥20

) (
uxx + 1

xux

)
= f (x, t, u) , ρ < x < 1, 0 < t < T,

u(ρ, t) = ux(1, t) + ζu(1, t) = 0,
u(x, 0) = ũ0(x), ut(x, 0) = ũ1(x),

(1.13)

where µ, f, ũ0, ũ1 are given functions and ρ, ζ are given constants, 0 < ρ < 1.
The purpose of the present paper is devoted to studying the unique solvability of the

problem (1.1). We first construct a recurrent sequence {um} associated with Eq. (1.1)1,
which is defined by

∂um

∂t
−
(
µ+ α

∂

∂t

)
Aum −

∫ t

0

g(t− s)Aum(s)ds

=

N∑
i=0

1

i!

∂if

∂ui
(x, t, um−1) (um − um−1)

i
, 1 < x < R, 0 < t < T,

(1.14)

and um satisfying (1.1)2,3. Next, we prove the existence of the above sequence by us-
ing Galerkin method, in which the Banach fixed point theorem is applied to get the
existence of Galerkin approximate solution. In last part, we prove that the sequence
{um} converges to a function u, and show that u is the weak solution of the problem
(1.1). Moreover, we aslo establish an estimation of N -order convergence in the form

∥um − u∥X ≤ C ∥um−1 − u∥NX , for some C > 0, all large positive integers N and X is a
suitable space. To the best of our knowledge, there have been few works of high order it-
erative scheme for nonlinear pseudoparabolic equation with viscoelastic term. This paper
consists of three sections. In Section 2, we present preliminaries. In Section 3, we present
the main results of the local existence and uniqueness.
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2. Preliminaries

Throughout this paper, we set Ω = (1, R) and use L2 = L2(Ω) to denote the Lebesgue

space with the inner product defined by (u, v) =
∫ R

1
u(x)v(x)dx, L2-norm of a function

u ∈ L2 is denoted by ∥u∥ =
√
(u, u). We use Hm = Hm(Ω) to denote the Sobolev spaces

with the norm ∥u∥Hm =
(∑m

i=0

∥∥Diu
∥∥2)1/2 .

Moreover, we also introduce three weighted scalar products

⟨u, v⟩ =
∫ R

1

xu(x)v(x)dx, u, v ∈ L2,

⟨u, v⟩1 = ⟨u, v⟩+ ⟨ux, vx⟩ , u, v ∈ H1,

⟨u, v⟩2 = ⟨u, v⟩+ ⟨ux, vx⟩+ ⟨uxx, vxx⟩ , u, v ∈ H2,

(2.1)

then L2, H1, H2 are the Hilbert spaces with respect to the above scalar products. We
denote ∥u∥0 =

√
⟨u, u⟩, u ∈ L2; ∥u∥1 =

√
⟨u, u⟩1, u ∈ H1; ∥u∥2 =

√
⟨u, u⟩2, u ∈ H2.

Put

V =
{
v ∈ H1 : v(R) = 0

}
. (2.2)

The symmetric bilinear form a(·, ·) defined by

a(u,w) = ⟨ux, wx⟩+ h1u(1)w(1), for all u,w ∈ V, (2.3)

with h1 ≥ 0 is a given constant and ∥v∥a =
√

a(v, v).

Then, we have the following lemmas.

Lemma 2.1. The imbeddings V ↪→ C0(Ω) is compact and

(i) ∥v∥C0(Ω) ≤
√
R− 1 ∥vx∥0 ≤

√
R− 1 ∥v∥a for all v ∈ V,

(ii) ∥v∥0 ≤
√
2R(R−1)

2 ∥vx∥0 for all v ∈ V,

(iii) ∥vx∥0 ≤ ∥v∥a ≤
√
1 + h1(R− 1) ∥vx∥0 for all v ∈ V.

(2.4)

Lemma 2.2. The symmetric bilinear form a(·, ·) is continuous on V × V and coercive
on V, i.e., there exist two positive constants C0, C1 such that

(i) |a(u, v)| ≤ C1 ∥ux∥0 ∥vx∥0 ,
(ii) a(v, v) ≥ C0 ∥vx∥20 ,

(2.5)

for all u, v ∈ V. Moreover, C1 = 1 + h1(R− 1) and C0 = 1.

Lemma 2.3. There exists the Hilbert orthonormal base {wj} of L2 consisting of the
eigenfunctions wj corresponding to the eigenvalue λ̄j such that{

0 < λ̄1 ≤ λ̄2 ≤ · · · ≤ λ̄j ≤ λ̄j+1 ≤ · · · , lim
j→+∞

λ̄j = +∞,

a(wj , w) = λ̄j⟨wj , w⟩ for all w ∈ V, j = 1, 2, · · · .
(2.6)

Furthermore, the sequence {wj/
√

λ̄j} is also the Hilbert orthonormal base of V with

respect to the scalar product a(·, ·). On the other hand, we have wj satisfying the following
boundary value problem{

Awj ≡ −
(
wjxx + 1

xwjx

)
= − 1

x
∂
∂x (xwjx) = λ̄jwj , in (1, R),

wjx(1)− h1wj(1) = wj(R) = 0, wj ∈ C∞([1, R]).
(2.7)
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The proof of Lemma 2.3 can be found in [[27], p.87, Theorem 7.7], with H = L2 and
a(·, ·) as defined by (2.3).

Lemma 2.4. The operator A : V → V ′ in (2.7) is uniquely defined by Lax-Milgram’s
lemma, i.e.,

a(u, v) = ⟨Au, v⟩ , for all u, v ∈ V. (2.8)

The notation ∥·∥X is the norm in the Banach space X, and X ′ is the dual space
of X. We denote by Lp(0, T ;X), 1 ≤ p ≤ ∞ for the Banach space of real functions
u : (0, T ) → X measurable, such that

∥u∥Lp(0,T ;X) =

(∫ T

0

∥u(t)∥pX dt

)1/p

< ∞ for 1 ≤ p < ∞,

and

∥u∥L∞(0,T ;X) = ess sup
0<t<T

∥u(t)∥X for p = ∞.

Denote u(t) = u(x, t), u′(t) = ut(t) =
∂u

∂t
(x, t), u′′(t) = utt(t) =

∂2u

∂t2
(x, t), ux(t) =

∂u

∂x
(x, t), uxx(t) =

∂2u

∂x2
(x, t).

With f ∈ CN ([0, 1] × [0, T ∗] × R), f = f(x, t, u), we put D1f =
∂f

∂x
, D2f =

∂f

∂t
,

D3f =
∂F

∂u
and Dαf = Dα1

1 · · ·Dα3
3 f, α = (α1, · · · , α3) ∈ Z3

+, |α| = α1 + · · · + α3 ≤ N,

D(0,··· ,0)f = f.

3. Main Results

In this section, the local solution of (1.1) is established by using linear approximate
method and Faedo-Galerkin method. For a fixed constant T ∗ > 0, we make the following
assumptions:

(H1) ũ0 ∈ V ∩H2, ũ0x(1)− h1ũ0(1) = 0;
(H2) g ∈ L2(0, T ∗);
(H3) f ∈ C1(Ω̄× [0, T ∗]× R) satisfies the conditions:

Di
3f, D2D

j
3f ∈ C0(Ω̄× [0, T ∗]× R), 1 ≤ i ≤ N, 1 ≤ j ≤ N − 1.

Put

KM (f) = ∥f∥C0(Ω̄M) +
∑N

i=1

∥∥Di
3f
∥∥
C0(Ω̄M) +

∑N−1

j=1

∥∥∥D2D
j
3f
∥∥∥
C0(Ω̄M)

,

where

∥f∥C0(Ω̄M) = sup{|f(x, t, y)| : (x, t, y) ∈ Ω̄M},

Ω̄M = [1, R]× [0, T ∗]× [−
√
R− 1M,

√
R− 1M ].
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The weak solution of (1.1) is a function u ∈ L∞(0, T ;V ∩H2) such that u′ ∈ L∞(0, T ;V ∩
H2) and u satisfies the following variational equation

⟨u′(t), w⟩+ a (u′(t), w) + a (u(t), w)

=
∫ t

0
g(t− s)a (u(s), w) ds+ ⟨f [u](t), w⟩, for all w ∈ V, a.e., t ∈ (0, T ),

u(0) = ũ0,

(3.1)

where f [u](x, t) = f (x, t, u(x, t)).
For each T ∈ (0, T ∗], we introduce the space

WT =
{
v ∈ L∞(0, T ;V ∩H2) : v′ ∈ L∞(0, T ;V ∩H2)

}
.

Note that WT is a Banach space with norm

∥v∥WT
= max

{
∥v∥L∞(0,T ;V ∩H2) , ∥v′∥L∞(0,T ;V ∩H2)

}
.

For M > 0, we put

W (M,T ) =
{
v ∈ WT : ∥v∥WT

≤ M
}
.

Now, we construct the recurrent sequence {um} defined by u0 ≡ 0, and suppose that

um−1 ∈ W (M,T ) . (3.2)

Then um is found by the fact that um ∈ W (M,T ), m ≥ 1 and provided
⟨u′

m(t), w⟩+ a(u′
m(t), w) + a(um(t), w)

=
∫ t

0
g(t− s)a (um(s), w) ds+ ⟨Fm (t) , w⟩ , for all w ∈ V, a.e., t ∈ (0, T ),

um(0) = ũ0,

(3.3)

where

Fm (x, t) =

N−1∑
i=0

1

i!
Di

3f [um−1] (x, t) (um (x, t)− um−1 (x, t))
i

=

N−1∑
j=0

Φmj (x, t)u
j
m (x, t) ,

(3.4)

and

Φmj (x, t) =

N−1∑
i=j

(−1)i−j

j!(i− j)!
Di

3f [um−1] (x, t)u
i−j
m−1 (x, t) . (3.5)

The first result of our paper is presented in the following theorem.

Theorem 3.1. Assume that ũ0, g, f satisfy (H1) − (H3) respectively, then there exist
the constants M > 0 and T > 0 such that the problem (3.3)-(3.4) admits um ∈ W (M,T ).

Proof. Consider the basis {wj} for L2 as in Lemma 2.3. Put

u(k)
m (t) =

∑k

j=1
c
(k)
mj(t)wj ,
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where c
(k)
mj is determined via the following system of nonlinear integrodifferential equations

〈
u̇
(k)
m (t), wj

〉
+ a

(
u̇
(k)
m (t), wj

)
+ a

(
u
(k)
m (t), wj

)
=
∫ t

0
g(t− s)a

(
u
(k)
m (s), wj

)
ds+

〈
F

(k)
m (t) , wj

〉
, 1 ≤ j ≤ k,

u
(k)
m (0) = ũ0k,

(3.6)

where

F (k)
m (x, t) =

N−1∑
j=0

Φmj (x, t)
(
u(k)
m (x, t)

)j
, (3.7)

and ũ0k is satisfied the condition

ũ0k =
∑k

j=1
β
(k)
j wj −→ ũ0 strongly in V ∩H2. (3.8)

The system (3.6) can be written in the form ċ
(k)
mj(t) +

λ̄j

1 + λ̄j
c
(k)
mj(t) =

λ̄j

1 + λ̄j

∫ t

0
g (t− s) c

(k)
mj(s)ds+

1

1 + λ̄j

〈
F

(k)
m (t), wj

〉
,

c
(k)
mj(0) = β

(k)
j , 1 ≤ j ≤ k.

(3.9)

After integrating, it can see that the system (3.9) is equivalent to the following system
of intergal equations

c
(k)
mj(t) = β

(k)
j e−σjt +

λ̄j

1 + λ̄j

∫ t

0

Hj (t− s) c
(k)
mj(s)ds

+
1

1 + λ̄j

∫ t

0

e−σj(t−s)
〈
F (k)
m (s), wj

〉
ds,

(3.10)

with 1 ≤ j ≤ k, where

Hj (t) =

∫ t

0

e−σj(t−s)g(s)ds, σj =
λ̄j

1 + λ̄j
, 1 ≤ j ≤ k. (3.11)

By using the contraction mapping principle, it is not difficult to show that the existence

of the approximate solution u
(k)
m (t) of Eq. (3.10) on [0, T

(k)
m ] ⊂ [0, T ].

In next step, we make some priori estimates that shows the bound of the approximate

solution u
(k)
m (t) on [0, T

(k)
m ]. Then we can take T

(k)
m = T independent of m and k, which

permits that the approximate solution u
(k)
m (t) of Eq. (3.10) can be extensively defined on

the whole of [0, T ].
Put

S(k)
m (t) = 2

∫ t

0

[∥∥∥u̇(k)
m (s)

∥∥∥2
0
+
∥∥∥u̇(k)

m (s)
∥∥∥2
a
+
∥∥∥u̇(k)

m (s)
∥∥∥2
a
+
∥∥∥Au̇(k)

m (s)
∥∥∥2
0

]
ds

+
∥∥∥u(k)

m (t)
∥∥∥2
a
+
∥∥∥Au(k)

m (t)
∥∥∥2
0
+
∥∥∥u̇(k)

m (t)
∥∥∥2
a
+
∥∥∥Au̇(k)

m (t)
∥∥∥2
0
,

(3.12)
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then we deduce from (3.6) and (3.12), that

S(k)
m (t) = ∥ũ0k∥2a + ∥Aũ0k∥20 + 2

∫ t

0

dτ

∫ τ

0

g(τ − s)a
(
u(k)
m (s), u̇(k)

m (τ)
)
ds

+ 2

∫ t

0

dτ

∫ τ

0

g(τ − s)
〈
Au(k)

m (s), Au̇(k)
m (τ)

〉
ds

+

∫ t

0

g(t− s)
〈
Au(k)

m (s), Au̇(k)
m (t)

〉
ds−

〈
Au(k)

m (t), Au̇(k)
m (t)

〉
+ 2

∫ t

0

〈
F (k)
m (s) , u̇(k)

m (s) +Au̇(k)
m (s)

〉
ds+

〈
F (k)
m (t) , Au̇(k)

m (t)
〉

= ∥ũ0k∥2a + ∥Aũ0k∥20 +
∑6

j=1
Ij .

(3.13)

We shall estimate the terms of the right-hand side of (3.13) as follows.

By the inequality S
(k)
m (t) ≥

∥∥∥u(k)
m (t)

∥∥∥2
a
+
∥∥∥Au

(k)
m (t)

∥∥∥2
0
+
∥∥∥u̇(k)

m (t)
∥∥∥2
a
+
∥∥∥Au̇

(k)
m (t)

∥∥∥2
0
, we

estimate I1, I2, I3 respectively as follows

I1 = 2

∫ t

0

dτ

∫ τ

0

g(τ − s)a(u(k)
m (s), u̇(k)

m (τ))ds

≤ 2
C1√
µ

√
T ∗ ∥g∥L2(0,T∗)

∫ t

0

S(k)
m (τ) dτ ;

I2 = 2

∫ t

0

dτ

∫ τ

0

g(τ − s)
〈
Au(k)

m (s), Au̇(k)
m (τ)

〉
ds

≤ 2
√
T ∗ ∥g∥L2(0,T∗)

∫ t

0

S(k)
m (τ) dτ ;

I3 =

∫ t

0

g(t− s)
〈
Au(k)

m (s), Au̇(k)
m (t)

〉
ds

≤ 1

4
S(k)
m (t) + ∥g∥2L2(0,T∗)

∫ t

0

S(k)
m (s)ds.

(3.14)

Using Cauchy-Schwarz, we get that

I4 =
〈
Au(k)

m (t), Au̇(k)
m (t)

〉
≤
∥∥∥Au(k)

m (t)
∥∥∥2
0
+

1

4
S(k)
m (t). (3.15)

The term
∥∥∥Au(k)

m (t)
∥∥∥2
0
is estimated as follows

∥∥∥Au(k)
m (t)

∥∥∥2
0
=

∥∥∥∥Aũ0k +

∫ t

0

Au̇(k)
m (s)ds

∥∥∥∥2
0

≤
(
∥Aũ0k∥0 +

∫ t

0

∥∥∥Au̇(k)
m (s)

∥∥∥
0
ds

)2

≤ 2 ∥Aũ0k∥20 + 2T ∗
∫ t

0

S(k)
m (s)ds.

(3.16)
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Then it follows from (3.15) and (3.16) that

I4 =
〈
Au(k)

m (t), Au̇(k)
m (t)

〉
≤ 1

4
S(k)
m (t) + 2 ∥Aũ0k∥20 + 2T ∗

∫ t

0

S(k)
m (s)ds. (3.17)

In order to estimate the terms I5 and I6, we use the following lemma.

Lemma 3.2. The terms
∥∥∥F (k)

m (t)
∥∥∥
L∞

and
∥∥∥Ḟ (k)

m (t)
∥∥∥
L∞

are estimated as follows

(i)
∥∥∥F (k)

m (t)
∥∥∥
L∞

≤ d
(0)
M

[
1 +

(√
S
(k)
m (t)

)N−1
]
,

(ii)
∥∥∥Ḟ (k)

m (t)
∥∥∥
L∞

≤ d
(1)
M

[
1 +

(√
S
(k)
m (t)

)N−1
]
,

(3.18)

where d
(0)
M and d

(1)
M are defined by

d
(0)
M =

N−1∑
j=0

ᾱj(M)
(√

R− 1
)j

,

d
(1)
M =

N−1∑
j=0

(
β̄j(M) + jᾱj(M)

) (√
R− 1

)j
,

ᾱj(M) = KM (f)

N−1∑
i=j

1

j!(i− j)!

(√
R− 1M

)i−j

,

β̄j(M) = KM (f)

N−1∑
i=j

1

j!(i− j)!

(
i− j + 1 +

√
R− 1M

)(√
R− 1M

)i−j

,

j = 0, N − 1.

(3.19)

Proof.

(i) Estimate of
∥∥∥F (k)

m (t)
∥∥∥
L∞

. By using the inequality

|um−1 (x, t)| ≤ ∥um−1 (t)∥C0(Ω) ≤
√
R− 1 ∥um−1 (t)∥a ≤

√
R− 1M,

it follows from (3.5) that

|Φmj (x, t)| ≤
N−1∑
i=j

1

j!(i− j)!

∣∣Di
3f [um−1] (x, t)

∣∣ |um−1 (x, t)|i−j

≤ KM (f)

N−1∑
i=j

1

j!(i− j)!

(√
R− 1 ∥um−1 (t)∥a

)i−j

≤ KM (f)

N−1∑
i=j

1

j!(i− j)!

(√
R− 1M

)i−j

= ᾱj(M).

(3.20)
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Due to
∣∣∣u(k)

m (x, t)
∣∣∣ ≤ √

R− 1
∥∥∥u(k)

m (t)
∥∥∥
a
≤

√
R− 1

√
S
(k)
m (t), we have

∣∣∣F (k)
m (x, t)

∣∣∣ ≤ N−1∑
j=0

|Φmj (x, t)|
∣∣∣u(k)

m (x, t)
∣∣∣j

≤
N−1∑
j=0

ᾱj(M)
(√

R− 1
)j [

1 +

(√
S̄
(k)
m (t)

)N−1
]

= d
(0)
M

[
1 +

(√
S
(k)
m (t)

)N−1
]
,

(3.21)

where d
(0)
M =

N−1∑
j=0

ᾱj(M)
(√

R− 1
)j

. So (i) is proved.

(ii) Estimate of
∥∥∥Ḟ (k)

m (t)
∥∥∥
L∞

. Note that

Ḟ (k)
m (x, t) = Φ′

m0 (x, t)

+

N−1∑
j=1

[
Φ′

mj (x, t)
(
u(k)
m (x, t)

)j
+ jΦmj (x, t)

(
u(k)
m (x, t)

)j−1

u̇(k)
m (x, t)

]
.

(3.22)

On the other hand

Φ′
mj (x, t)

=

N−1∑
i=j

(−1)i−j

j!(i− j)!

[
D2D

i
3f [um−1] (x, t) +Di+1

3 f [um−1] (x, t)u
′
m−1(x, t)

]
ui−j
m−1 (x, t)

+

N−1∑
i=j

(−1)i−j

j!(i− j)!
(i− j)

[
Di

3f [um−1] (x, t)u
i−j−1
m−1 (x, t)u′

m−1(x, t)
]
,

(3.23)

hence ∣∣Φ′
mj (x, t)

∣∣
≤ KM (f)

N−1∑
i=j

Cj
i

i!

(
1 +

∣∣u′
m−1(x, t)

∣∣) |um−1 (x, t)|i−j

+KM (f)

N−1∑
i=j

1

j!(i− j)!
(i− j)

[
|um−1 (x, t)|i−j−1 ∣∣u′

m−1(x, t)
∣∣]

≤ KM (f)

N−1∑
i=j

1

j!(i− j)!

(
i− j + 1 +

√
R− 1M

)(√
R− 1M

)i−j

= β̄j(M).

(3.24)

By S
(k)
m (t) ≥

∥∥∥u̇(k)
m (t)

∥∥∥2
a
+
∥∥∥u(k)

m (t)
∥∥∥2
a
, it follows from (3.20), (3.22) and (3.24) that
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∣∣∣Ḟ (k)
m (x, t)

∣∣∣
≤ |Φ′

m0 (x, t)|

+

N−1∑
j=1

[∣∣Φ′
mj (x, t)

∣∣ ∣∣∣u(k)
m (x, t)

∣∣∣j + j |Φmj (x, t)|
∣∣∣u(k)

m (x, t)
∣∣∣j−1 ∣∣∣u̇(k)

m (x, t)
∣∣∣]

≤ β̄0(M) +

N−1∑
j=1

(√
R− 1

)j [
β̄j(M) + jᾱj(M)

](√
S
(k)
m (t)

)j

=

N−1∑
j=0

(√
R− 1

)j [
β̄j(M) + jᾱj(M)

](√
S
(k)
m (t)

)j

thus ∣∣∣Ḟ (k)
m (x, t)

∣∣∣
≤

N−1∑
j=0

(√
R− 1

)j [
β̄j(M) + jᾱj(M)

] [
1 +

(√
S
(k)
m (t)

)N−1
]

= d
(1)
M

[
1 +

(√
S
(k)
m (t)

)N−1
]
,

(3.25)

where d
(1)
M =

N−1∑
j=0

(√
R− 1

)j [
β̄j(M) + jᾱj(M)

]
.

Therefore, (3.18)(ii) follows. Lemma 3.2 is proved. □

In what follows, we estimate the integrals I5 and I6.

Estimate of I5. By Lemma 3.2 (i) and the inequality S
(k)
m (t) ≥

∥∥∥u̇(k)
m (t)

∥∥∥2
a
+
∥∥∥Au̇

(k)
m (t)

∥∥∥2
0
,

we obtain

I5 =

∫ t

0

〈
F (k)
m (s) , u̇(k)

m (s) +Au̇(k)
m (s)

〉
ds

≤ 2

∫ t

0

∥∥∥F (k)
m (s)

∥∥∥
0

[∥∥∥u̇(k)
m (s)

∥∥∥
0
+
∥∥∥Au̇(k)

m (s)
∥∥∥
0

]
ds

≤ 2
√
2

√
R2 − 1

2
dM

∫ t

0

[
1 +

(√
S
(k)
m (s)

)N−1
]√

S
(k)
m (s)ds

≤ 4
√
2

√
R2 − 1

2
dM

∫ t

0

[
1 +

(
S(k)
m (s)

)N−1
]
ds.

(3.26)

Estimate of I6. Note that

F (k)
m (x, 0) =

N−1∑
j=0

Φmj (x, 0) ũ
j
0k (x)

=

N−1∑
j=0

N−1∑
i=j

1

j!(i− j)!
Di

3f(x, 0, ũ0 (x))ũ
i−j
0 (x) ũj

0k (x) ,
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hence ∣∣∣F (k)
m (x, 0)

∣∣∣
≤

N−1∑
j=0

N−1∑
i=j

1

j!(i− j)!
sup

(x,y)∈Ω(ũ0)

∣∣Di
3f(x, 0, y)

∣∣ (√R− 1
)i

∥ũ0∥i−j
a ∥ũ0k∥ja ,

where Ω(ũ0) = [1, R]×
[
−
√
R− 1 ∥ũ0∥a ,

√
R− 1 ∥ũ0∥a

]
.

Using the convergence given in (3.8), we get that there exists a constant F̃0 > 0
independent of k and m such that∣∣∣F (k)

m (x, 0)
∣∣∣ ≤ F̃0, for all x ∈ [1, R] and m, k ∈ N. (3.27)

By Lemma 3.2 (ii), we obtain∥∥∥F (k)
m (t)

∥∥∥
0
≤
∥∥∥F (k)

m (0)
∥∥∥
0
+

∫ t

0

∥∥∥Ḟ (k)
m (s)

∥∥∥
0
ds

≤ F̃0 +

√
R2 − 1

2
d
(1)
M

∫ t

0

[
1 +

(√
S
(k)
m (s)

)N−1
]
ds.

(3.28)

By (3.27) and (3.28), it follows that

I6 =
〈
F (k)
m (t) , Au̇(k)

m (t)
〉

≤ 1

4

∥∥∥Au̇(k)
m (t)

∥∥∥2
0
+
∥∥∥F (k)

m (t)
∥∥∥2
0

=
1

4
S(k)
m (t) + 2F̃ 2

0 + 2(R2 − 1)
(
d
(1)
M

)2
T ∗
∫ t

0

[
1 +

(
S(k)
m (s)

)N−1
]
ds.

(3.29)

Combining (3.14), (3.17), (3.26) and (3.29), it implies from (3.13) that

S(k)
m (t) ≤ S̄0k + γ̃M

∫ t

0

[
1 +

(
S(k)
m (s)

)N−1
]
ds, (3.30)

where

S̄0k = 4
(
∥ũ0k∥2a + ∥Aũ0k∥20

)
+ 8

(
∥Aũ0k∥20 + F̃ 2

0

)
,

γ̃M = 4
[
2 (C1 + 1)

√
T ∗ ∥g∥L2(0,T∗) + ∥g∥2L2(0,T∗) + 2T ∗

]
+ 8

[
2
√
2

√
R2 − 1

2
dM + (R2 − 1)

(
d
(1)
M

)2
T ∗

]
,

(3.31)

Also, by using the convergences given in (3.8), we can deduce the existence of a constant
M > 0 independent of k and m such that

S̄0k ≤ M2

2
, for all m, k ∈ N. (3.32)

Finally, it follows from (3.30) and (3.32) that

S(k)
m (t) ≤ M2

2
+ T γ̃M + γ̃M

∫ t

0

(
S(k)
m (s)

)N−1

ds, 0 ≤ t ≤ T (k)
m ≤ T. (3.33)

Then, by solving the Volterra nonlinear integral inequality (3.33) (based on the methods
in [28]), the following lemma is proved.



558 Thai J. Math. Vol. 22 (2024) /N.H. Nhan et al.

Lemma 3.3. There exists a constant T > 0 independent of k and m such that

S(k)
m (t) ≤ M2, ∀t ∈ [0, T ], ∀m, k ∈ N. (3.34)

By Lemma 3.3, we can take constant T
(k)
m = T for all k and m ∈ N. Thus, we have

u(k)
m ∈ W (M,T ), ∀m, k ∈ N. (3.35)

From (3.35), we obtain that there exists a subsequence {u(kj)
m } of {u(k)

m }, still denoted
by {u(k)

m } such that
u
(k)
m → um in L∞(0, T ;V ∩H2) weakly*,

u̇
(k)
m → u′

m in L∞(0, T ;V ∩H2) weakly*,
um ∈ W (M,T ).

(3.36)

Using the compactness lemma of Lions ([29], p.57) and applying Fischer-Riesz theorem,

from (3.36), there exists a subsequence of {u(k)
m }, denoted by the same symbol satisfying

u(k)
m → um strong in L2(0, T ;V ) and a.e. in QT . (3.37)

On the other hand, by using the inequality∣∣aj − bj
∣∣ ≤ jM j−1

1 |a− b| , ∀a, b ∈ [−M1,M1], ∀M1 > 0, ∀j ∈ N, (3.38)

we deduce from (3.34) that∣∣∣(u(k)
m (x, t))j − uj

m(x, t)
∣∣∣

≤ j
(√

R− 1M
)j−1 ∣∣∣u(k)

m (x, t)− um(x, t)
∣∣∣ , 0 ≤ j ≤ N − 1.

(3.39)

Therefore, (3.37) and (3.39) imply

(u(k)
m )j → uj

m strong in L2(QT ). (3.40)

By (3.4), (3.7) and (3.20), we get that∥∥∥F (k)
m − Fm

∥∥∥
L2(QT )

≤
N−1∑
j=0

∥∥∥∥Φmj

[(
u(k)
m

)j
− uj

m

]∥∥∥∥
L2(QT )

≤
N−1∑
j=0

ᾱj(M)

∥∥∥∥(u(k)
m

)j
− uj

m

∥∥∥∥
L2(QT )

→ 0.

(3.41)

this leads to

F (k)
m → Fm strong in L2(QT ). (3.42)

Taking the limits in (3.7) and (3.8), we have um satisfying (3.3) and (3.4) in L2(0, T ).
Theorem 3.1 is proved. □

By using Theorem 3.1 and the compact imbedding theorems, we shall prove the exis-
tence and uniqueness of weak local in time solution for the problem (1.1).

First, we consider the space

W1 (T ) =
{
v ∈ L∞ (0, T ;V ) : v′ ∈ L2 (0, T ;V )

}
, (3.43)
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then W1 (T ) is a Banach space with the norm (see Lions [29])

∥v∥W1(T ) = ∥v∥L∞(0,T ;V ) + ∥v′∥L2(0,T ;V ) .

Theorem 3.4. Let (H1) − (H3) hold. Then, there exist constants M > 0 and T > 0
such that the problem (1.1) has a unique weak solution u ∈ W (M,T ), and the recurrent
sequence {um} defined by (3.2)-(3.5) strongly converges at a rate of order N to u in
W1(T ) in sense

∥um − u∥W1(T ) ≤ C ∥um−1 − u∥NW1(T ) , (3.44)

for all m ≥ 1, where C is a suitable constant. On the other hand, the following estimate
is fulfilled

∥um − u∥W1(T ) ≤ CT (βT )
Nm

, for all m ∈ N, (3.45)

where CT > 0 and 0 < βT < 1 are constants only depending on T .

Proof. We shall prove that {um} is a Cauchy sequence in W1(T ).
Indeed, we put vm = um+1 − um. Then vm satisfies the variational problem

⟨v′m(t), w⟩+ a(v′m(t), w) + a(vm(t), w)

=
∫ t

0
g(t− s)a (vm(s), w) ds+ ⟨Fm+1 (t)− Fm (t) , w⟩ , ∀w ∈ V,

vm(0) = 0,

(3.46)

where

Fm (t) =
∑N−1

i=0

1

i!
Di

3f [um−1] (x, t) (um (x, t)− um−1 (x, t))
i
. (3.47)

Taking w = v′m(t) in (3.46), after integrating in t, we have

Zm(t) = 2

∫ t

0

dτ

∫ τ

0

g(τ − s)a (vm(s), v′m(τ)) ds

+ 2

∫ t

0

⟨Fm+1 (s)− Fm (s) , v′m(s)⟩ ds

= J1 + J2,

(3.48)

where

Zm(t) = 2

∫ t

0

(
∥v′m(s)∥20 + ∥v′m(s)∥2a

)
ds+ ∥vm(t)∥2a . (3.49)

Next, we have to estimate the integrals on the right-hand side of (3.48).

By using the inequalitiy 2ab ≤ αa2 +
1

α
b2, ∀a, b ∈ R, α > 0, then J1 is estimated as

follows

J1 = 2

∫ t

0

dτ

∫ τ

0

g(τ − s)a (vm(s), v′m(τ)) ds

≤ 2

∫ t

0

dτ

∫ τ

0

|g(τ − s)| ∥vm(s)∥a ∥v
′
m(τ)∥a dsdτ

≤ 2

∫ t

0

dτ

∫ τ

0

|g(τ − s)|
√

Zm (s) ∥v′m(τ)∥a ds

≤ 1

4
Zm(t) + 2T ∗ ∥g∥2L2(0,T∗)

∫ t

0

Zm (s) ds.

(3.50)
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Using Taylor’s expansion of the function f(x, t, um) = f(x, t, um−1+vm−1) around the
point um−1 up to order N , we obtain

f(x, t, um)− f(x, t, um−1)

=

N−1∑
i=1

1

i!
Di

3f(x, t, um−1)v
i
m−1 +

1

N !
DN

3 f(x, t, δm)vNm−1,
(3.51)

where δm = δm(x, t) = um−1 + θvm−1, 0 < θ < 1.
Hence

Fm+1(x, t)− Fm(x, t)

=

N−1∑
i=1

1

i!
Di

3f(x, t, um(x, t)) (vm(x, t))
i

+
1

N !
DN

3 f(x, t, δm(x, t))vNm−1(x, t).

(3.52)

Note that

|vm(x, t)|i ≤
(√

R− 1 ∥vm(t)∥a
)i

≤
(√

R− 1
)i

(2M)i−1
√

Zm(t),∣∣vNm−1(x, t)
∣∣ ≤ (√

R− 1 ∥vm−1(t)∥a
)N

≤
(√

R− 1
)N

∥vm−1∥NW1(T ) .

(3.53)

Therefore, we have

∥Fm+1(t)− Fm(t)∥0

≤
(
R2 − 1

2

)
KM (f)

N−1∑
i=1

1

i!

(√
R− 1

)i
(2M)i−1

√
Zm(t)

+
1

N !

(
R2 − 1

2

)
KM (f)

(√
R− 1

)N
∥vm−1∥NW1(T )

≡ γ̄1(M)
√
Zm(t) + γ̄2(M) ∥vm−1∥NW1(T ) ,

(3.54)

where

γ̄1(M) =

(
R2 − 1

2

)
KM (f)

N−1∑
i=1

1

i!

(√
R− 1

)i
(2M)i−1,

γ̄2(M) =
1

N !

(
R2 − 1

2

)
KM (f)

(√
R− 1

)N
.

(3.55)

By using the inequality (3.54) above, J2 can be estimated as follows

J2 = 2

∫ t

0

⟨Fm+1 (s)− Fm (s) , v′m(s)⟩ ds

≤ 2

∫ t

0

∥Fm+1 (s)− Fm (s)∥20 ds+
1

2

∫ t

0

∥v′m(s)∥20 ds

≤ 4T γ̄2
2(M) ∥vm−1∥2NW1(T ) + 4γ̄2

1(M)

∫ t

0

Zm(s)ds+
1

4
Zm(t).

(3.56)
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By (3.48) and (3.50), it follows from (3.56) that

Zm(t) ≤ 8T γ̄2
2(M) ∥vm−1∥2NW1(T ) + 4

(
2γ̄2

1(M) + T ∗ ∥g∥2L2(0,T∗)

)∫ t

0

Zm (s) ds.

(3.57)

Using Gronwall’s Lemma, we have

Zm(t) ≤ 8T γ̄2
2(M) exp

[
4T
(
2γ̄2

1(M) + T ∗ ∥g∥2L2(0,T∗)

)]
∥vm−1∥2NW1(T ) .

This leads to

∥vm∥W1(T ) ≤ µT ∥vm−1∥NW1(T ) , ∀m ∈ N, (3.58)

where µT =
(
2 +

√
2
)
γ̄2(M)

√
2T exp

[
2T
(
2γ̄2

1(M) + T ∗ ∥g∥2L2(0,T∗)

)]
.

Note that

∥um − um+p∥W1(T )

≤ ∥um − um+1∥W1(T ) + ∥um+1 − um+2∥W1(T ) + · · ·+ ∥um+p−1 − um+p∥W1(T )

≡ ∥vm∥W1(T ) + ∥vm+1∥W1(T ) + · · ·+ ∥vm+p−1∥W1(T ) , ∀m, p ∈ N
(3.59)

On the other hand, we obtain from (3.58) that

∥vm∥W1(T ) ≤ µT ∥vm−1∥NW1(T )

≤ µT

(
µT ∥vm−2∥NW1(T )

)N
= µTµ

N
T

(
∥vm−2∥W1(T )

)N2

≤ µTµ
N
T

(
µT ∥vm−3∥NW1(T )

)N2

= µTµ
N
T µN2

T

(
∥vm−3∥W1(T )

)N3

≤ · · · ≤ µTµ
N
T µN2

T µN3

T · · ·µNm−1

T

(
∥v0∥W1(T )

)Nm

= µ1+N+N2+···+Nm−1

T

(
∥v0∥W1(T )

)Nm

= µ
1−Nm

1−N

T

(
∥v0∥W1(T )

)Nm

= µ
−1

N−1

T

(
µ

1
N−1

T ∥v0∥W1(T )

)Nm

≤ µ
−1

N−1

T

(
Mµ

1
N−1

T

)Nm

≡ µ
−1

N−1

T (βT )
Nm

, ∀m ∈ N

(3.60)

where βT = Mµ
1

N−1

T .

Hence, applying (3.60) to (3.59) and using the fact that βT < 1 with choosing T > 0
small enough, we have
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∥um − um+p∥W1(T )

≤ ∥um − um+1∥W1(T ) + ∥um+1 − um+2∥W1(T ) + · · ·+ ∥um+p−1 − um+p∥W1(T )

≡ ∥vm∥W1(T ) + ∥vm+1∥W1(T ) + · · ·+ ∥vm+p−1∥W1(T )

≤ µ
−1

N−1

T (βT )
Nm

+ µ
−1

N−1

T (βT )
Nm+1

+ ...+ µ
−1

N−1

T (βT )
Nm+p−1

= µ
−1

N−1

T (βT )
Nm

[
1 + (βT )

Nm+1−Nm

+ (βT )
Nm+2−Nm

+ ...+ (βT )
Nm+p−1−Nm

]
= µ

−1
N−1

T (βT )
Nm

[
1 + (βT )

(N−1)Nm

+ (βT )
(N2−1)Nm

+ ...+ (βT )
(Np−1−1)Nm

]
therefore

∥um − um+p∥W1(T )

≤ µ
−1

N−1

T (βT )
Nm

[
1 + (βT )

Nm

+ (βT )
2Nm

+ ...+ (βT )
(p−1)Nm

]
= µ

−1
N−1

T (βT )
Nm

[
1 + (βT )

Nm

+
(
(βT )

Nm
)2

+ ...+
(
(βT )

Nm
)p−1

]

= µ
−1

N−1

T (βT )
Nm 1−

(
(βT )

Nm
)p

1− (βT )
Nm ≤ µ

−1
N−1

T (βT )
Nm 1

1− (βT )
Nm

≤ µ
−1

N−1

T (βT )
Nm 1

1− βT
= µ

−1
N−1

T (1− βT )
−1 (βT )

Nm

, for all m and p.

(3.61)

The inequality (3.61) ensures that {um} is a Cauchy sequence in W1 (T ) . Then there
exists u ∈ W1 (T ) such that

um −→ u strongly in W1 (T ) . (3.62)

Note that um ∈ W (M,T ), then there exists a subsequence
{
umj

}
of {um} such that

umj → u in L∞(0, T ;V ∩H2) weakly*,
u′
mj

→ u′ in L∞(0, T ;V ∩H2) weakly*,

um ∈ W (M,T ).
(3.63)

We note that

|Fm (x, t)− f [um−1] (x, t)| ≤
N−1∑
i=1

1

i!

∣∣Di
3f [um−1] (x, t)

∣∣ |um (x, t)− um−1 (x, t)|i

≤ KM (f)

N−1∑
i=1

1

i!

(√
R− 1 ∥um − um−1∥W1(T )

)i
;

|f [um−1] (x, t)− f [u] (x, t)| ≤ KM (f) |um−1 (x, t)− u (x, t)|

≤ KM (f)
√
R− 1 ∥um−1 − u∥W1(T ) .
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Hence

∥Fm − f [um−1]∥L∞(QT ) ≤ KM (f)

N−1∑
i=1

1

i!

(√
R− 1 ∥um − um−1∥W1(T )

)i
→ 0,

∥f [um−1]− f [u]∥L∞(QT ) ≤ KM (f)
√
R− 1 ∥um−1 − u∥W1(T ) → 0,

(3.64)

it follows that

∥Fm − f [u]∥L∞(QT ) ≤ ∥Fm − f [um−1]∥L∞(QT ) + ∥f [um−1]− f [u]∥L∞(QT ) → 0.

(3.65)

The estimates (3.64) and (3.65) imply that

Fm −→ f [u] strongly in L∞ (QT ) . (3.66)

Taking the limits in (3.3) and (3.4) as m = mj → ∞, there exists u ∈ W (M,T )
satisfying the equation

⟨u′(t), w⟩+ a (u′(t), w) + a (u(t), w) =

∫ t

0

g(t− s)a (u(s), w) ds+ ⟨f [u](t), w⟩,

for all w ∈ V and the initial condition u(0) = ũ0.

Finally, letting m = mj → ∞ in (3.3), (3.4) and using (3.62), (3.63) and (3.66), we get
that there exists u ∈ W (M,T ) satisfying (3.1). The proof of existence is completed.

Next, we are easy to prove that the uniqueness of solutions of (3.1). Afterward, by
passing to the limit in (3.61) as p → ∞ for fixed m, we get (3.45). Theorem 3.4 is proved
completely. □
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