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1. Introduction

In mathematics, the quaternions are extensions of the complex numbers. They were
first described by Irish mathematician Sir William Rowan Hamilton in 1843 and were
applied to mechanics in three-dimensional space. Hamilton defined a quaternion as the
quotient of two directed lines in a three-dimensional space or equivalently as the quotient
of two vectors. Quaternions can also be represented as the sum of a scalar and a vector.

In the Euclidean space E3, it is well known that normal curves, i.e., curves with
position vector always lying in their normal plane, are spherical curves [1]. Analogously,
timelike normal curves in Minkowski 3-space E3

1 are defined as the curves whose normal
planes always contain a fixed point. Therefore, the position vector of such curves (with
respect to some chosen origin), always lies in its normal plane [2]. In particular, timelike

normal curves lie in pseudosphere in E3
1 . Recently, İlarslan [3], has been studied some

characterizations of spacelike normal curves in the Minkowski 3-space E3
1 . Also İlarslan

and Nesovic [4] have been investigated spacelike and timelike normal curves in E4
1 .

In [5], the Serret-Frenet formulae for a quaternionic curves in E3 and E4 are given by
Baharathi and Nagaraj. In analogy with the Euclidean case, Serret-Frenet formulae for
a quaternionic curves in semi-Euclidean space E4

2 is defined in [6]. Quaternionic inclined
curves and harmonic curvatures for the quaternionic curves are given in [7]. Moreover,
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characterization of quaternionic B2-slant helices in Euclidean space E4 given in [8] and
quaternionic Mannheim curves are studied in semi Eucliden space E4 in [9].

In this paper, we define the quaternionic normal curves in E3 and E4. and obtain some
characterizations of quaternionic normal curves in terms of their curvature functions.
Moreover, we give the necessary and sufficient condition for quaternionic curves to be
quaternionic normal curves in E3 and E4 respectively.

2. Preliminaries

In this section a brief summary of the theory of quaternions in the Euclidean space
and normal curves are presented.

The space of quaternions Q are isomorphic to R4, four-dimensional vector space over
the real numbers. There are three operations in Q : addition, scalar multiplication, and
quaternion multiplication defined by the sum of two elements of Q is defined to be their
sum as elements of R4. Similarly the product of an element of Q by a real number is
defined to be the same as the product in R4.

A real quaternion q is an expression of the form q = ae1 + be2 + ce3 + de4, where
a, b, c and d are real numbers, and e1, e2, e3 are quaternionic units which satisfy the non-
commutative multiplication rules,

i) ei × ei = −e4, (e4 = 1, 1 ≤ i ≤ 3)

ii) ei × ej = ek = −ej × ei, (1 ≤ i, j ≤ 3) ,

where (ijk) is an even permutation of (123) in the Euclidean space E4. A real quaternion
can be written as a linear combination of scalar part Sq = d and vectorial part Vq =
ae1 + be2 + ce3. The product of two quaternions can be expanded as

p× q = SpSq− < Vp, Vq > +SpVq + SqVp + Vq ∧ Vq

for every p, q ∈ Q, where <,> and ∧ are inner product and cross product on E3, respec-
tively. The conjugate of the quaternion q is denoted by q and defined as

q = Sq − Vq = de4 − ae1 − be2 − ce3,

and is called by “Hamiltonian conjugation of q”. The h-inner product of two quaternions
is defined by

h (p, q) =
1

2
(p× q + q × p) ,

where h is the symmetric, non-degenerate, real valued and bilinear form. Thus, a norm
can be defined in Q, that is

∥q∥2 = h (q, q) = a2 + b2 + c2 + d2.

Let m1,m2 be fixed points in Q and r1, r2 > 0 be constants. The 2−sphere defined by

S2 (m1, r1) =
{
u ∈ Q

∣∣h (u−m1, u−m1) = r21
}
;

and the 3−sphere is defined by

S3 (m2, r2) =
{
v ∈ Q

∣∣h (v −m2, v −m2) = r22
}
.

where mi is the center and ri is the radius, for i = 1, 2.
The three-dimensional Euclidean space E3 is identified with the space of spatial quater-

nion {γ ∈ Q |γ + γ = 0} in an obvious manner.
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Theorem 2.1. Let I = [0, 1] be an interval in the real line R and s ∈ I be the parameter
along the smooth curve

γ : I ⊂ R−→Q, γ(s) =

3∑
i=1

γi(s)ei, (1 ≤ i ≤ 3) ,

where the tangent γ′(s) = t has unit length ∥t(s)∥ = 1 for all s. This unitarity condition
implies;

t′ × t+ t× t′ = 0.

The last equation implies that t′ is orthogonal to t and t′ × t is a spatial quaternion. Let
{t(s), n1(s), n2(s)} be the Frenet trihedron in the point γ(s) of the quaternionic curve γ.
Then Frenet equations are

t′(s) = k(s)n1(s) (2.1)

n′
1(s) = −k(s)t(s) + r(s)n2(s)

n′
2(s) = −r(s)n1(s)

where t is the unit tangent, n1 is the unit principal normal, n2 is the unit binormal vector
fields, k is the principal curvature and r is the torsion of the quaternionic curve γ, [5].

In this section, the four-dimensional Euclidean space E4 is identified with the space of
unit quaternion.

Theorem 2.2. Let

β : I ⊂ R−→Q, β(s) =

4∑
i=1

γi(s)ei, e4 = 1

be a smooth curve (β) in E4 defined over the interval I. Let the parameter s be chosen

such that the tangent T = β′(s) =
4∑

i=1

γ′
i(s)ei has unit magnitude. Let {T,N1, N2, N3} be

the Frenet apparatus of the differentiable Euclidean space curve in E4. Then the Frenet
equations are

T ′(s) = KN1(s) (2.2)

N ′
1(s) = −KT (s) + kN2(s)

N ′
2(s) = −kN1(s) + (r −K)N3(s)

N ′
3(s) = −(r −K)N2,

where N1 = t× T, N2 = n1 × T, N3 = n2 × T and K = ∥T ′(s)∥ , [5].

It is obtained the Frenet formulae in [5] and the apparatus for the curve β by making
use of the Frenet formulae for a curve γ in E3. Moreover, there are relationships between
curvatures of the curves β and γ. These relations can be explained that the torsion of β
is the principal curvature of the curve γ. Also, the bitorsion of β is (r−K), where r is the
torsion of γ and K is the principal curvature of β. These relations are only determined
for quaternions, [5].

For further quaternions concepts see [10].
Now, we recall some basic notions about normal curves. In E3, it is well-known that

to each unit speed curve α : I ⊂ R→E3 with at least four continuous derivatives, one
can associate three mutually orthogonal unit vector fields t, n and b called the tangent,
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the principal normal and the binormal vector fields respectively. At each point α(s) of
the curve α, the planes spanned by {t, n}, {t, b} and {n, b} are called as the osculating
plane, the rectifying plane and the normal plane respectively. For simplicity, the curves
α : I ⊂ R→E3 for which the position vector α lie in their rectifying plane, are called
rectifying curves , the curves for which the position vector lie in their normal plane,
are called normal curves. and the curves for which the position vector α lie in their
osculating plane, are called osculating curves. Therefore, the position vector with respect
to a given origin, of a normal curve α in E3, satisfies the equation

α(s) = λ(s)t(s) + µ(s)b(s),

where λ and µ are arbitrary differentiable functions in terms of the arc length parameter
s.

Analogously, the normal curve in 4-space E4 can be defined. Let {T,N,B1, B2} be the
moving Frenet frame along a curve α in E4, consisting of the tangent, principal normal,
first binormal vector field, and second binormal vector field, respectively. Normal curve as
a curve whose position vector always lies in the orthogonal complement T⊥ of its tangent
vector field T of the curve. Consequently, the position vector with respect to a given
origin, of a normal curve α in E4, satisfies the equation

α(s) = λ(s)N(s) + µ(s)B1(s) + ν(s)B2(s),

where λ, µ and ν are arbitrary differentiable functions in terms of the arc length parameter
s.

3. Some Characterization of Spatial Quaternionic Normal
Curves

In a similar manner to [3], we can define the spatial quaternionic normal curves as
follows. The position vector of the spatial quaternionic normal curve satisfies the following
equation

γ(s) = λ(s)n1(s) + µ(s)n2(s)

where λ and µ are arbitrary differentiable functions. The following theorems provide some
simple characterizations of spatial quaternionic normal curves.

Theorem 3.1. Let γ = γ(s) be a unit speed spatial quaternionic normal curve in E3 with
curvatures k(s) > 0, r(s) ̸= 0 for each s ∈ I ⊂ R. Then the following statements hold:

(i) The curvatures k(s) and r(s) satisfy the following

1

k(s)
= c1 cos

(∫
r(s)ds

)
+ c2 sin

(∫
r(s)ds

)
, c1, c2 ∈ R;

(ii) The principal normal and binormal component of the position vector of the quater-
nionic curve are given by

h (γ(s), n1) = −c1 cos

(∫
r(s)ds

)
− c2 sin

(∫
r(s)ds

)
,

h (γ(s), n2) = c1 sin

(∫
r(s)ds

)
− c2 cos

(∫
r(s)ds

)
, c1, c2 ∈ R.

respectively. Furthermore, if γ(s) is a unit speed spatial quaternionic curve in E3 with the
curvatures k(s) > 0, r(s) ̸= 0 for each s ∈ I ⊂ R and one of the statements (i) and (ii)
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holds, then γ is a spatial quaternionic normal curve or congruent to a spatial quaternionic
normal curve.

Proof. (i) Let γ(s) be a unit speed spatial quaternionic curve in E3, where s is arclength
parameter. Then by definition we have

γ(s) = λ(s)n1(s) + µ(s)n2(s). (3.1)

By taking the derivative of (3.1) with respect to s and applying the Frenet formulas, we
get

−kλ = 1 , λ′ − rµ = 0 , rλ+ µ′ = 0 . (3.2)

From the first and second equation in (3.2), we get

λ(s) = − 1

k(s)
, µ(s) = − 1

r(s)

(
1

k(s)

)′

. (3.3)

Thus

γ(s) = − 1

k(s)
n1(s)−

1

r(s)

(
1

k(s)

)′

n2(s). (3.4)

Further, from the third equation in (3.2) and using (3.3), we find the following differ-
ential equation[

1

r

(
1

k

)′
]′

+
r

k
= 0. (3.5)

This equation, can be written as

[p(s)y′(s)]
′
+

y(s)

p(s)
= 0, for y(s) =

1

k
, p(s) =

1

r
.

If we change variables in the above equation as t =
∫

1
p(s)ds, then we get

d2y

dt2
+ y = 0.

The solution of the previous differential equation is

y = c1 cos(t) + c2 sin(t),

where c1, c2 ∈ R. Therefore,

1

k(s)
= c1 cos

(∫
r(s)ds

)
+ c2 sin

(∫
r(s)ds

)
. (3.6)

(ii) By appliying (3.6) into (3.3) and (3.4), we get

λ = −
[
c1 cos

(∫
r(s)ds

)
+ c2 sin

(∫
r(s)ds

)]
,

µ =

[
c1 sin

(∫
r(s)ds

)
− c2 cos

(∫
r(s)ds

)]
,

and

γ(s) = −
[
c1 cos

(∫
r(s)ds

)
+ c2 sin

(∫
r(s)ds

)]
n1(s) (3.7)

+

[
c1 sin

(∫
r(s)ds

)
− c2 cos

(∫
r(s)ds

)]
n2(s).
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Therefore, from (3.7) we obtain

h (γ, γ) = c21 + c22 (3.8)

h (γ(s), n1) = −c1 cos

(∫
r(s)ds

)
− c2 sin

(∫
r(s)ds

)
(3.9)

h (γ(s), n2) = c1 sin

(∫
r(s)ds

)
− c2 cos

(∫
r(s)ds

)
, (3.10)

where c1, c2 ∈ R.
Now, suppose that statement (i) holds. Then we have

1

k(s)
= c1 cos

(∫
r(s)ds

)
+ c2 sin

(∫
r(s)ds

)
. (3.11)

By taking the derivative of (3.11) with respect to s, we get[
1

r

(
1

k

)′
]′

= − r

k
. (3.12)

By using (3.12) and Frenet equations (2.1), we obtain

d

ds

[
γ(s) +

1

k
n1 +

1

r

(
1

k

)′

n2

]
= 0.

Consequently, γ is congruent to a spatial quaternionic normal curve.
Next, assume that statement (ii) holds. Then the equation (3.8) is satisfied. Differ-

entiating (3.8) with respect to s, we find h (γ(s), t) = 0, that is, γ spatial quaternionic
normal curve.

Theorem 3.2. Let γ = γ(s) be a unit speed spatial quaternionic normal curve in E3 with
curvatures k(s) > 0, r(s) ̸= 0. Then γ curve lies on S2 if and only if

1

k
= ±

√
b2 − c2 cos

(∫
r(s)ds

)
+ c sin

(∫
r(s)ds

)
, c ∈ R, b ∈ R+. (3.13)

Proof. Let us first assume that the curve lies on S2. Then h (γ, γ) = b2, b ∈ R+. By

putting this into (3.8), we get c1 = ±
√

b2 − c22. By using the last equation and (3.6), we
obtain that (3.13) holds.

Conversely, assume that (3.13) holds . Then, by differentiating with respect to s, we
get h (γ, γ) = b2, for b ∈ R+. It implies that the curve lies on S2.

4. Some Characterization of Quaternionic Normal Curves in Q

Let β = β(s) be a unit speed quaternionic normal curve, lying fully in Q. Then its
position vector satisfies

β(s) = λ(s)N1(s) + µ(s)N2(s) + ν(s)N3(s). (4.1)

By taking the derivative of (4.1) with respect to s and using the Frenet equations (2.2),
we get

T = −KλT + (λ′ − kµ)N1 + (kλ+ µ′ − (r −K)υ)N2 + ((r −K)µ+ υ′)N3
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and therefore

−Kλ = 1 , λ′ − kµ = 0 , kλ+ µ′ − (r −K)υ = 0 , (r −K)µ+ υ′ = 0. (4.2)

From the first three equations we find

λ(s) = − 1

K(s)
, µ(s) = − 1

k(s)

(
1

K(s)

)′

, (4.3)

υ(s) = − 1

(r(s)−K(s))

[
k(s)

K(s)
+

(
1

k(s)

(
1

K(s)

)′
)′]

.

Applying the relation (4.3) into (4.1), we get that the position vector of the quaternionic
normal curve β is:

β(s) = − 1

K(s)
N1 −

1

k(s)

(
1

K(s)

)′

N2 (4.4)

− 1

(r(s)−K(s))

[
k(s)

K(s)
+

(
1

k(s)

(
1

K(s)

)′
)′]

N3.

Then we have the following theorem.

Theorem 4.1. Let β(s) be a unit speed quaternionic curve, lying fully in Q. Then β(s)
is congruent to a quaternionic normal curve if and only if

− (r(s)−K(s))

k(s)

(
1

K(s)

)′

=

[
1

(r(s)−K(s))

[
k(s)

K(s)
+

(
1

k(s)

(
1

K(s)

)′)′]]′

. (4.5)

Proof. Let β(s) be congruent to a quaternionic normal curve. Then relations (4.2) and
(4.3) imply that (4.5) holds.

Conversely, assume that relation (4.5) holds. Let the vector m ∈ Q be given by

m(s) = β(s) +
1

K(s)
N1 +

1

k(s)

(
1

K(s)

)′

N2 (4.6)

+
1

(r(s)−K(s))

[
k(s)

K(s)
+

(
1

k(s)

(
1

K(s)

)′
)′]

N3.

Differentiating (4.6) with respect to s and by applying (2.2), we get

m′(s) =
(r(s)−K(s))

k(s)

(
1

K(s)

)′

N3

+

(
1

(r(s)−K(s))

[
k(s)

K(s)
+

(
1

k(s)

(
1

K(s)

)′
)′])′

N3.

From the relation (4.5), it follows that m is a constant vector, which means that β is
congruent to a quaternionic normal curve.

Theorem 4.2. Let β(s) be a unit speed quaternionic curve, lying fully in Q. If β is a
quaternionic normal curve, then the following statements hold:
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(i) The coefficient of the first normal and the second normal component of the position
vector β are

h(β,N1) = − 1

K(s)
,

h(β,N2) = − 1

k(s)

(
1

K(s)

)′

,

respectively.

(ii) The coefficient of the second normal and the third normal component of the position
vector β are

h(β,N2) = − 1

k(s)

(
1

K(s)

)′

,

h(β,N3) = − 1

(r(s)−K(s))

[
k(s)

K(s)
+

(
1

k(s)

(
1

K(s)

)′
)′]

.

respectively.
Conversely, if β(s) is a unit speed quaternionic curve, lying fully in Q, and one of

statements (i) or (ii) holds, then β is a quaternionic normal curve.

Proof. If β(s) is a quaternionic normal curve, it is easy to check that relation (4.4) implies
statements (i) and (ii).

Conversely, if statement (i) holds, by differentiating the equation h(β,N1) = − 1
K(s)

with respect to s and by applying (2.2), we find h(β, T ) = 0 which means that β is a
quaternionic normal curve. If statement (ii) holds, we conclude that β is a quaternionic
normal curve in a similar way.

In the next theorem, we obtain interesting geometric characterization of quaternionic
normal curves.

Theorem 4.3. Let β(s) be a unit speed quaternionic curve, lying fully in Q. Then β is
congruent to a quaternionic normal curve if and only if β lies on S3 in Q.

Proof. Assume that β is congruent to a quaternionic normal curve. Then, by straightfor-
ward calculations and by Theorem 4.1, we get

2 1
K

(
1
K

)′
+ 2 1

k

(
1
K

)′ ( 1
k

(
1
K

)′)′
+2 1

(r−K)

[
k
K +

(
1
k

(
1
K

)′)′]( 1
(r−K)

[
k
K +

(
1
k

(
1
K

)′)′])′

= 0.

On the other hand, the previous equation is the differential of the equation(
1

K

)2

+

(
1

k

(
1

K

)′
)2

+

(
1

(r −K)

[
k

K
+

(
1

k

(
1

K

)′
)′])2

= c, c ∈ R. (4.7)

By using (4.6), it is easy to check that

h(β−m,β−m) =

(
1

K

)2

+

(
1

k

(
1

K

)′
)2

+

(
1

(r −K)

[
k

K
+

(
1

k

(
1

K

)′
)′])2

,
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which on gives h(β−m,β−m) = c, by combining with (4.7). Consequently, β lies on S3

in Q.
Conversely, if β lies on S3 a hypersphere in Q, then h(β − m,β − m) = c, c ∈ R,

where m ∈ Q is a constant vector. By taking the derivative of the previous equation with
respect to s, we obtain h(β −m,T ) = 0 which proves the theorem.

Recall that an arbitrary curve β in Q is called a W -curve (or a helix), if it has constant
curvature functions. The following theorem gives the characterization of quaternionic
W -curve in Q, in terms of quaternionic normal curves.

Theorem 4.4. Every unit speed quaternionic W -curve, lying fully in Q, is congruent to
a quaternionic normal curve.

Proof. By assumption we have K(s) = c1, k(s) = c2, (r −K)(s) = c3, where c1, c2, c3 ∈
R− {0}. Since the curvature functions obviously satisfy relation (4.5), β is congruent to
a normal curve by Theorem 4.1.

Lemma 4.5. A unit speed quaternionic β(s), lying fully in Q, is congruent to a quater-
nionic normal curve if and only if there exists a differentiable function f(s) such that

f(s)(r(s)−K(s)) =
k(s)

K(s)
+

(
1

k(s)

(
1

K(s)

)′
)′

, (4.8)

f ′(s) = − (r(s)−K(s))

k(s)

(
1

K(s)

)′

.

By using the similar methods as in [4], as well as Lemma 4.5, we obtain the following
theorem which gives the necessary and the sufficient conditions for a quaternionic curvs
in Q to be quaternionic normal curve.

Theorem 4.6. Let β(s) be a unit speed quaternionic curve in Q. Then β is congruent
to a quaternionic normal curve if and only if there exist constants a0, b0 ∈ R such that

− 1

k(s)

(
1

K(s)

)′

=

(
a0 +

∫
k(s)

K(s)
cos θ(s)ds

)
cos θ(s) (4.9)

+

(
b0 +

∫
k(s)

K(s)
sin θ(s)ds

)
sin θ(s),

where θ(s) =
s∫
0

(r(s)−K(s)) ds.

Proof. If β(s) is congruent to a quaternionic normal curve, according to Lemma 4.5
there exists a differentiable function f(s) such that relation (4.8) holds. Let us define
differentiable functions θ(s), a(s) and b(s) by

θ(s) =

s∫
0

(r(s)−K(s)) ds, (4.10)

a(s) = − 1

k(s)

(
1

K(s)

)′

cos θ(s) + f(s) sin θ(s)−
∫

k(s)

K(s)
cos θ(s) ds,

b(s) = − 1

k(s)

(
1

K(s)

)′

sin θ(s)− f(s) cos θ(s)−
∫

k(s)

K(s)
sin θ(s) ds.
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By using (4.8), we find θ′(s) = (r(s)−K(s)), a′(s) = 0, b′(s) = 0 and thus

a(s) = a0 , b(s) = b0 , a0, b0 ∈ R. (4.11)

By multiplying the second and the third equations in (4.10), with cos θ(s) and sin θ(s),
respectively adding the obtained equations and from (4.11), we conclude that relation
(4.9) holds.

Conversely, assume that there exist constants a0, b0 ∈ R such that the relation (4.9)
holds. By taking the derivative of (4.9) with respect to s, we find

−
k(s)

K(s)
−

(
1

k(s)

(
1

K(s)

)′)′
= (r(s)−K(s))

 −
(
a0 +

∫ k(s)
K(s)

cos θ(s)ds
)
sin θ(s)

+
(
b0 +

∫ k(s)
K(s)

sin θ(s)ds
)
cos θ(s)

 . (4.12)

Let us define the differentiable function f(s) by

f(s) =
1

(r(s)−K(s))

[
k(s)

K(s)
+

(
1

k(s)

(
1

K(s)

)′
)′]

. (4.13)

Next, relations (4.12) and (4.13) imply

f(s) =

(
a0 +

∫
k(s)

K(s)
cos θ(s)ds

)
sin θ(s)−

(
b0 +

∫
k(s)

K(s)
sin θ(s)ds

)
cos θ(s).

By using this relation and (4.9), we obtain f ′(s) = − (r(s)−K(s))
k(s)

(
1

K(s)

)′
. Finally, Lemma

4.5 implies that β is congruent to a quaternionic normal curve.
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