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1. Introduction

Menger, 1951, introduced the pioneer concept of a statistical metric [1]. Based on the
concept of a statistical metric, in 1975, Kramosil and Michalek introduced the notion
of a fuzzy metric in [2]. Here, we call it a KM-fuzzy metric. A KM-fuzzy metric is, in
a certain sense, equivalent to a statistical metric, but there are essential differences in
their definitions and interpretations. In 1994, George and Veeramani [3], see also [4],
slightly modified the original concept of a KM-fuzzy metric, we call this modification by
a GV-fuzzy metric. This modification allows many natural examples of fuzzy metrics,
in particular, fuzzy metrics constructed from metrics. GV-fuzzy metrics appear to be
more appropriate also for the study of induced topological structures. Along with the
principal interest of many researchers in the theoretical aspects of the theory of fuzzy
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metrics in particular, the topological and sequential properties of fuzzy metric spaces,
their completeness, fixed points of mappings, etc.fuzzy metrics have also aroused interest
among specialists working in various applied areas of mathematics.

2. Preliminaries

Definition 2.1. [5] A binary operation ∗ : [0, 1]× [0, 1] → [0, 1] is said to be continuous
t-norm if it satisfies the following conditions:

(I) ∗ is commutative and associative;
(II) ∗ is continuous;
(III) a ∗ 1 = a for all a ∈ [0, 1];
(IV) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

For classical examples of continuous t-norm, we recall t-norms Tl, Tp and Tm defined
as Tl(a, b) = max(a + b − 1, 0), Tp(a, b) = ab and Tm(a, b) = min(a, b), ∀a, b ∈ [0, 1]
respectively.

A fuzzy metric space in the sense of George and Veeramani [3] is defined as follows:

Definition 2.2. [3] The 3-tuple (X,M, ∗) is said to be a fuzzy metric space if X is an
arbitrary set, ∗ is a continuous t-norm and M is a fuzzy set on X2× (0,∞) satisfying the
following conditions for all x, y, z ∈ X and t, s > 0:

(GV-1) M(x, y, t) > 0;
(GV-2) M(x, y, t) = 1 ∀t > 0 iff x = y;
(GV-3) M(x, y, t) =M(y, x, t);
(GV-4) M(x, z, t+ s) ≥M(x, y, t) ∗M(y, z, s);
(GV-5) M(x, y, .) : (0,∞) → [0, 1] is continuous.

It is worth pointing out that due to (GV-1) and (GV-2), 0 < M(x, y, t) < 1 for all
t > 0 provided x ̸= y, (cf. [6]). In what follows, fuzzy metric spaces in the sense of
George and Veeramani will be called GV-fuzzy metric spaces. It is known that, for all
x, y ∈ X, M(x, y, .) is nondecreasing function. Several examples of fuzzy metric spaces
can be found in George and Veeramani [3], Sapena [7], Gregori et al. [6] and Roldan et
al. [8].

Remark 2.3. [9] The function M(x, y, t) is often interpreted as the nearness between x
and y with respect to t.

Remark 2.4. [10] For every x, y ∈ X, the mappingM(x, y, .) is nondecreasing on (0,∞).

Definition 2.5. [11] The 3-tuple (X,F, ∗) is a fuzzy metric like space if X is an arbitrary
set ∗ is continuous norm and F is a fuzzy set in X2 × (0,∞) satisfying the following
conditions for all x, y, z ∈ X and t, s > 0:

(FML-1) F (x, y, t) > 0;
(FML-2) if F (x, y, t) = 1 ∀t > 0 then x = y;
(FML-3) F (x, y, t) = F (y, x, t);
(FML-4) F (x, z, t+ s) ≥ F (x, y, t) ∗ F (y, z, s);
(FML-5) F (x, y, .) : (0,∞) → [0, 1] is continuous.

Here F (endowed with ∗) is called a fuzzy metric-like on X.
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Remark 2.6. A fuzzy metric-like space satisfies all of the conditions of a fuzzy metric
space except that F (x, x, t) may be less than 1 for all t > 0 and for some (or may be for
all) x ∈ X. Also, every fuzzy metric space is fuzzy metric-like space with unit self fuzzy
distance, that is, with F (x, x, t) = 1 for all t > 0 and for all x ∈ X.

Note that, the axiom (GV-2) in Definition 2.2 gives the idea that when x = y the
degree of nearness of x and y is perfect, or simply 1, and then M(x, x, t) = 1 for each
x ∈ X and for each t > 0. While in fuzzy metric-like space, F (x, x, t) may be less than
1, that is, the concept of fuzzy metric-like is applicable when the degree of nearness of x
and y is not perfect for the case x = y.

Example 2.7. If X = [0, 1], then the triplet (X,F, ∗l) is a fuzzy metric-like space, where
the fuzzy set F is defined by

F (x, y, t) =

1 if x = y = 0,
x+ y

2
otherwise

for all t > 0.

Using the following propositions, several examples of fuzzy metric-like spaces can be
obtained.

Proposition 2.8. [11] Let (X,σ) be any metric-like space (for the related definitions we
refer to Harandi [12]. Then the triplet (X,F, ∗p) is a fuzzy metric-like space, where the
fuzzy set F is given by

F (x, y, t) =
ktn

ktn +mσ(x, y)

for all x, y ∈ X, t > 0, where k ∈ R, m > 0 and n ≥ 1.

Remark 2.9. [11] Proposition 2.8 shows that every metric-like space induces a fuzzy
metric-like spaces. For k = n = m = 1 the induced fuzzy metric-like space (X,Fσ, ∗p) is
called the standard fuzzy metric-like space, where

Fσ(x, y, t) =
t

t+ σ(x, y)

for all x, y ∈ X, t > 0.

Proposition 2.10. [11] Let (X,σ) be any metric-like space. Then the triplet (X,F, ∗p)
is a fuzzy metric-like space, where the fuzzy set F is defined by

F (x, y, t) = e−
σ(x,y)

tn

for all x, y ∈ X, t > 0, where n ≥ 1.

Example 2.11. Let X = N . Define ∗ by a ∗ b = ab and the fuzzy set F in X2 × (0,∞)
by

F (x, y, t) =
1

emax{x,y}/t

for all x, y ∈ X, t > 0. Then since σ(x, y) = max(x, y) for all x, y ∈ X is a fuzzy metric-
like on X (see [12]) therefore by Proposition 1.10 (X,F, ∗) is a fuzzy metric-like space,
but not a fuzzy metric space, as F (x, x, t) = 1

ex/t ̸= 1 for all x > 0 and t > 0.
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Example 2.12. [11] Let X = [0, 1]. Define ∗ by a ∗ b = ab and the fuzzy set F in
X2 × (0,∞) by

F (x, y, t) =

{
x
y3 if x ≤ y;
y
x3 if y ≤ x

,

for all x, y ∈ X, t > 0. Then (X,F, ∗) is a fuzzy metric-like space.

We point out that the Propositions 2.8 and 2.10 are also hold even if we employ the
minimum t−norm ∗m rather than product t−norm ∗p (see [11]).

Proposition 2.13. Let (X,σ) be the bounded metric-like space, that is there exists K > 0
such that σ(x, y) ≤ K for all x, y ∈ X. Then the triplet (X,F, ∗l) is a fuzzy metric-like
space, where the fuzzy set F is defined by

F (x, y, t) = 1− σ(x, y)

K + t

for all x, y ∈ X, t > 0.

Proof. The proofs of the properties (FML1)-(FML5) are obvious. For (FML4), let x, y, z ∈
X, t > 0, then since σ(x, y) + σ(y, z) ≥ σ(x, z), we have

1− σ(x, y) + σ(y, z)

K + t
≤ 1− σ(x, z)

K + t
.

It follows from the above inequality that

max

{
1− σ(x, y) + σ(y, z)

K + t
, 0

}
≤ 1− σ(x, z)

K + t
.

which implies that (FML4) holds.

Now we define convergent and Cauchy sequences in fuzzy metric-like spaces, and the
completeness of fuzzy metric-like spaces.

Definition 2.14. [11] Let (X,F, ∗) be a fuzzy metric-like space and {xn} be a sequence
in X. Then

(i) {xn} is said to be convergent to x ∈ X and x is called a limit of {xn} if for all
t > 0,

lim
n→∞

F (xn, x, t) = F (x, x, t)

(ii) {xn} is said to be Cauchy if, for all t > 0 and each p ≥ 1, the limit limn→∞
F (xn+p, xn, t) exists.

(iii) (X,F, ∗) is said to be complete if every Cauchy sequence {xn} in X converges
to some x ∈ X such that
limn→∞ F (xn, x, t) = F (x, x, t) = limn→∞ F (xn+p, xn, t) for all t > 0 and each
p ≥ 1.

Remark 2.15. [11] In a fuzzy metric-like space, the limit of a convergent sequence need
not be unique and a convergent sequence need not be a Cauchy sequence.

Lemma 2.16. [10, 13] In a fuzzy metric-like space (X,M, ∗), the mapping M is contin-
uous on X ×X × (0,∞).

We need the following in the subsequent discussion.
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Definition 2.17. [13] Let (X,M, ∗) be a fuzzy metric-like space. A mapping T : X ×X
is said to be α-admissible if there exists a function α : X×X× (0,∞) → [0,∞) such that
∀ t > 0

x, y ∈ X,α(x, y, t) ≥ 1 =⇒ α(Tx, Ty, t) ≥ 1.

Definition 2.18. [14] Let (X,M, ∗) be a fuzzy metric-like space. An α-admissible map-
ping T : X ×X is said to be triangular α-admissile if ∀ t > 0

x, y, z ∈ X,α(x, y, t) ≥ 1 and α(y, z, t) ≥ =⇒ α(x, z, t) ≥ 1.

Lemma 2.19. [14] Let (X,M, ∗) be a fuzzy metric-like space and T : X×X α-admissible
mapping. Assume that there exists a point x0 ∈ X such that α(x0, Tx0, t). Define a
sequence {x0} ⊆ X by xn = Txn−1, ∀ n ∈ N. Then we have

α(xn, xm, t) ≥ 1, ∀ m,n ∈ N, n < m.

3. Main Results

Inspired by Khojasteh et al. [15], we hereby introduce a new simulation function,
namely, MA-simulation function. By utilizing this function, we define a new type of
contraction, namely, α-admissible ΞMA-contraction, which will be utilized to establish a
new result unifying several results of the existing literature besides deducing some new
ones.

Definition 3.1. [16] A mapping ξ : (0, 1] × (0, 1] → R is said to be a MA-simulation
function if it satisfies the following:

(ξ1) ξ(t, s) <
1

t
− 1

s
, ∀ s, t ∈ (0, 1);

(ξ2) if {tn} and {sn} are sequences in (0, 1] such that limn→∞ tn = limn→∞ sn =
l ∈ (0, 1) and tn < sn, ∀ n ∈ R then

lim sup
n→∞

ξ(tn, sn) < 0.

We denote the set of all MA-simulation functions by ΞMA.

In the following lines, we furnish some examples of MA-simulation function.

Example 3.2. Let ξ : (0, 1]× (0, 1] → R be defined as

ξ(t, s) = k
(1
t
− 1

)
−

(1
s
− 1

)
,

∀ s, t ∈ (0, 1] and k ∈ (0, 1).

Example 3.3. Let ξ : (0, 1]× (0, 1] → R be defined as

ξ(t, s) = ψ
(1
t
− 1

)
−
(1
s
− 1

)
,

∀ s, t ∈ (0, 1] where ψ : [0,∞) → [0,∞) is right continuous functions such that ψ(r) <
r, ∀ r > 0.

Example 3.4. Let ξ : (0, 1]× (0, 1] → R be defined as

ξ(t, s) =
(1
t
− 1

)
− ψ

(1
t
− 1

)
−
(1
s
− 1

)
,

∀ s, t ∈ (0, 1] where ψ : [0,∞) → [0,∞) is a given function such that ψ(r) > 0, for r > 0
and ψ(0) = 0.
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Example 3.5. Let ξ : (0, 1]× (0, 1] → R be defined as

ξ(t, s) = s− ψ(t), ∀ s, t ∈ (0, 1]

where ψ : (0, 1] → (0, 1] is non-decreasing and left-continuous such that ψ(r) > r, ∀ r ∈
(0, 1).

Example 3.6. Let ξ : (0, 1]× (0, 1] → R be defined as

ξ(t, s) =
(1
t
− 1

)
ψ
(1
t
− 1

)
−
(1
s
− 1

)
,

∀ s, t ∈ (0, 1] where ψ : [0,∞) → (0, 1] is a given function such that limr→s+ ψ(r) <
1, ∀ s > 0.

Example 3.7. Let ξ : (0, 1]× (0, 1] → R be defined as

ξ(t, s) =
(1
t
− 1

)
−
∫ 1

s−1

0

ψ(s)ds,

∀ s, t ∈ (0, 1] where ψ : [0,∞) → [0,∞) is a given function such that

∫ r

0

ψ(s)ds exists

and

∫ r

0

ψ(s)ds > r for each r > 0.

Now, we introduce the notion of α-admissible ΞMA-contraction.

Definition 3.8. Let (X,M, ∗) be a fuzzy metric-like space and ξ ∈ ΞMA. A mapping
T : X → X is said to be an α-admissible ΞMA-contraction if there exists a ξ ∈ ΞMA such
that ∀ t > 0, it satisfies the following

x, y ∈ X, α(x, y, t) ≥ 1 ⇒ ξ
(
M(x, y, t),M(Tx, Ty, t)

)
≥ 0, (3.1)

Now, we are equipped to present our main result.

Theorem 3.9. Let (X,M, ∗) be a complete fuzzy metric-like space and T : X → X an
α-admissible ΞMA-contraction with respect to ξ. Assume that the following conditions are
satisfied:

(a) there exists x0 ∈ X such that α(x0, Tx0, t) ≥ 1;
(b) T is triangular α-admissible;
(c) T is continuous, or if {xn} is a sequence in X such that α(xn, xn+1, t) ≥ 1,
∀ n ∈ N, t > 0 and {xn} → x, for some x ∈ X, there exists a subsequence {xnk

}
of {xn} such that α(xnk

, x, t) ≥ 1, ∀ k ∈ N and t > 0.

Then T has a fixed point.

Proof. Let x0 ∈ X be an arbitrary point. Define a Picard sequence {xn = Tnx0}. Suppose
there exists some m0 ∈ N such that Tm0(x0) = Tm0+1x0, i.e., xm0

= xm0+1, then xm0

is a fixed point of T . Now, assume that Tn−1x0 ̸= Tnx0, ∀ n ∈ N. Then, using Lemma
2.19, we have

α(xn, xm, t) ≥ 1, ∀ m,n ∈ N, n < m. (3.2)
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Thus, using (3.2) and (3.1), for x = xn−1 and y = xn, we obtain

0 ≤ ξ
(
M(xn−1, xn, t),M(Txn−1, Txn, t)

)
= ξ

(
M(xn−1, xn, t),M(xn, xn+1, t)

)
<

1

M(xn−1, xn, t)
− 1

M(xn, xn+1, t)
,

which implies

M(xn−1, xn, t) < M(xn, xn+1, t).

Therefore, {M(xn, xn+1, t)} is an increasing sequence of positive real numbers in (0, 1].
Let r(t) = limn→∞M(xn, xn+1, t). We assert that r(t) = 1, ∀ t > 0. Suppose on
contrary that r(t0) < 1, for some t0 > 0. Then, as {tn = M(xn−1, xn, t0)} → r(t0) and
{sn =M(xn, xn+1, t0)} → r(t0) so using (ξ2), we obtain

0 ≤ lim sup
n→∞

ξ
(
M(xn−1, xn, t0),M(xn, xn+1, t0)

)
< 0.

a contradiction. Thus r(t) = 1, ∀ t > 0, we get (∀ t > 0)

lim
n→∞

M(xn, xn+1, t) = 1. (3.3)

Next, we have to prove that {xn} is a Cauchy sequence. Suppose it is not so, then there
exists 0 < ϵ0 < 1, t0 > 0 and two subsequences {xnk

} and {xmk
} of {xn} such that

k ≤ n(k) < m(k) and
M(xn(k), xm(k), t0) ≤ 1− ϵ0.

By Remark 2.3, we get

M
(
xn(k), xm(k),

t0
2

)
≤ 1− ϵ0. (3.4)

Now, suppose that m(k) is the smallest integer corresponding to n(k) satisfying (3.4).
Then, we get

M
(
xn(k), xm(k)−1,

t0
2

)
≤ 1− ϵ0. (3.5)

Now, using condition (FML-4), (3.4) and (3.5), we obtain

1− ϵ0 ≥M(xn(k), xm(k), t0)

≥M
(
xn(k), xm(k)−1,

t0
2

)
∗M

(
xm(k)−1, xm(k),

t0
2

)
> (1− ϵ0) ∗M

(
xm(k)−1, xm(k),

t0
2

)
Letting k → ∞ and applying t-norm, it yields

1− ϵ0 ≥M(xn(k), xm(k), t0) ≥ 1− ϵ0

and hence

lim
n→∞

M(xn(k), xm(k), t0) = 1− ϵ0. (3.6)

Also, again by (3.1) and (ξ2), for x = xnk−1, y = xmk−1 and t = t0, we get

0 ≤ ξ
(
M(xn(k)−1, xm(k)−1, t0),M(xn(k), xm(k), t0)

)
<

1

M(xn(k)−1, xm(k)−1, t0)
− 1

M(xn(k), xm(k), t0)
,
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so that

M(xn(k), xm(k), t0) > M(xn(k)−1, xm(k)−1, t0)

≥M
(
xn(k)−1, xn(k),

t0
2

)
∗M

(
xn(k), xm(k)−1,

t0
2

)
> M

(
xn(k)−1, xn(k),

t0
2

)
∗ (1− ϵ0)

which on letting k → ∞ and using t-norm yields

1− ϵ0 > lim
k→∞

M(xn(k)−1, xm(k)−1, t0) ≥ 1− ϵ0.

Hence, we have

lim
k→∞

M(xn(k)−1, xm(k)−1, t0) = 1− ϵ0. (3.7)

Henceforth, by (3.2), we have α(xn(k)−1, xm(k)−1, t0) ≥ 1, thus taking {tk = M(xn(k)−1,
xm(k)−1, t0)} and {sk =M(xn(k), xm(k), t0)} and applying (ξ2), we obtain

0 ≤ lim sup
k→∞

ξ
(
M(xn(k)−1, xm(k)−1, t0),M(xn(k), xm(k), t0)

)
< 0,

a contradiction. Thus, {xn} is a Cauchy sequence in (X,M, ∗). Now, by the completeness
of X, there exists x ∈ X such that {xn} → x. If T is continuous, then we have {Txn} →
Tx, which by uniqueness of limit implies that Tx = x. This completes the proof.

In the next theorem, we present the uniqueness of fixed point.

Theorem 3.10. In addition to the hypothesis of Theorem 3.9, if the following condition
is fulfilled:

(d) for every x, y ∈ Fix(T ), there exists w ∈ X such that α(x,w, t) ≥ 1 and
α(y, w, t) ≥ 1, ∀ t > 0,

then the fixed point of T is unique.

Proof. The existence part is followed by Theorem 3.9. For the uniqueness of fixed point,
assume that x and x∗ are two distinct fixed points of T . Then by condition (d), there
exists a point w ∈ X such that α(x,w, t) ≥ 1 and α(x∗, w, t) ≥ 1, ∀ t > 0.

Construct a sequence {wn} ⊆ X by w0 = w and wn+1 = Twn, ∀ n ∈ N ∪ {0}. By
triangular α-admissibility, we have

α(x,wn, t) ≥ 1 and α(x∗, wn, t) ≥ 1, ∀ n ∈ N ∪ {0} and t > 0 (3.8)

Now, using (3.8) and applying (3.1) (for x = x and y = wn), we derive

M(x,wn+1, t) > M(x,wn, t), ∀ n ∈ N ∪ {0} and t > 0 (3.9)

which shows that {M(x,wn, t)} is an increasing sequence of positive real numbers in (0, 1].
Let L(t) = limn→∞M(x,wn, t). Our claim is that L(t) = 1, ∀ t > 0. Assume on contrary
that there exists some t0 > 0 such that L(t0) < 1. Thus, for {tn = M(x,wn, t0)} and
{sn =M(x,wn+1, t0)}, by (ξ2) and applying (3.1), we obtain

0 ≤ lim
n→∞

ξ
(
M(x,wn, t0),M(x,wn+1, t0)

)
< 0, (3.10)

a contradiction. Hence, L(t) = 1, ∀ t > 0. Thus, we have limn→∞M(x,wn, t) = 1, ∀ t >
0, i.e., limn→∞ wn = x. In the similar way, we can prove that limn→∞ wn = x∗. By
uniqueness of limit, we obtain x = x∗ and it completes the proof.
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Now, we present the following example which exhibits the utility of Theorem 3.9.

Example 3.11. Let X = [0, 1]. Define t-norm ∗ : [0, 1]×[0, 1] → [0, 1] by p∗q = min{p, q}
and define fuzzy metric-like space F by

F (x, y, t) =
t

t+ σ(x, y)
,

where σ(x, y) = x2 + y2 is metric-like space.
Then (X,F, .) is a complete fuzzy metric-like space. Define mappings α : X×X×(0,∞) →
[0,∞) and T : X → X by

α(x, y, t) =

1 if x, y ∈ [0,
1

2
],

0 otherwise

and

Tx =


ax

1 + x
if x ∈ [0,

1

2
],

x otherwise

where a ∈ (0, 1). Then, we have (∀ x, y ∈ X and t > 0)

1

F (x, y, t)
− 1 =

t+ σ(x, y)

t
− 1 =

σ(x, y)

t
=
x2 + y2

t

Also, for x, y ∈ X such that α(z, y, t) ≥ 1, we have

1

F (Tx, Ty, t)
− 1 =

t+ σ(Tx, Ty)

t
− 1 =

σ(Tx, Ty)

t

=
(Tx)2 + (Ty)2

t
=

( ax
1+x )

2 + ( ay
1+y )

2

t

=

a2x2

(1+x)2 + a2y2

(1+y)2

t
.

Then, taking ξ(t, s) = k( 1t − 1)− ( 1s − 1), for any k ∈ [a, 1), for each a ∈ (0, 1), we obtain
(for x, y ∈ X)

α(x, y, t) ≥ 1 ⇒ ξ
(
F (x, y, t), F (Tx, Ty, t)

)
= k

(x2 + y2

t

)
−
( a2x2

(1+x)2 + a2y2

(1+y)2

t

)
=
x2

t

(
k − a2

(1 + x)2

)
+
y2

t

(
k − a2

(1 + y)2

)
≥ 0

for all t > 0. Hence, all the conditions of Theorem 3.1 are satisfied and the conclusion
of the theorem holds, i.e., T has a unique fixed point (namely x = 0). But the result of
Gregori and Sapena [6, 10] can not be applied. Indeed, for any x, y ∈ ( 12 , 1], there does
not exist any k ∈ (0, 1) such that (3.1) is satisfied.

Next, Theorem 3.9 can be improved as follows:
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Theorem 3.12. The conclusions of Theorems 3.9 and 3.10 hold if we replace α-admissible
ΞMA-contraction by the following (retaining the other conditions are same):

x, y ∈ X, α(x, y, t) ≥ 1 ⇒ ξ(F (x, y, t), F (Tnx, Tny, t) ≥ 0

for some n ∈ N and ∀ t > 0.

Proof. By Theorem 3.9, Tn has a unique fixed point, x ∈ X (say), i.e., Tnx = x. Also
Tn(Tx) = T (Tnx) = Tx, i.e., Tx is the fixed point of T . But, by the uniqueness of fixed
point of T , we have Tx = x. Since fixed point of T is also that of Tn, so T has a unique
fixed point.

The following example exhibits that Theorem 3.12 is a genuine extension of Theorem
3.9.

Example 3.13. Let X = [−1, 1] and define a mapping F on X ×X × (0,∞) as:

F (x, y, t) =

{
1 if x = y,

min{1− |x|
2 , 1−

|y|
2 } otherwise.

The space (X,F, ∗) is a complete fuzzy metric-like space with minimum t-norm. Define
mappings α : X ×X × (0,∞) → [0,∞) and T : X → X as:

α(x, y, t) = 1, ∀ x, y ∈ X and t > 0

and

Tx =

{
0 if − 1 < x < 0,

1 if 0 ≤ x ≤ 1,

respectively. We have

T 2x = 1, x ∈ X

Then, with ξ(t, s) = k( 1t −1)( 1s −1), ∀ t, s ∈ (0, 1] and any k ∈ (0, 1), all the conditions of
Theorem 3.12 are satisfied and T has a unique fixed point (namely x = 1). But Theorem
3.9 can not be applied here, since T is not an α-admissible ΞMA-contraction mapping.
Indeed, for x = −1

2 and y = 1
2 , F (Tx, Ty, t) < F (x, y, t), ∀ t > 0, which is a contradiction.

4. Consequences

In this section, we deduce some corollaries as consequences of Theorem 3.12 starting
with the following one.

Corollary 4.1. (Banach [17] type) Let (X,F, ∗) be a complete fuzzy metric-like space
and T : X → X a mapping satisfying

x, y ∈ X α(x, y, t) ≥ 1 ⇒ 1

F (Tx, Ty, t)
− 1 ≤ k

( 1

F (x, y, t)
− 1

)
,

for all t > 0 and k ∈ (0, 1). Then T has a unique fixed point.

Proof. The proof follows from Theorem 3.12 and Example 3.2.

By taking α(x, y, t) = 1, ∀ x, y ∈ X and t > 0, Corollary 4.1 reduces to the following
result by Gregori and Sapena [6].
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Corollary 4.2. Let (X,F, ∗) be a complete fuzzy metric-like space and T : X → X a
mapping satisfying

1

F (Tx, Ty, t)
− 1 ≤ k

( 1

F (x, y, t)
− 1

)
,

for all x, y ∈ X, t > 0 and k ∈ (0, 1). Then T has a unique fixed point.

In the next corollary, we are going to present Boyd and Wong [18] type result in the
setting of fuzzy metric-like spaces.

Corollary 4.3. (Boyd and Wong [18] type) Let (X,F, ∗) be a complete fuzzy metric-like
space and T : X → X a mapping satisfying

x, y ∈ X α(x, y, t) ≥ 1 ⇒ 1

F (Tx, Ty, t)
− 1 ≤ ψ

( 1

F (x, y, t)
− 1

)
,

for all t > 0, where ψ : [0,∞) → [0,∞) is a given function such that ψ(r) < r, for all
r > 0 and ψ(0) = 0. Then T has a unique fixed point.

Proof. In view of Theorem 3.9 and Example 3.3, the result follows.

Following is [19]-type fixed point result.

Corollary 4.4. (Abbas et al. [19] type) Let (X,F, ∗) be a complete fuzzy metric-like
space and T : X → X a mapping satisfying

x, y ∈ X α(x, y, t) ≥ 1 ⇒ 1

F (Tx, Ty, t)
− 1 ≤

( 1

F (x, y, t)
− 1

)
− ψ

( 1

F (x, y, t)
− 1

)
,

for all t > 0, where ψ : [0,∞) → [0,∞) is a given function such that ψ(r) > 0, for all
r > 0 and ψ(0) = 0. Then T has a unique fixed point.

Proof. Taking into account of Theorem 3.9 and Example 3.4, the result follows.

Next, we present the following results, which are known in some natural settings but
seems new to the fuzzy setting.

Corollary 4.5. Let (X,F, ∗) be a complete fuzzy metric-like space and T : X → X a
mapping satisfying

x, y ∈ X α(x, y, t) ≥ 1 ⇒ F (Tx, Ty, t) ≥ ψ(F (x, y, t)),

for all t > 0, where ψ : (0, 1] → (0, 1] is nondecreasing and left-continuous function such
that ψ(r) > r, for all r ∈ (0, 1). Then T has a unique fixed point.

Proof. The result follows from Theorem 3.9 and Example 3.5.

Corollary 4.6. Let (X,F, ∗) be a complete fuzzy metric-like space and T : X → X a
mapping satisfying

x, y ∈ X α(x, y, t) ≥ 1 ⇒ 1

F (Tx, Ty, t)
− 1 ≤

( 1

F (x, y, t)
− 1

)
.ψ
( 1

F (x, y, t)
− 1

)
,

for all t > 0, where ψ : [0,∞) → [0,∞) is a given function such that minr→s+ ψ(r) > 0,
for all s > 0. Then T has a unique fixed point.

Proof. The result follows from Theorem 3.9 and Example 3.6.
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Corollary 4.7. Let (X,F, ∗) be a complete fuzzy metric-like space and T : X → X a
mapping satisfying

x, y ∈ X α(x, y, t) ≥ 1 ⇒
∫ 1

F (Tx, Ty, t)
−1

0

ψ(s)ds ≤ 1

F (x, y, t)
− 1,

for all t > 0, where ψ : [0,∞) → [0,∞) is a given function such that

∫ r

0

ψ(s)ds exists

and

∫ r

0

ψ(s)ds > 0, for each r > 0. Then T has a unique fixed point.

Proof. In view of Theorem 3.9 and Example 3.7, this result follows.

5. Application

In recent past, many authors used various sufficient conditions to find the existence
and uniqueness of solutions of integral equations in varied settings. In this section, we
consider a Fredholm non-linear integral equation and utilize our proved result in the
setting of fuzzy metric-like spaces to find its unique solution. We see that by applying
Theorem 3.9, this Fredholm non-linear integral equation has a unique solution under
certain specific conditions and without these conditions, we cannot apply our results to
find the unique solution.

To accomplish this, we consider the following:

x(t) =

∫ b

a

K(t, s)h(x(s))ds+ g(t), (5.1)

for all t ∈ Ω = [a, b](a, b ∈ R), K ∈ C(Ω× Ω,R) and g, h ∈ C(Ω,R).

Let Φ be the collection of all mappings ϕ : [0,∞) → [0,∞) satisfying the following
conditions:

(ϕ1) ϕ is non-decreasing;
(ϕ2) ϕ(t) ≤ t, ∀ t ∈ [0,∞).

Now, we are equipped to present our theorem in this section as follows:

Theorem 5.1. Consider the integral equation (5.1) with K ∈ C(Ω × Ω,R) and g ∈
C(Ω,R). If the following conditions are satisfied:

(A1) there exists a positive number λ and ϕ ∈ Φ such that ∀ x, y ∈ C(Ω,R), the
following condition holds:

h(x)− h(y) ≤ λϕ(x− y), (5.2)

(A2) λ supt∈Ω

∫ b

a

|K(t, s)|ds ≤ 1

2
.

Then, the equation (5.1) has a unique solution in C(Ω,R).

Proof. Observe that X = C(Ω,R) is a complete metric space with respect to sup-metric

σ(x, y) = sup
t∈Ω

(|x(t)|+ |y(t)|+ a).
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Also, the space (X,F, ∗) with

F (x, y, t) =
t

t+ σ(x, y)
, ∀ x, y ∈ X and t > 0

is a complete fuzzy metric-like space with product t-norm.
Now we define a mapping T : X → X as:

Sx(t) =

∫ b

a

K(t, s)h(x(s))ds+ g(t), ∀ t ∈ Ω. (5.3)

Using (5.2) and (5.3), we have

Tx(t)− Ty(t) =

∫ b

a

K(t, s)[h(x(s))− h(y(s))]ds

≤ λ

∫ b

a

K(t, s)ϕ(x(s)− y(s))ds (5.4)

Using(ϕ1), we have

ϕ(x(s)− y(s) ≤ ϕ(sup(|x(s)|+ |y(s)|+ a)) = ϕ(σ(x, y)). (5.5)

Applying (5.5) in (5.4), we obtain

ϕ(x(s)− y(s) ≤ λ

∫ b

a

K(t, s)ϕ(σ(x, y))ds.

Taking supremum over t ∈ Ω, using conditions (A2) and (ϕ2), we get

σ(Tx, Ty) ≤ λϕ(σ(x, y))

∫ b

a

|K(t, s)|ds

≤ 1

2
ϕ(σ(x, y)) ≤ 1

2
(σ(x, y)). (5.6)

Now, we have

1

F (Tx, Ty, t)
− 1 =

σ(Tx, Ty)

t
≤ σ(x, y)

2t
=

1

2

( 1

F (x, y, t)
− 1

)
.

By taking ξ(t, s) = 1
2

(
1
t − 1

)
−

(
1
s − 1

)
. ∀ t, s ∈ (0, 1], all the conditions of Theorem

3.9 are satisfied with α(x, y, t) = 1, ∀ x, y ∈ X and t > 0. Hence, by the conclusions of
Theorems 3.9 and 3.10, (5.1) has a unique solution in C(Ω,R).

6. Conclusion

In this paper, motivated by the work of Khojasteh et al. [15] and Karapinar [20], we
introduce a new simulation function besides proposing the concept of a new contraction
namely, α-admissible ΞMA-contraction and utilize the same to prove fixed point results
ensuring the existence and uniqueness of fixed points. Furthermore, via some corollaries,
we demonstrate that our main result is general enough to unify several results of the
existing literature. Finally, by presenting an application, we exhibit the usability of our
main result.
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