Common Fixed Point Theorems for Six Weakly Compatible Mappings in D^{*}-Metric Spaces

S. Sedghi , D. Turkoglu , N. Shobe and S. Sedghi

Abstract

In this paper, we give some new definitions of D^{*}-metric spaces and we prove a common fixed point theorem for six mappings under the condition of weakly compatible mappings in complete D^{*}-metric spaces. We get some improved versions of several fixed point theorems in complete D^{*}-metric spaces.

Keywords : D^{*}-metric contractive mapping; Complete D^{*}-metric space; Common fixed point theorem.
2000 Mathematics Subject Classification : 54E40; 54E35; 54H25

1 Introduction and Preliminaries

In 1922, the Polish mathematician, Banach, proved a theorem which ensures under appropriate conditions, the existence and uniqueness of a fixed point.His result is called Banach's fixed point theorem or the Banach contraction principle. This theorem provides a technique for solving a variety of applied problems in mathematical science and engineering.Many authors have extended, generalized and improved Banach's fixed point theorem in different ways. In [11], Jungck introduced more generalized commuting mappings, called compatible mappings, which are more general than commuting and weakly commuting mappings. This concept has been useful for obtaining more comprehensive fixed point theorems(see, e.g.,($[1,2,3,4,6,8,9,12,13,14,16])$. One such generalization is generalized metric space or D-metric space initiated by Dhage [5] in 1992. He proved some results on fixed points for a self-map satisfying a contraction for complete and bounded D-metric spaces. Rhoades [11] generalized Dhage's contractive condition by increasing the number of factors and proved the existence of unique fixed point of a self-map in D-metric space. Recently, motivated by the concept of compatibility for metric space, Singh and Sharma [15] introduced the concept of D-compatibility

[^0]of maps in D-metric space and proved some fixed point theorems using a contractive condition. Dhage [5] introduced the notion of generalized metric or D-metric spaces and claimed that D-metric convergence defines a Hausdorff topology and that D-metric is sequentially continuous in all the three variables.Many authors have taken these claims for granted and used them in proving fixed point theorems in D-metric spaces. Unfortunately, almost all theorems in D-metric spaces are not valid .In this paper, we introduce D^{*}-metric which is a probable modification of the definition of D-metric introduced by Dhage [5] and prove some basic properties in D^{*}-metric spaces. We also prove a theorem for six maps in D^{*}-metric spaces .

In what follows $\left(X, D^{*}\right)$ will denote a D^{*}-metric space, \mathbb{N} the set of all natural numbers and \mathbb{R}^{+}the set of all positive real numbers.

Definition 1.1. Let X be a nonempty set. A generalized metric (or D^{*}-metric) on X is a function: $D^{*}: X^{3} \longrightarrow \mathbb{R}^{+}$that satisfies the following conditions for each $x, y, z, a \in X$.
(1) $D^{*}(x, y, z) \geq 0$,
(2) $D^{*}(x, y, z)=0$ if and only if $x=y=z$,
(3) $D^{*}(x, y, z)=D^{*}(p\{x, y, z\})$,(symmetry) where p is a permutation function,
(4) $D^{*}(x, y, z) \leq D^{*}(x, y, a)+D^{*}(a, z, z)$.

The pair $\left(X, D^{*}\right)$ is called a generalized metric (or D^{*}-metric) space.
Immediate examples of such a function are
(a) $D^{*}(x, y, z)=\max \left\{D^{*}(x, y), D^{*}(y, z), D^{*}(z, x)\right\}$,
(b) $D^{*}(x, y, z)=d(x, y)+d(y, z)+d(z, x)$.

Here, d is the ordinary metric on X.
(c) If $X=\mathbb{R}^{n}$ then we define

$$
D^{*}(x, y, z)=\left(\|x-y\|^{p}+\|y-z\|^{p}+\|z-x\|^{p}\right)^{\frac{1}{p}}
$$

for every $p \in \mathbb{R}^{+}$.
(d) If $X=\mathbb{R}^{+}$then we define

$$
D^{*}(x, y, z)=\left\{\begin{array}{cc}
0 & \text { if } x=y=z \\
\max \{x, y, z\} & \text { otherwise }
\end{array}\right.
$$

Remark 1.2. In a D^{*}-metric space, we prove that $D^{*}(x, x, y)=D^{*}(x, y, y)$. For
(i) $D^{*}(x, x, y) \leq D^{*}(x, x, x)+D^{*}(x, y, y)=D^{*}(x, y, y)$ and similarly
(ii) $D^{*}(y, y, x) \leq D^{*}(y, y, y)+D^{*}(y, x, x)=D^{*}(y, x, x)$.

Hence by (i), (ii) we get $D^{*}(x, x, y)=D^{*}(x, y, y)$.
Let $\left(X, D^{*}\right)$ be a D^{*}-metric space. For $r>0$ define

$$
B_{D^{*}}(x, r)=\left\{y \in X: D^{*}(x, y, y)<r\right\}
$$

Example 1.3. Let $X=\mathbb{R}$. Denote $D^{*}(x, y, z)=|x-y|+|y-z|+|z-x|$ for all $x, y, z \in \mathbb{R}$. Thus

$$
\begin{aligned}
B_{D^{*}}(1,2) & =\left\{y \in \mathbb{R}: D^{*}(1, y, y)<2\right\} \\
& =\{y \in \mathbb{R}:|y-1|+|y-1|<2\} \\
& =\{y \in \mathbb{R}:|y-1|<1\} \\
& =(0,2)
\end{aligned}
$$

Definition 1.4. Let $\left(X, D^{*}\right)$ be a D^{*}-metric space and $A \subset X$.
(1) If for every $x \in A$ there exist $r>0$ such that $B_{D^{*}}(x, r) \subset A$, then subset A is called open subset of X.
(2) Subset A of X is said to be D^{*}-bounded if there exists $r>0$ such that $D^{*}(x, y, y)<r$ for all $x, y \in A$.
(3) A sequence $\left\{x_{n}\right\}$ in X converges to x if and only if

$$
D^{*}\left(x_{n}, x_{n}, x\right)=D^{*}\left(x, x, x_{n}\right) \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

That is for each $\epsilon>0$ there exist $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\forall n \geq n_{0} \Longrightarrow D^{*}\left(x, x, x_{n}\right)<\epsilon \tag{*}
\end{equation*}
$$

This is equivalent with, for each $\epsilon>0$ there exist $n_{0} \in \mathbb{N}$ such that

$$
\forall n, m \geq n_{0} \Longrightarrow D^{*}\left(x, x_{n}, x_{m}\right)<\epsilon \quad(* *)
$$

Indeed, if have (*), then

$$
D^{*}\left(x_{n}, x_{m}, x\right)=D^{*}\left(x_{n}, x, x_{m}\right) \leq D^{*}\left(x_{n}, x, x\right)+D^{*}\left(x, x_{m}, x_{m}\right)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\varepsilon
$$

Conversely, set $m=n$ in $(* *)$ we have $D^{*}\left(x_{n}, x_{n}, x\right)<\epsilon$.
(4) Sequence $\left\{x_{n}\right\}$ in X is called a Cauchy sequence if for each $\epsilon>0$, there exits $n_{0} \in \mathbb{N}$ such that $D^{*}\left(x_{n}, x_{n}, x_{m}\right)<\epsilon$ for each $n, m \geq n_{0}$. The D^{*}-metric space $\left(X, D^{*}\right)$ is said to be complete if every Cauchy sequence is convergent.

Let τ be the set of all $A \subset X$ with $x \in A$ if and only if there exist $r>0$ such that $B_{D^{*}}(x, r) \subset A$. Then τ is a topology on X (induced by the D^{*}-metric).

Lemma 1.5. Let $\left(X, D^{*}\right)$ be a D^{*}-metric space. If $r>0$, then the ball $B_{D^{*}}(x, r)$ with center $x \in X$ and radius r is the open ball.

Proof. Let $z \in B_{D^{*}}(x, r)$ so that $D^{*}(x, z, z)<r$. If set $D^{*}(x, z, z)=\delta$ and $r^{\prime}=$ $r-\delta$ then we prove that $B_{D^{*}}\left(z, r^{\prime}\right) \subseteq B_{D^{*}}(x, r)$. Let $y \in B_{D^{*}}\left(z, r^{\prime}\right)$, by triangular inequality we have $D^{*}(x, y, y)=D^{*}(y, y, x) \leq D^{*}(y, y, z)+D^{*}(z, x, x)<r^{\prime}+\delta=r$. Hence $B_{D^{*}}\left(z, r^{\prime}\right) \subseteq B_{D^{*}}(x, r)$. That is ball $B_{D^{*}}(x, r)$ is open ball.

Lemma 1.6. Let $\left(X, D^{*}\right)$ be a D^{*}-metric space. If sequence $\left\{x_{n}\right\}$ in X converges to x, then x is unique.

Proof. Let $x_{n} \longrightarrow y$ and $y \neq x$. Since $\left\{x_{n}\right\}$ converges to x and y, for each $\epsilon>0$ there exist
$n_{1} \in \mathbb{N}$ such that for every $n \geq n_{1} \Longrightarrow D^{*}\left(x, x, x_{n}\right)<\frac{\epsilon}{2}$
and
$n_{2} \in \mathbb{N}$ such that for every $n \geq n_{2} \Longrightarrow D^{*}\left(y, y, x_{n}\right)<\frac{\epsilon}{2}$.
If set $n_{0}=\max \left\{n_{1}, n_{2}\right\}$, then for every $n \geq n_{0}$ by triangular inequality we have

$$
D^{*}(x, x, y) \leq D^{*}\left(x, x, x_{n}\right)+D^{*}\left(x_{n}, y, y\right)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\varepsilon
$$

Hence $D^{*}(x, x, y)=0$ is a contradiction. So, $x=y$.

Lemma 1.7. Let $\left(X, D^{*}\right)$ be a D^{*}-metric space. If sequence $\left\{x_{n}\right\}$ in X is converges to x, then sequence $\left\{x_{n}\right\}$ is a Cauchy sequence.

Proof. Since $x_{n} \longrightarrow x$ for each $\epsilon>0$ there exists
$n_{1} \in \mathbb{N}$ such that for every $n \geq n_{1} \Longrightarrow D^{*}\left(x_{n}, x_{n}, x\right)<\frac{\epsilon}{2}$
and
$n_{2} \in \mathbb{N}$ such that for every $m \geq n_{2} \Longrightarrow D^{*}\left(x, x_{m}, x_{m}\right)<\frac{\epsilon}{2}$.
If set $n_{0}=\max \left\{n_{1}, n_{2}\right\}$, then for every $n, m \geq n_{0}$ by triangular inequality we have
$D^{*}\left(x_{n}, x_{n}, x_{m}\right) \leq D^{*}\left(x_{n}, x_{n}, x\right)+D^{*}\left(x, x_{m}, x_{m}\right)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$.Hence sequence $\left\{x_{n}\right\}$ is a Cauchy sequence.

Definition 1.8. Let $\left(X, D^{*}\right)$ be a D^{*} - metric space. D^{*} is said to be continuous function on $X^{3} \times(0, \infty)$ if

$$
\lim _{n \rightarrow \infty} D^{*}\left(x_{n}, y_{n}, z_{n}\right)=D^{*}(x, y, z)
$$

whenever a sequence $\left\{\left(x_{n}, y_{n}, z_{n}\right)\right\}$ in X^{3} converges to a point $(x, y, z) \in X^{3}$ i.e.

$$
\lim _{n \rightarrow \infty} x_{n}=x, \lim _{n \rightarrow \infty} y_{n}=y, \lim _{n \rightarrow \infty} z_{n}=z
$$

Lemma 1.9. Let $\left(X, D^{*}\right)$ be a D^{*} - metric space. Then D^{*} is continuous function on X^{3}.

Proof. Since the sequence $\left\{\left(x_{n}, y_{n}, z_{n}\right)\right\}$ in X^{3} converges to a point $(x, y, z) \in X^{3}$ i.e.

$$
\lim _{n \rightarrow \infty} x_{n}=x, \lim _{n \rightarrow \infty} y_{n}=y, \lim _{n \rightarrow \infty} z_{n}=z
$$

for each $\epsilon>0$ there exists
$n_{1} \in \mathbb{N}$ such that for every $n \geq n_{1} \Longrightarrow D^{*}\left(x, x, x_{n}\right)<\frac{\epsilon}{3}$
$n_{2} \in \mathbb{N}$ such that for every $n \geq n_{2} \Longrightarrow D^{*}\left(y, y, y_{n}\right)<\frac{\epsilon}{3}$,
and similarly there exist $n_{3} \in \mathbb{N}$ such that for every $n \geq n_{3} \Longrightarrow D^{*}\left(z, z, z_{n}\right)<\frac{\epsilon}{3}$.

If set $n_{0}=\max \left\{n_{1}, n_{2}, n_{3}\right\}$, then for every $n \geq n_{0}$ by triangular inequality we have

$$
\begin{aligned}
D^{*}\left(x_{n}, y_{n}, z_{n}\right) & \leq D^{*}\left(x_{n}, y_{n}, z\right)+D^{*}\left(z, z_{n}, z_{n}\right) \\
& \leq D^{*}\left(x_{n}, z, y\right)+D^{*}\left(y, y_{n}, y_{n}\right)+D^{*}\left(z, z_{n}, z_{n}\right) \\
& \leq D^{*}(z, y, x)+D^{*}\left(x, x_{n}, x_{n}\right)+D^{*}\left(y, y_{n}, y_{n}\right)+D^{*}\left(z, z_{n}, z_{n}\right) \\
& <D^{*}(x, y, z)+\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3} \\
& =D^{*}(x, y, z)+\epsilon
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
& D^{*}\left(x_{n}, y_{n}, z_{n}\right)-D^{*}(x, y, z)<\epsilon \\
D^{*}(x, y, z) & \leq D^{*}\left(x, y, z_{n}\right)+D^{*}\left(z_{n}, z, z\right) \\
\leq & D^{*}\left(x, z_{n}, y_{n}\right)+D^{*}\left(y_{n}, y, y\right)+D^{*}\left(z_{n}, z, z\right) \\
\leq & D^{*}\left(z_{n}, y_{n}, x_{n}\right)+D^{*}\left(x_{n}, x, x\right)+D^{*}\left(y_{n}, y, y\right)+D^{*}\left(z_{n}, z, z\right) \\
< & D^{*}\left(x_{n}, y_{n}, z_{n}\right)+\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3} \\
= & D^{*}\left(x_{n}, y_{n}, z_{n}\right)+\epsilon
\end{aligned}
$$

That is,

$$
D^{*}(x, y, z)-D^{*}\left(x_{n}, y_{n}, z_{n}\right)<\epsilon
$$

Therefore we have $\left|D^{*}\left(x_{n}, y_{n}, z_{n}\right)-D^{*}(x, y, z)\right|<\epsilon$, that is

$$
\lim _{n \rightarrow \infty} D^{*}\left(x_{n}, y_{n}, z_{n}\right)=D^{*}(x, y, z)
$$

Definition 1.10. Let $\left(X, D^{*}\right)$ is a D^{*} - metric space, then D^{*} is said to be of the first type if for every $x, y \in X$ we have

$$
D^{*}(x, x, y) \leq D^{*}(x, y, z)
$$

for every $z \in X$.
In 1998, Jungck and Rhoades [8] introduced the following concept of weak compatibility.

Definition 1.11. Let A and S be mappings from a D^{*}-metric space $\left(X, D^{*}\right)$ into itself. Then the mappings are said to be weak compatible if they commute at their coincidence point, that is, $A x=S x$ implies that $A S x=S A x$.

2 Main Results

A class of implicit relation

Throughout this section $\left(X, D^{*}\right)$ denotes a D^{*}-metric space and Φ denotes a family of mappings such that for each $\phi \in \Phi, \phi:\left(\mathbb{R}^{+}\right)^{4} \longrightarrow \mathbb{R}^{+}$, is continuous and increasing in each co-ordinate variable. Also $\gamma(t)=\phi(t, t, t, t)<t$ for every $t \in \mathbb{R}^{+}$

Example 2.1. Let $\phi:\left(\mathbb{R}^{+}\right)^{4} \longrightarrow \mathbb{R}^{+}$is define by

$$
\phi\left(t_{1}, t_{2}, t_{3}, t_{4}\right)=\frac{1}{5}\left(t_{1}+t_{2}+t_{3}+t_{4}\right)
$$

Our main result, for a complete D^{*}-metric space X, reads follows:

Theorem 2.2. Let A, B, C, S, T and R be self-mappings of a complete D^{*} - metric space $\left(X, D^{*}\right)$ where D^{*} is first type with :
(i) $A(X) \subseteq T(X), \quad B(X) \subseteq S(X), \quad C(X) \subseteq R(X)$ and $A(X)$ or $B(X)$ or $C(X)$ is a closed subset of X,
(ii) $D^{*}(A x, B y, C z) \leq q \phi\left(D^{*}(R x, T y, S z), D^{*}(R x, T y, B y), D^{*}(T y, S z, C z)\right.$, $\left.D^{*}(S z, R x, A x)\right)$, for every $x, y, z \in X$, some $0<q<1$ and $\phi \in \Phi$,
(iii) the pair $(A, R),(B, T)$ and (S, C) are weak compatible. Then A, B, C, S, T and R have a unique common fixed point in X.

Proof. Let $x_{0} \in X$ be an arbitrary point. By (i), there exists $x_{1}, x_{2}, x_{3} \in X$ such that

$$
A x_{0}=T x_{1}=y_{0}, \quad B x_{1}=S x_{2}=y_{1} \quad \text { and } \quad C x_{2}=R x_{3}=y_{2} .
$$

Inductively, construct sequence $\left\{y_{n}\right\}$ in X such that $y_{3 n}=A x_{3 n}=T x_{3 n+1}$, $y_{3 n+1}=B x_{3 n+1}=S x_{3 n+2}$ and $y_{3 n+2}=C x_{3 n+2}=R x_{3 n+3}$, for $n=0,1,2, \cdots$.

Now, we prove $\left\{y_{n}\right\}$ is a Cauchy sequence. Let $D_{m}^{*}=D^{*}\left(y_{m}, y_{m+1}, y_{m+2}\right)$. Then, we have

$$
\begin{aligned}
D_{3 n}^{*} & =D^{*}\left(y_{3 n}, y_{3 n+1}, y_{3 n+2}\right)=D^{*}\left(A x_{3 n}, B x_{3 n+1}, C x_{3 n+2}\right) \\
& \leq q \phi\binom{D^{*}\left(R x_{3 n}, T x_{3 n+1}, S x_{3 n+2}\right), D^{*}\left(R x_{3 n}, T x_{3 n+1}, B x_{3 n+1}\right)}{D^{*}\left(T x_{3 n+1}, S x_{3 n+2}, C x_{3 n+2}\right), D^{*}\left(S x_{3 n+2}, R x_{3 n}, A x_{3 n}\right)} \\
& =q \phi\binom{D^{*}\left(y_{3 n-1}, y_{3 n}, y_{3 n+1}\right), D^{*}\left(y_{3 n-1}, y_{3 n}, y_{3 n+1}\right)}{D^{*}\left(y_{3 n}, y_{3 n+1}, y_{3 n+2}\right), D^{*}\left(y_{3 n+1}, y_{3 n-1}, y_{3 n}\right)} \\
& =q \phi\left(D_{3 n-1}^{*}, D_{3 n-1}^{*}, D_{3 n}^{*}, D_{3 n-1}^{*}\right) .
\end{aligned}
$$

We prove that $D_{3 n}^{*} \leq D_{3 n-1}^{*}$, for every $n \in \mathbb{N}$. If $D_{3 n}^{*}>D_{3 n-1}^{*}$ for some $n \in \mathbb{N}$, by above inequality we have $D_{3 n}^{*}<q D_{3 n}^{*}$, is a contradiction. Now, if $m=3 n+1$,
then

$$
\begin{aligned}
D_{3 n+1}^{*} & =D^{*}\left(y_{3 n+1}, y_{3 n+2}, y_{3 n+3}\right) \\
& =D^{*}\left(y_{3 n+3}, y_{3 n+1}, y_{3 n+2}\right) \\
& =D^{*}\left(A x_{3 n+3}, B x_{3 n+1}, C x_{3 n+2}\right) \\
& \leq q \phi\binom{D^{*}\left(R x_{3 n+3}, T x_{3 n+1}, S x_{3 n+2}\right), D^{*}\left(R x_{3 n+3}, T x_{3 n+1}, B x_{3 n+1}\right)}{D^{*}\left(T x_{3 n+1}, S x_{3 n+2}, C x_{3 n+2}\right), D^{*}\left(S x_{3 n+2}, R x_{3 n+3}, A x_{3 n+3}\right)} \\
& =q \phi\binom{D^{*}\left(y_{3 n+2}, y_{3 n}, y_{3 n+1}\right), D^{*}\left(y_{3 n+2}, y_{3 n}, y_{3 n+1}\right)}{D^{*}\left(y_{3 n}, y_{3 n+1}, y_{3 n+2}\right), D^{*}\left(y_{3 n+1}, y_{3 n+2}, y_{3 n+3}\right)} \\
& =q \phi\left(D_{3 n}^{*}, D_{3 n}^{*}, D_{3 n}^{*}, D_{3 n+1}^{*}\right) .
\end{aligned}
$$

Similarly, if $D_{3 n+1}^{*}>D_{3 n}^{*}$ for some $n \in \mathbb{N}$ we have $D_{3 n+1}^{*}<q D_{3 n+1}^{*}$ is a contradiction. If $m=3 n+2$, then

$$
\begin{aligned}
D_{3 n+2}^{*} & =D^{*}\left(y_{3 n+2}, y_{3 n+3}, y_{3 n+4}\right) \\
& =D^{*}\left(y_{3 n+3}, y_{3 n+4}, y_{3 n+2}\right) \\
& =D^{*}\left(A x_{3 n+3}, B x_{3 n+4}, C x_{3 n+2}\right) \\
& \leq q \phi\binom{D^{*}\left(R x_{3 n+3}, T x_{3 n+4}, S x_{3 n+2}\right), D^{*}\left(R x_{3 n+3}, T x_{3 n+4}, B x_{3 n+4}\right)}{D^{*}\left(T x_{3 n+4}, S x_{3 n+2}, C x_{3 n+2}\right), D^{*}\left(S x_{3 n+2}, R x_{3 n+3}, A x_{3 n+3}\right)} \\
& =q \phi\binom{D^{*}\left(y_{3 n+2}, y_{3 n+3}, y_{3 n+1}\right), D^{*}\left(y_{3 n+2}, y_{3 n+3}, y_{3 n+4}\right)}{D^{*}\left(y_{3 n+3}, y_{3 n+1}, y_{3 n+2}\right), D^{*}\left(y_{3 n+1}, y_{3 n+2}, y_{3 n+3}\right)} \\
& =q \phi\left(D_{3 n+1}^{*}, D_{3 n+2}^{*}, D_{3 n+1}^{*}, D_{3 n+1}^{*}\right) .
\end{aligned}
$$

Similarly, if $D_{3 n+2}^{*}>D_{3 n+1}^{*}$ for some $n \in \mathbb{N}$ we have $D_{3 n+2}^{*}<q D_{3 n+2}^{*}$ is a contradiction.

Hence for every $n \in \mathbb{N}$ we have $D_{n}^{*} \leq q D_{n-1}^{*}$. That is

$$
D_{n}^{*}=D^{*}\left(y_{n}, y_{n+1}, y_{n+2}\right) \leq q D^{*}\left(y_{n-1}, y_{n}, y_{n+1}\right) \leq \cdots \leq q^{n} D^{*}\left(y_{0}, y_{1}, y_{2}\right)
$$

Since D^{*} is a first type, hence we have

$$
D^{*}\left(y_{n}, y_{n}, y_{n+1}\right) \leq q^{n} D^{*}\left(y_{0}, y_{1}, y_{2}\right) .
$$

Therefore
$D^{*}\left(y_{n}, y_{n}, y_{m}\right) \leq D^{*}\left(y_{n}, y_{n}, y_{n+1}\right)+D^{*}\left(y_{n+1}, y_{n+1}, y_{n+2}\right)+\cdots+D^{*}\left(y_{m-1}, y_{m-1}, y_{m}\right)$.
Hence

$$
\begin{aligned}
\left.D^{*} y_{n}, y_{n}, y_{m}\right) & \leq q^{n} D^{*}\left(y_{0}, y_{1}, y_{2}\right)+q^{n+1} D^{*}\left(y_{0}, y_{1}, y_{2}\right)+\cdots+q^{m-1} D^{*}\left(y_{0}, y_{1}, y_{2}\right) \\
& =\left(q^{n}+q^{n+1}+\cdots+q^{m-1}\right) D^{*}\left(y_{0}, y_{1}, y_{2}\right) \\
& \leq D^{*}\left(y_{0}, y_{1}, y_{2}\right) \frac{q^{n}}{1-q} \longrightarrow 0
\end{aligned}
$$

Thus the sequence $\left\{y_{n}\right\}$ is Cauchy and by the completeness of $X,\left\{y_{n}\right\}$ converges to y in X. That is, $\lim _{n \rightarrow \infty} y_{n}=y$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} y_{n} & =\lim _{n \rightarrow \infty} A x_{3 n}=\lim _{n \rightarrow \infty} B x_{3 n+1}=\lim _{n \rightarrow \infty} C x_{3 n+2} \\
& =\lim _{n \rightarrow \infty} T x_{3 n+1}=\lim _{n \rightarrow \infty} R x_{3 n+3}=\lim _{n \rightarrow \infty} S x_{3 n+2}=y
\end{aligned}
$$

Let $C(X)$ be a closed subset of X, hence there exist $u \in X$ such that $R u=y$. We prove that $A u=y$. For
$D^{*}\left(A u, B x_{3 n+1}, C x_{3 n+2}\right)$

$$
\leq q \phi\binom{D^{*}\left(R u, T x_{3 n+1}, S x_{3 n+2}\right), D^{*}\left(R u, T x_{3 n+1}, B x_{3 n+1}\right)}{D^{*}\left(T x_{3 n+1}, S x_{3 n+2}, C x_{3 n+2}\right), D^{*}\left(S x_{3 n+2}, R u, A u\right)}
$$

On making $n \longrightarrow \infty$ we get

$$
D^{*}(A u, y, y) \leq q \phi\binom{D^{*}(R u, y, y), D^{*}(R u, y, y)}{D^{*}(y, y, y), D^{*}(y, R u, A u)}
$$

If $D^{*}(y, y, A u)>0$, then we have $D^{*}(A u, y, y)<q D^{*}(y, y, A u)$ is a contradiction. Thus $A u=y$. By the weak compatibility of the pair (R, A) we have $A R u=R A u$. Hence $A y=R y$. We prove that $A y=y$, if $A y \neq y$, then
$D^{*}\left(A y, B x_{3 n+1}, C x_{3 n+2}\right)$

$$
\leq q \phi\binom{D^{*}\left(R y, T x_{3 n+1}, S x_{3 n+2}\right), D^{*}\left(R y, T x_{3 n+1}, B x_{3 n+1}\right)}{D^{*}\left(T x_{3 n+1}, S x_{3 n+2}, C x_{3 n+2}\right), D^{*}\left(S x_{3 n+2}, R y, A y\right)}
$$

As $n \longrightarrow \infty$ we have

$$
\begin{aligned}
D^{*}(A y, y, y) & \leq q \phi\binom{D^{*}(R y, y, y), D^{*}(R y, y, y)}{D^{*}(y, y, y), D^{*}(y, R y, A y)} \\
& \leq q D^{*}(A y, y, y)
\end{aligned}
$$

a contradiction. Therefore, $R y=A y=y$, that is, y is a common fixed of R, A.
Since $y=A y \in A(X) \subseteq R(X)$, hence there exists $v \in X$ such that $T v=y$. We prove that $B v=y$. For
$D^{*}\left(y, B v, C x_{3 n+2}\right)=D^{*}\left(A y, B v, C x_{3 n+2}\right)$

$$
\leq q \phi\binom{D^{*}\left(R y, T v, S x_{3 n+2}\right), D^{*}(R y, T v, B v)}{D^{*}\left(T v, S x_{3 n+2}, C x_{3 n+2}\right), D^{*}\left(S x_{3 n+2}, R y, A y\right)}
$$

On making $n \longrightarrow \infty$ we get

$$
D^{*}(y, B v, y) \leq q \phi\binom{D^{*}(y, y, y), D^{*}(y, y, B v)}{D^{*}(y, y, y), D^{*}(y, y, y)} \leq q D^{*}(y, y, B v)
$$

Thus $B v=y$. By the weak compatibility of the pair (B, T) we have $T B v=B T v$. Hence $B y=T y$. We prove that $B y=y$, if $B y \neq y$, then

$$
D^{*}\left(A y, B y, C x_{3 n+2}\right) \leq q \phi\binom{D^{*}\left(R y, T y, S x_{3 n+2}\right), D^{*}(R y, T y, B y)}{D^{*}\left(T y, S x_{3 n+2}, C x_{3 n+2}\right), D^{*}\left(S x_{3 n+2}, R y, A y\right)}
$$

As $n \longrightarrow \infty$ we have

$$
D^{*}(y, B y, y) \leq q \phi\binom{D^{*}(R y, T y, y), D^{*}(R y, B y, B y)}{D^{*}(B y, y, y), D^{*}(y, y, y)} \leq q D^{*}(y, B y, y)
$$

a contradiction. Therefore, $B y=T y=y$, that is, y is a common fixed of B, T.
Similarly, since $y=B y \in B(X) \subseteq S(X)$, hence there exists $w \in X$ such that $S w=y$. We prove that $C w=y$. For $D^{*}(y, y, C w)=D^{*}(A y, B y, C w)$

$$
\leq q \phi\binom{D^{*}(R y, T y, w), D^{*}(R y, T y, B y)}{D^{*}(T y, S w, C w), D^{*}(S w, R y, A y)} \leq q D^{*}(y, y, C w)
$$

Thus $C w=y$. By weak compatible the pair (C, S) we have $C S w=S C w$, hence $C y=S y$. We prove that $C y=y$, if $C y \neq y$, then $D^{*}(y, y, C y)=D^{*}(A y, B y, C y)$

$$
\leq q \phi\binom{D^{*}(R y, T y, S y), D^{*}(R y, T y, B y)}{D^{*}(T y, S y, C y), D^{*}(S y, R y, A y)} \leq q D^{*}(y, y, C y)
$$

a contradiction. Therefore, $C y=S y=y$, that is, y is a common fixed of C, S.Thus

$$
A y=S y=T y=B y=C y=R y=y
$$

To prove uniqueness, let v be another common fixed point of T, A, B, C, R, S.
If $D^{*}(y, y, v)>0$, hence
$\left.D^{*}(y, y, v)=D^{*}(A y, B y, C v)\right)$

$$
\leq q \phi\binom{D^{*}(R y, T y, S v), D^{*}(R y, T y, B y)}{D^{*}(T y, S v, C v), D^{*}(S v, R y, A y)} \leq q D^{*}(y, y, v)
$$

a contradiction. Therefore, $y=v$ is the unique common fixed point of self-maps T, A, B, C, R, S.

Corollary 2.3. Let S, T, R and $\left\{A_{\alpha}\right\}_{\alpha \in I},\left\{B_{\beta}\right\}_{\beta \in J}$ and $\left\{C_{\gamma}\right\}_{\gamma \in K}$ be the set of all self-mappings of a complete D^{*}-metric space $\left(X, D^{*}\right)$, where D^{*} is first type satisfying:
(i)there exists $\alpha_{0} \in I, \beta_{0} \in J$ and $\gamma_{0} \in K$ such that $A_{\alpha_{0}}(X) \subseteq T(X), \quad B_{\beta_{0}}(X)$ $\subseteq S(X)$ and $C_{\gamma_{0}}(X) \subseteq R(X)$,
(ii) $A_{\alpha_{0}}(X)$ or $B_{\beta_{0}}(X)$ or $C_{\gamma_{0}}(X)$ is a closed subset of X,
(iii) $D^{*}\left(A_{\alpha} x, B_{\beta} y, C_{\gamma} z\right) \leq q \phi\left(D^{*}(R x, T y, S z), D^{*}\left(R x, T y, B_{\beta} y\right)\right.$,
$\left.D^{*}\left(T y, S z, C_{\gamma} z\right), D^{*}\left(S z, R x, A_{\alpha} x\right)\right)$, for every $x, y, z \in X$, some $0<q<1$ and $\phi \in \Phi$, and every $\alpha \in I, \beta \in J, \gamma \in K$,
(iv) the pair $\left(A_{\alpha_{0}}, R\right)$ or $\left(B_{\beta_{0}}, T\right)$ or $\left(C_{\gamma_{0}}, S\right)$ are weak compatible.

Then A, B, C, S, T and R have a unique common fixed point in X.

Proof. By Theorem $2.2 R, S, T$ and $A_{\alpha_{0}}, B_{\beta_{0}}$ and $C_{\gamma_{0}}$ for some $\alpha_{0} \in I, \beta_{0} \in$ $J, \gamma_{0} \in K$ have a unique common fixed point in X. That is there exist a unique $a \in X$ such that $R(a)=S(a)=T(a)=A_{\alpha_{0}}(a)=B_{\beta_{0}}(a)=C_{\gamma_{0}}(a)=a$. Let there exist $\lambda \in J$ such that $\lambda \neq \beta_{0}$ and $D^{*}\left(a, B_{\lambda} a, a\right)>0$ then we have

$$
\begin{aligned}
D^{*}\left(a, B_{\lambda} a, a\right) & =D^{*}\left(A_{\alpha_{0}} a, B_{\lambda} a, C_{\gamma_{0}} a\right) \\
& \leq q \phi\binom{D^{*}(R a, T a, S a), D^{*}\left(R a, T a, B_{\lambda} a\right)}{D^{*}\left(T a, S a, C_{\gamma_{0}} a\right), D^{*}\left(S a, R a, A_{\alpha_{0}} a\right)} \\
& <q D^{*}\left(a, a, B_{\lambda} a\right)
\end{aligned}
$$

is a contradiction. Hence for every $\lambda \in J$ we have $B_{\lambda}(a)=a$. Similarly for every $\delta \in I$ and $\eta \in K$ we get $A_{\delta}(a)=C_{\eta}(a)=a$. Therefore for every $\delta \in I, \lambda \in J$ and $\eta \in K$ we have $A_{\delta}(a)=B_{\lambda}(a)=C_{\eta}(a)=R(a)=S(a)=T(a)=a$.

References

[1] N.A.Assad and S.Sessa, Common fixed points for nonself-maps on compacta, SEA Bull. Math. 16 (1992), 1-5.
[2] N.Chandra, S.N.Mishra, S.L.Singh and B.E.Rhoades, Coincidences and fixed points of nonexpansive type multi-valued and single-valued maps, Indian J. Pure Appl. Math. 26 (1995), 393-401.
[3] Y.J.Cho, P.P.Murthy and G.Jungck, A common fixed point theorem of Meir and Keeler type, Internat. J. Math.Sci. 16 (1993), 669-674.
[4] R.O.Davies and S.Sessa, A common fixed point theorem of Gregus type for compatible mappings, Facta Univ. (Nis) Ser. Math. Inform. 7 (1992), 51-58.
[5] B.C.Dhage, Generalised metric spaces and mappings with fixed point, Bull. Calcutta Math. Soc.84(1992),no.4,329-336.
[6] J.Jachymski, Common fixed point theorems for some families of maps, Indian J.Pure Appl. Math. 55 (1994), 925-937.
[7] Jungck G. Commuting maps and fixed points. Amer Math Monthly 1976; 83:261-3.
[8] Jungck G and Rhoades B. E, Fixed points for set valued functions without continuity,Indian J. Pure Appl. Math. 29(1998), no. 3,227-238.
[9] S.M.Kang, Y.J.Cho and G.Jungck, Common fixed points of compatible mappings, Internat. J.Math. Math. Sci. 13 (1990), 61-66.
[10] MiheţD.A Banach contraction theorem in fuzzy metric spaces.Fuzzy Sets Sys 2004;144:431-9.
[11] B.E.Rhoades,A fixed point theorem for generalized metric spaces, Int.J.Math.Math.Sci.19(1996),no.1,145-153.
[12] B.E.Rhoades, K.Tiwary and G.N.Singh, A common fixed point theorem for compatible mappings, Indian J.Pure Appl. Math. 26 (5) (1995),403-409.
[13] S.Sessa and Y.J.Cho, Compatible mappings and a common fixed point theorem of change type, Publ. Math. Debrecen 43 (3-4) (1993),289-296.
[14] S.Sessa, B.E.Rhoades and M.S.Khan, On common fixed points of compatible mappings, Internat. J.Math. Math. Sci. 11 (1988),375-392.
[15] B.Singh and R.K.Sharma, Common fixed points via compatible maps in Dmetric spaces, Rad. Mat. 11 (2002), no.1,145-153.
[16] K.Tas, M.Telci and B. Fisher,Common fixed point theorems for compatible mappings, Internat. J.Math. Math. Sci. 19 (3) (1996), 451-456.
(Received 19 June 2008)

Shaban Sedghi
Department of Mathematics,
Islamic Azad University-Ghaemshar Branch, Ghaemshahr P.O.Box 163, Iran.
e-mail : sedghi_gh@yahoo.com

Duran Turkoglu
Department of Mathematics, Faculty of Science and Arts, University of Gazi, o6500 Ankara, Turkey
e-mail: dturkoglu@gazi.edu.tr

Nabi Shobe
Department of Mathematics,
Islamic Azad University-Babol Branch, Iran
e-mail : nabi_shobe@yahoo.com

Shahram Sedghi
Department of Mathematics Engineering,
Iran University of Science and Technology,
Narmak, Tehran 16844, Iran
e-mail: shahramm_sedghi@yahoo.com

[^0]: Copyright (c) 2009 by the Mathematical Association of Thailand. All
 rights reserved.

