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1 Introduction and Preliminaries

In 1922, the Polish mathematician, Banach, proved a theorem which ensures
under appropriate conditions, the existence and uniqueness of a fixed point.His
result is called Banach’s fixed point theorem or the Banach contraction princi-
ple. This theorem provides a technique for solving a variety of applied problems
in mathematical science and engineering.Many authors have extended, generalized
and improved Banach’s fixed point theorem in different ways. In [11], Jungck intro-
duced more generalized commuting mappings, called compatible mappings, which
are more general than commuting and weakly commuting mappings. This concept
has been useful for obtaining more comprehensive fixed point theorems(see, e.g.,(
[1, 2, 3, 4, 6, 8, 9, 12, 13, 14, 16]). One such generalization is generalized metric
space or D-metric space initiated by Dhage [5] in 1992. He proved some results
on fixed points for a self-map satisfying a contraction for complete and bounded
D-metric spaces. Rhoades [11] generalized Dhage’s contractive condition by in-
creasing the number of factors and proved the existence of unique fixed point of a
self-map in D-metric space. Recently, motivated by the concept of compatibility
for metric space, Singh and Sharma [15] introduced the concept of D-compatibility
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of maps in D-metric space and proved some fixed point theorems using a contrac-
tive condition. Dhage [5] introduced the notion of generalized metric or D-metric
spaces and claimed that D-metric convergence defines a Hausdorff topology and
that D-metric is sequentially continuous in all the three variables.Many authors
have taken these claims for granted and used them in proving fixed point theorems
in D-metric spaces. Unfortunately, almost all theorems in D-metric spaces are not
valid .In this paper, we introduce D∗-metric which is a probable modification of
the definition of D-metric introduced by Dhage [5] and prove some basic properties
in D∗-metric spaces. We also prove a theorem for six maps in D∗-metric spaces .

In what follows (X, D∗) will denote a D∗-metric space, N the set of all natural
numbers and R

+ the set of all positive real numbers.

Definition 1.1. Let X be a nonempty set. A generalized metric (or D∗-metric)
on X is a function: D∗ : X3 −→ R

+ that satisfies the following conditions for
each x, y, z, a ∈ X.

(1) D∗(x, y, z) ≥ 0,

(2) D∗(x, y, z) = 0 if and only if x = y = z,

(3) D∗(x, y, z) = D∗(p{x, y, z}),(symmetry) where p is a permutation func-
tion,

(4) D∗(x, y, z) ≤ D∗(x, y, a) + D∗(a, z, z).
The pair (X, D∗) is called a generalized metric (or D∗-metric) space.

Immediate examples of such a function are

(a) D∗(x, y, z) = max{D∗(x, y), D∗(y, z), D∗(z, x)},

(b) D∗(x, y, z) = d(x, y) + d(y, z) + d(z, x).
Here, d is the ordinary metric on X .

(c) If X = R
n then we define

D∗(x, y, z) = (||x − y||p + ||y − z||p + ||z − x||p)
1

p

for every p ∈ R
+.

(d) If X = R
+ then we define

D∗(x, y, z) =

{

0 if x = y = z,

max{x, y, z} otherwise .

Remark 1.2. In a D∗-metric space, we prove that D∗(x, x, y) = D∗(x, y, y) . For

(i) D∗(x, x, y) ≤ D∗(x, x, x) + D∗(x, y, y) = D∗(x, y, y) and similarly

(ii) D∗(y, y, x) ≤ D∗(y, y, y) + D∗(y, x, x) = D∗(y, x, x).
Hence by (i),(ii) we get D∗(x, x, y) = D∗(x, y, y).

Let (X, D∗) be a D∗-metric space. For r > 0 define

BD∗(x, r) = {y ∈ X : D∗(x, y, y) < r}
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Example 1.3. Let X = R. Denote D∗(x, y, z) = |x− y|+ |y − z|+ |z − x| for all
x, y, z ∈ R. Thus

BD∗(1, 2) = {y ∈ R : D∗(1, y, y) < 2}

= {y ∈ R : |y − 1| + |y − 1| < 2}

= {y ∈ R : |y − 1| < 1}

= (0, 2)

Definition 1.4. Let (X, D∗) be a D∗-metric space and A ⊂ X.
(1) If for every x ∈ A there exist r > 0 such that BD∗(x, r) ⊂ A, then subset

A is called open subset of X.
(2) Subset A of X is said to be D∗-bounded if there exists r > 0 such that

D∗(x, y, y) < r for all x, y ∈ A.
(3)A sequence {xn} in X converges to x if and only if

D∗(xn, xn, x) = D∗(x, x, xn) → 0 as n → ∞.

That is for each ǫ > 0 there exist n0 ∈ N such that

∀n ≥ n0 =⇒ D∗(x, x, xn) < ǫ (∗)

This is equivalent with, for each ǫ > 0 there exist n0 ∈ N such that

∀n, m ≥ n0 =⇒ D∗(x, xn, xm) < ǫ (∗∗)

Indeed, if have (∗),then

D∗(xn, xm, x) = D∗(xn, x, xm) ≤ D∗(xn, x, x) + D∗(x, xm, xm) <
ǫ

2
+

ǫ

2
= ε

Conversely, set m = n in (∗∗) we have D∗(xn, xn, x) < ǫ.
(4) Sequence {xn} in X is called a Cauchy sequence if for each ǫ > 0 , there

exits n0 ∈ N such that D∗(xn, xn, xm) < ǫ for each n, m ≥ n0. The D∗-metric
space (X, D∗) is said to be complete if every Cauchy sequence is convergent.

Let τ be the set of all A ⊂ X with x ∈ A if and only if there exist r > 0 such
that BD∗(x, r) ⊂ A. Then τ is a topology on X (induced by the D∗-metric ).

Lemma 1.5. Let (X, D∗) be a D∗-metric space. If r > 0 , then the ball BD∗(x, r)
with center x ∈ X and radius r is the open ball.

Proof. Let z ∈ BD∗(x, r) so that D∗(x, z, z) < r. If set D∗(x, z, z) = δ and r′ =
r− δ then we prove that BD∗(z, r′) ⊆ BD∗(x, r). Let y ∈ BD∗(z, r′), by triangular
inequality we have D∗(x, y, y) = D∗(y, y, x) ≤ D∗(y, y, z)+D∗(z, x, x) < r′+δ = r.
Hence BD∗(z, r′) ⊆ BD∗(x, r). That is ball BD∗(x, r) is open ball.

Lemma 1.6. Let (X, D∗) be a D∗-metric space. If sequence {xn} in X converges
to x, then x is unique.
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Proof. Let xn −→ y and y 6= x. Since {xn} converges to x and y, for each ǫ > 0
there exist
n1 ∈ N such that for every n ≥ n1 =⇒ D∗(x, x, xn) < ǫ

2

and
n2 ∈ N such that for every n ≥ n2 =⇒ D∗(y, y, xn) < ǫ

2
.

If set n0 = max{n1, n2}, then for every n ≥ n0 by triangular inequality we have

D∗(x, x, y) ≤ D∗(x, x, xn) + D∗(xn, y, y) <
ǫ

2
+

ǫ

2
= ε.

Hence D∗(x, x, y) = 0 is a contradiction. So, x = y.

Lemma 1.7. Let (X, D∗) be a D∗-metric space. If sequence {xn} in X is con-
verges to x, then sequence {xn} is a Cauchy sequence.

Proof. Since xn −→ x for each ǫ > 0 there exists
n1 ∈ N such that for every n ≥ n1 =⇒ D∗(xn, xn, x) < ǫ

2

and
n2 ∈ N such that for every m ≥ n2 =⇒ D∗(x, xm, xm) < ǫ

2
.

If set n0 = max{n1, n2}, then for every n, m ≥ n0 by triangular inequality we have

D∗(xn, xn, xm) ≤ D∗(xn, xn, x) + D∗(x, xm, xm) < ǫ
2

+ ǫ
2

= ǫ.Hence sequence
{xn} is a Cauchy sequence.

Definition 1.8. Let (X, D∗) be a D∗- metric space. D∗ is said to be continuous
function on X3 × (0,∞) if

lim
n→∞

D∗(xn, yn, zn) = D∗(x, y, z),

whenever a sequence {(xn, yn, zn)} in X3 converges to a point
(x, y, z) ∈ X3 i.e.

lim
n→∞

xn = x, lim
n→∞

yn = y, lim
n→∞

zn = z

Lemma 1.9. Let (X, D∗) be a D∗- metric space. Then D∗ is continuous function
on X3.

Proof. Since the sequence {(xn, yn, zn)} in X3 converges to a point
(x, y, z) ∈ X3 i.e.

lim
n→∞

xn = x, lim
n→∞

yn = y, lim
n→∞

zn = z

for each ǫ > 0 there exists
n1 ∈ N such that for every n ≥ n1 =⇒ D∗(x, x, xn) < ǫ

3

n2 ∈ N such that for every n ≥ n2 =⇒ D∗(y, y, yn) < ǫ
3
,

and similarly there exist n3 ∈ N such that for every n ≥ n3 =⇒ D∗(z, z, zn) < ǫ
3
.
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If set n0 = max{n1, n2, n3}, then for every n ≥ n0 by triangular inequality we
have

D∗(xn, yn, zn) ≤ D∗(xn, yn, z) + D∗(z, zn, zn)

≤ D∗(xn, z, y) + D∗(y, yn, yn) + D∗(z, zn, zn)

≤ D∗(z, y, x) + D∗(x, xn, xn) + D∗(y, yn, yn) + D∗(z, zn, zn)

< D∗(x, y, z) +
ǫ

3
+

ǫ

3
+

ǫ

3
= D∗(x, y, z) + ǫ

Hence we have
D∗(xn, yn, zn) − D∗(x, y, z) < ǫ

D∗(x, y, z) ≤ D∗(x, y, zn) + D∗(zn, z, z)

≤ D∗(x, zn, yn) + D∗(yn, y, y) + D∗(zn, z, z)

≤ D∗(zn, yn, xn) + D∗(xn, x, x) + D∗(yn, y, y) + D∗(zn, z, z)

< D∗(xn, yn, zn) +
ǫ

3
+

ǫ

3
+

ǫ

3
= D∗(xn, yn, zn) + ǫ

That is,
D∗(x, y, z) − D∗(xn, yn, zn) < ǫ

Therefore we have |D∗(xn, yn, zn) − D∗(x, y, z)| < ǫ, that is

lim
n→∞

D∗(xn, yn, zn) = D∗(x, y, z)

Definition 1.10. Let (X, D∗) is a D∗- metric space, then D∗ is said to be of the
first type if for every x, y ∈ X we have

D∗(x, x, y) ≤ D∗(x, y, z)

for every z ∈ X.

In 1998, Jungck and Rhoades [8] introduced the following concept of weak
compatibility.

Definition 1.11. Let A and S be mappings from a D∗-metric space (X, D∗) into
itself. Then the mappings are said to be weak compatible if they commute at their
coincidence point, that is, Ax = Sx implies that ASx = SAx.

2 Main Results
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A class of implicit relation

Throughout this section (X, D∗) denotes a D∗-metric space and Φ denotes a family
of mappings such that for each φ ∈ Φ, φ : (R+)4 −→ R

+, is continuous and
increasing in each co-ordinate variable. Also γ(t) = φ(t, t, t, t) < t for every t ∈ R

+

.

Example 2.1. Let φ : (R+)4 −→ R
+ is define by

φ(t1, t2, t3, t4) =
1

5
(t1 + t2 + t3 + t4)

Our main result, for a complete D∗-metric space X , reads follows:

Theorem 2.2. Let A, B, C, S, Tand R be self-mappings of a complete D∗- metric
space (X, D∗) where D∗ is first type with :

(i)A(X) ⊆ T (X), B(X) ⊆ S(X), C(X) ⊆ R(X) and A(X) or B(X) or
C(X) is a closed subset of X,

(ii) D∗(Ax, By, Cz) ≤ qφ(D∗(Rx, Ty, Sz), D∗(Rx, Ty, By), D∗(Ty, Sz, Cz),
D∗(Sz, Rx, Ax)), for every x, y, z ∈ X , some 0 < q < 1 and φ ∈ Φ,

(iii) the pair (A, R) , (B, T ) and (S, C) are weak compatible.
Then A, B, C, S, Tand R have a unique common fixed point in X.

Proof. Let x0 ∈ X be an arbitrary point . By (i), there exists x1, x2, x3 ∈ X such
that

Ax0 = Tx1 = y0, Bx1 = Sx2 = y1 and Cx2 = Rx3 = y2.

Inductively, construct sequence {yn} in X such that y3n = Ax3n = Tx3n+1,
y3n+1 = Bx3n+1 = Sx3n+2 and y3n+2 = Cx3n+2 = Rx3n+3, for n = 0, 1, 2, · · · .

Now, we prove {yn} is a Cauchy sequence. Let D∗

m = D∗(ym, ym+1, ym+2).
Then, we have

D∗

3n = D∗(y3n, y3n+1, y3n+2) = D∗(Ax3n, Bx3n+1, Cx3n+2)

≤ qφ

(

D∗(Rx3n, Tx3n+1, Sx3n+2), D
∗(Rx3n, Tx3n+1, Bx3n+1)

D∗(Tx3n+1, Sx3n+2, Cx3n+2), D
∗(Sx3n+2, Rx3n, Ax3n)

)

= qφ

(

D∗(y3n−1, y3n, y3n+1), D
∗(y3n−1, y3n, y3n+1)

D∗(y3n, y3n+1, y3n+2), D
∗(y3n+1, y3n−1, y3n)

)

= qφ(D∗

3n−1, D
∗

3n−1, D
∗

3n, D∗

3n−1).

We prove that D∗

3n ≤ D∗

3n−1, for every n ∈ N. If D∗

3n > D∗

3n−1 for some n ∈ N,
by above inequality we have D∗

3n < qD∗

3n, is a contradiction. Now, if m = 3n + 1,
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then

D∗

3n+1 = D∗(y3n+1, y3n+2, y3n+3)

= D∗(y3n+3, y3n+1, y3n+2)

= D∗(Ax3n+3, Bx3n+1, Cx3n+2)

≤ qφ

(

D∗(Rx3n+3, Tx3n+1, Sx3n+2), D
∗(Rx3n+3, Tx3n+1, Bx3n+1)

D∗(Tx3n+1, Sx3n+2, Cx3n+2), D
∗(Sx3n+2, Rx3n+3, Ax3n+3)

)

= qφ

(

D∗(y3n+2, y3n, y3n+1), D
∗(y3n+2, y3n, y3n+1)

D∗(y3n, y3n+1, y3n+2), D
∗(y3n+1, y3n+2, y3n+3)

)

= qφ(D∗

3n, D∗

3n, D∗

3n, D∗

3n+1).

Similarly, if D∗

3n+1 > D∗

3n for some n ∈ N we have D∗

3n+1 < qD∗

3n+1 is a contra-
diction. If m = 3n + 2,then

D∗

3n+2 = D∗(y3n+2, y3n+3, y3n+4)

= D∗(y3n+3, y3n+4, y3n+2)

= D∗(Ax3n+3, Bx3n+4, Cx3n+2)

≤ qφ

(

D∗(Rx3n+3, Tx3n+4, Sx3n+2), D
∗(Rx3n+3, Tx3n+4, Bx3n+4)

D∗(Tx3n+4, Sx3n+2, Cx3n+2), D
∗(Sx3n+2, Rx3n+3, Ax3n+3)

)

= qφ

(

D∗(y3n+2, y3n+3, y3n+1), D
∗(y3n+2, y3n+3, y3n+4)

D∗(y3n+3, y3n+1, y3n+2), D
∗(y3n+1, y3n+2, y3n+3)

)

= qφ(D∗

3n+1, D
∗

3n+2, D
∗

3n+1, D
∗

3n+1).

Similarly, if D∗

3n+2 > D∗

3n+1 for some n ∈ N we have D∗

3n+2 < qD∗

3n+2 is a
contradiction.

Hence for every n ∈ N we have D∗

n ≤ qD∗

n−1. That is

D∗

n = D∗(yn, yn+1, yn+2) ≤ qD∗(yn−1, yn, yn+1) ≤ · · · ≤ qnD∗(y0, y1, y2).

Since D∗ is a first type , hence we have

D∗(yn, yn, yn+1) ≤ qnD∗(y0, y1, y2).

Therefore

D∗(yn, yn, ym) ≤ D∗(yn, yn, yn+1)+D∗(yn+1, yn+1, yn+2)+· · ·+D∗(ym−1, ym−1, ym).

Hence

D∗yn, yn, ym) ≤ qnD∗(y0, y1, y2) + qn+1D∗(y0, y1, y2) + · · · + qm−1D∗(y0, y1, y2)

= (qn + qn+1 + · · · + qm−1)D∗(y0, y1, y2)

≤ D∗(y0, y1, y2)
qn

1 − q
−→ 0.
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Thus the sequence {yn} is Cauchy and by the completeness of X , {yn} converges
to y in X . That is,limn→∞ yn = y

lim
n→∞

yn = lim
n→∞

Ax3n = lim
n→∞

Bx3n+1 = lim
n→∞

Cx3n+2

= lim
n→∞

Tx3n+1 = lim
n→∞

Rx3n+3 = lim
n→∞

Sx3n+2 = y

Let C(X) be a closed subset of X , hence there exist u ∈ X such that Ru = y.
We prove that Au = y. For
D∗(Au, Bx3n+1, Cx3n+2)

≤ qφ

(

D∗(Ru, Tx3n+1, Sx3n+2), D
∗(Ru, Tx3n+1, Bx3n+1)

D∗(Tx3n+1, Sx3n+2, Cx3n+2), D
∗(Sx3n+2, Ru, Au)

)

On making n −→ ∞ we get

D∗(Au, y, y) ≤ qφ

(

D∗(Ru, y, y), D∗(Ru, y, y)
D∗(y, y, y), D∗(y, Ru, Au)

)

.

If D∗(y, y, Au) > 0, then we have D∗(Au, y, y) < qD∗(y, y, Au) is a contradiction.
Thus Au = y. By the weak compatibility of the pair (R, A) we have ARu = RAu.
Hence Ay = Ry. We prove that Ay = y, if Ay 6= y , then
D∗(Ay, Bx3n+1, Cx3n+2)

≤ qφ

(

D∗(Ry, Tx3n+1, Sx3n+2), D
∗(Ry, Tx3n+1, Bx3n+1)

D∗(Tx3n+1, Sx3n+2, Cx3n+2), D
∗(Sx3n+2, Ry, Ay)

)

As n −→ ∞ we have

D∗(Ay, y, y) ≤ qφ

(

D∗(Ry, y, y), D∗(Ry, y, y)
D∗(y, y, y), D∗(y, Ry, Ay)

)

≤ qD∗(Ay, y, y)

a contradiction. Therefore,Ry = Ay = y, that is, y is a common fixed of R, A .
Since y = Ay ∈ A(X) ⊆ R(X), hence there exists v ∈ X such that Tv = y. We
prove that Bv = y. For
D∗(y, Bv, Cx3n+2) = D∗(Ay, Bv, Cx3n+2)

≤ qφ

(

D∗(Ry, Tv, Sx3n+2), D
∗(Ry, Tv, Bv)

D∗(Tv, Sx3n+2, Cx3n+2), D
∗(Sx3n+2, Ry, Ay)

)

On making n −→ ∞ we get

D∗(y, Bv, y) ≤ qφ

(

D∗(y, y, y), D∗(y, y, Bv)
D∗(y, y, y), D∗(y, y, y)

)

≤ qD∗(y, y, Bv)

Thus Bv = y. By the weak compatibility of the pair (B, T ) we have TBv = BTv.
Hence By = Ty. We prove that By = y, if By 6= y , then

D∗(Ay, By, Cx3n+2) ≤ qφ

(

D∗(Ry, Ty, Sx3n+2), D
∗(Ry, Ty, By)

D∗(Ty, Sx3n+2, Cx3n+2), D
∗(Sx3n+2, Ry, Ay)

)
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As n −→ ∞ we have

D∗(y, By, y) ≤ qφ

(

D∗(Ry, Ty, y), D∗(Ry, By, By)
D∗(By, y, y), D∗(y, y, y)

)

≤ qD∗(y, By, y)

a contradiction. Therefore,By = Ty = y, that is, y is a common fixed of B, T .
Similarly, since y = By ∈ B(X) ⊆ S(X),hence there exists w ∈ X such that
Sw = y. We prove that Cw = y. For
D∗(y, y, Cw) = D∗(Ay, By, Cw)

≤ qφ

(

D∗(Ry, Ty, w), D∗(Ry, Ty, By)
D∗(Ty, Sw, Cw), D∗(Sw, Ry, Ay)

)

≤ qD∗(y, y, Cw)

Thus Cw = y. By weak compatible the pair (C, S) we have CSw = SCw,
hence Cy = Sy. We prove that Cy = y, if Cy 6= y , then
D∗(y, y, Cy) = D∗(Ay, By, Cy)

≤ qφ

(

D∗(Ry, Ty, Sy), D∗(Ry, Ty, By)
D∗(Ty, Sy, Cy), D∗(Sy, Ry, Ay)

)

≤ qD∗(y, y, Cy)

a contradiction. Therefore,Cy = Sy = y, that is, y is a common fixed of
C, S.Thus

Ay = Sy = Ty = By = Cy = Ry = y

To prove uniqueness, let v be another common fixed point of T, A, B, C, R, S.
If D∗(y, y, v) > 0, hence
D∗(y, y, v) = D∗(Ay, By, Cv))

≤ qφ

(

D∗(Ry, Ty, Sv), D∗(Ry, Ty, By)
D∗(Ty, Sv, Cv), D∗(Sv, Ry, Ay)

)

≤ qD∗(y, y, v)

a contradiction. Therefore, y = v is the unique common fixed point of self-maps
T, A, B, C, R, S.

Corollary 2.3. Let S, T, R and {Aα}α∈I , {Bβ}β∈J and {Cγ}γ∈K be the set of
all self-mappings of a complete D∗-metric space (X, D∗), where D∗ is first type
satisfying:

(i)there exists α0 ∈ I , β0 ∈ J and γ0 ∈ K such that Aα0
(X) ⊆ T (X), Bβ0

(X)
⊆ S(X) and Cγ0

(X) ⊆ R(X),

(ii)Aα0
(X) or Bβ0

(X) or Cγ0
(X) is a closed subset of X,

(iii) D∗(Aαx, Bβy, Cγz) ≤ qφ(D∗(Rx, Ty, Sz), D∗(Rx, Ty, Bβy),
D∗(Ty, Sz, Cγz), D∗(Sz, Rx, Aαx)), for every x, y, z ∈ X , some 0 < q < 1 and
φ ∈ Φ, and every α ∈ I, β ∈ J ,γ ∈ K,

(iv) the pair (Aα0
, R) or (Bβ0

, T ) or (Cγ0
, S) are weak compatible.

Then A, B, C, S, Tand R have a unique common fixed point in X.
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Proof. By Theorem 2.2 R, S, T and Aα0
, Bβ0

and Cγ0
for some α0 ∈ I, β0 ∈

J, γ0 ∈ K have a unique common fixed point in X . That is there exist a unique
a ∈ X such that R(a) = S(a) = T (a) = Aα0

(a) = Bβ0
(a) = Cγ0

(a) = a. Let there
exist λ ∈ J such that λ 6= β0 and D∗(a, Bλa, a) > 0 then we have

D∗(a, Bλa, a) = D∗(Aα0
a, Bλa, Cγ0

a)

≤ qφ

(

D∗(Ra, Ta, Sa), D∗(Ra, Ta, Bλa)
D∗(Ta, Sa, Cγ0

a), D∗(Sa, Ra, Aα0
a)

)

< qD∗(a, a, Bλa)

is a contradiction. Hence for every λ ∈ J we have Bλ(a) = a. Similarly for every
δ ∈ I and η ∈ K we get Aδ(a) = Cη(a) = a. Therefore for every δ ∈ I, λ ∈ J and
η ∈ K we have Aδ(a) = Bλ(a) = Cη(a) = R(a) = S(a) = T (a) = a.
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