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General Solution of DP-conditions for Simple
Wave Type Solutions of the One-Dimensional
Gas Dynamics Equations

S.V.Meleshko

Abstract: The manuscript is devoted to the one-dimensional gas dynamics equa-
tions. For an isentropic flow these equations are reduced to the equations written
in the Riemann invariants. The system written in the Riemann invariants is hy-
perbolic and homogeneous. It allows obtaining simple waves, which are also called
Riemann waves. For nonisentropic flows there are no Riemann invariants. The
question is: what solutions could substitute the Riemann waves. By the method
of differential constraints such types of solutions are found here. For these classes
of solutions one can integrate the gas dynamics equations: finite formulas with
one parameter are obtained. These solutions have similar properties with simple
Riemann waves. For example, they describe a nonisentropic rarefaction wave. The
rarefaction waves play the main role in many applications such as the problem of
pulling a piston, decay of arbitrary discontinuity and others.
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1 Introduction

The method of differential constraints is one of the methods for constructing par-
ticular exact solutions of partial differential equations. The idea of the method
was proposed by N.N.Yanenko [1]. A survey of the method can be found in the
book [2]. The method is based on the following idea.

Consider a system of differential equations

Si(x,u,p) :Oa (Z: 1?27""8)' (1)
Here «* = (x1,22,...,%,) are the independent variables, u = (u!,u?,...,u™)
) ) glalyd
are the dependent variables, p = (pJ,) is the set of the derivatives p/, = 8—:,
x
(j=1,2,....m; la| <q), a=(a,as,...,an), |a| =a1 +as+...+ a,. Assume

that a solution of system (1) satisfies the additional system of differential equations

Pp(z,u,p) =0, (k=1,2,...,q). (2)
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The differential equations (2) are called differential constraints. A solution of sys-
tem (1) satisfying (2) is called the solution characterized by the differential con-
straints (2).

The obtained system (1), (2) is an overdetermined system. The method of
differential constraints requires for the overdetermined system (1), (2) to be com-
patible. The form of the differential constraints (the functions @) and a part of
equations of the given system (the functions S;) may not be known a priori.

The application of the method of differential constraints involves two stages.
The first stage is to find the set of differential constraints (2) under which the
overdetermined system is compatible. On this stage in the process of compatibility
analysis (reducing the system to involutive) the overdetermined system (1), (2)
can be supplemented by new equations. The second stage of the method is to
construct solutions of the involutive overdetermined system. Because the solution
has to satisfy the differential constraints (additional equations), then it allows
easier constructing particular solution of the given system (1).

The requirement of compatibility of system (1), (2) is very general. Therefore
the method of differential constraints includes (almost) all known methods for
constructing exact solutions of partial differential equations: group—invariant so-
lutions, nonclassical and weak symmetries, partially invariant solutions, separation
of variables, as well as many others.

Increasing the number of requirements on the differential constraints narrows
the generality of the method and makes it more suitable for finding exact particular
solutions. Tn [3] it is suggested to require involutiveness of the overdetermined sys-
tem (1), (2). With this refinement the method of differential constraints becomes a
practical tool for obtaining exact particular solutions. In this case the classification
of differential constraints and solutions characterized by them is carried out with
respect to the functional arbitrariness of solutions of the overdetermined system
(1), (2) and order of highest derivatives, included in the differential constraints
(2). Involutive conditions are called D P-conditions.

The manuscript is devoted to study one class of solutions of one-dimensional
polytropic gas dynamics equations. Classification of all differential constraints of
first order, with which the one-dimensional gas dynamics equations are involutive,
were given in [4]!. It has been known only one class of solutions characterized
by two differential constraints with sound characteristic: Riemann (simple) waves.
Here the general solution of D P-conditions is given: it is proven that except Rie-
mann waves (for arbitrary polytropic exponent) there is only one class of solutions
for which D P-conditions are satisfied. These solutions are called in the manuscript
by generalized simple waves. The main features of this class of solutions are the
following. They describe a nonisentropic rarefaction waves. The construction of
them is reduced to integration a system of ordinary differential equations along
characteristics.

1t should be also noted that in [5] method of differential constraints was applied to
one-dimensional gas dynamics equations written in Lagrangian coordinates. Here this
method is applied to Eulerian representation of these equations.
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Example of generalized simple waves for two-dimensional plane gas dynam-
ics equations was constructed in [6]. The solutions considered there generalize
Prandtl-Myer flows. For a hyperbolic quasilinear systems with two dependent
variables generalized simple waves were also studied in [7].

The manuscript is organized as follows. The first part introduces some knowl-
edge about the method of differential constraints which are necessary for appli-
cations. The second part is devoted to the study of generalized simple waves for
one-dimensional gas dynamics equations.

2 Method of differential constraints

Let us consider the quasilinear system of partial differential equations

Ou n

ot
Here @ = Q(x,t,u) is a m x m matrix, f = f(z,t,u) is a vector, E. is ar xr
unity matrix. One is looking for solutions characterized by first order differential
constraints?

ou .
Qe —Ff=0 (3)

(I)k(xat7uau$):0? (k:1a277Q) (4)

It is assumed that the differential constraints satisfy the natural requirement

rank (gi:) =q

2.1 Involutive conditions

Without loss of generality one can rewrite the system of differential equations and
the differential constraints in the more suitable form

S=Lu+ALu, — Lf =0, (5)
&= BiLu, + U = 0. 6)

Here L = L(z,t,u) is a nonsingular m x m matrix, A = LQL™!, the function
U = U(x,t,u,y) depends on z,¢,u and y = BsLu,, By and By are rectangular
g x m and (g — 1) x m matrices with the elements

(BQ)k] = 6(1—}-/6,]" (1 S k S m—q, 1 S 7 S m)a

d;; is the Kronecker’s symbol. The matrices B; and Bs have the following prop-
erties:
BB} = E4, BoBY = Epn,_,, BiB1 + B,Bs = Eyy,
BB, =0, B;B; =0.

®The study of differential constraints of higher order of the system (S) can be rednced
to the study of differential constraints of first order for the prolonged system.
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Note that if the matrix A is a diagonal matrix, then the matrix B;AB; is diagonal
and B;AB; =0 (i,j = 1,2;i # j). For a hyperbolic system (3) the matrix A can
be chosen diagonal.

For the overdetermined system (5), (6) in [8] it is proven the following.

Theorem 1 Overdetermined system (5), (6) is involutive if and only if
(D:® + ZAB,D,® fZDwS)l(Sq)) =0, (7)

ZA—ZABZ =0, (8)
where 7 = By + U, B> and (S®) means the manifold

(5®) = {(z,u,p)|S(z,u,p) = 0, ®(z,u,p) = O},

Equations (8) mean that the symbol of the overdetermined system is involutive.
In applications equations (8) are checked first, although they are contained in (7).
Equations (8) mean that there are no new equations after prolongation the system.
Equations (7), (8) are called D P-conditions.

It should be noted that equations (8) are equivalent to

BiABy — W, By AB, W, + W, B, AB, — By AB, ¥, = 0.

If the matrix A is a diagonal matrix with the diagonal entries \; (i = 1,2,...,m),
then BiAB) = 0, By AB] = 0, the matrices B;AB{, B2 AB) are diagonal and
equations (8) become

This means that ¥; can only depend on y; such that (A; — A;) = 0. Tn particular,
in the case of strictly hyperbolic systems (A; — A;) # 0 (¢ # j), and equations (8)
are reduced to [9]

T, = 0.

The last equations mean that for strictly hyperbolic systems the differential con-
straints are quasilinear.

Tf system (5), (6) is analytic, then its involutiveness provides an uniqueness
and existence of the Cauchy problem. There are more weak requirements on the
smoothness of system (5), (6) that are sufficient for the uniqueness and existence
of the Cauchy problem. First proof for systems of the class C? was done in [10].
For systems of the class C? the existence theorem was done in [8)].

Agssume that

LeCY(D), AcCY(D), f e CY(D), ¥ € C'(D) (9)

in open domain D C R™ x R2.
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Theorem 2 Let system (5) be a hyperbolic system with (9), and let equations
(7), (8) be satisfied. Then there exists an unique solution u(z,t) € C! of the
Cauchy problem for system (5), (6) with the initial dota u(x,0) = @(z) € C!
satisfying the differential constraints (6) at t = 0.

There are also valid similar statements for other types of systems [§].

2.2 Generalized simple waves

One class of solutions, which generalizes class of simple waves is studied here.
Assume that a system of quasilinear differential equations (S) admits ¢ = m — 1
quasilinear differential constraints

¢ = BlL’U,I + \IfyBQLU;K + ¢ = D,

where ¢ = ¢(u, z,t) and ¥, = U, (u, z,t) is a (m—1) xm matrix, A = Bs AB), y =
ByLu,. Also assume that Bo AB{ = 0 and

LeCYD), AeCcY(D), feCY(D), ¥,c CY(D), ¢ € C'(D) (10)

A solution satisfying these differential constraints is called a generalized simple
3
waves.

For this class of solutions the D P-conditions (7), (8) become the following

AV, = —B{A(B, — B1Y,), (11)
Q1y® + Dy + Q3 =0,

where 4, {19, 25 are vector-functions, which depend on L, ¥,,, A, ¢ and their deriva-
tives [12]. Note that (11) can be rewritten as

A(B; — B1Y,) = MB; — B ¥y). (12)

Note also that in the strength of involutive conditions (11) the first function y =
0. Because {1y and €13 do not depend on y, then the conditions of involutiveness
require

2, =0, Q3 =0. (13)

In (11) there are 2q equations.
By virtue of the differential constraints and condition (12) for these solutions

one can define all derivatives along the characteristic ‘fl—f =X\

BiL% = By(A— AEn)B}¢ + B Lf,

ByL%% = ByLf, % =\

(14)

Let ug(€) € C* satisfies the differential constraints

(Bl + lIly(u() (5)7 fa O)B2)L(U’0 (5)7 fa O)ué)(f) + ¢(u0 (5)7 67 0) =0.

3There is a generalization of such class solutions for systems with more than two
independent variables [11].
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There exists the unique solution (v(£,t),z(&,t)) of the Cauchy problem of the
system of ordinary differential equations (14) with the initial data at ¢+ = 0O:

v =wup(§), © = a.

The dependence © = z(£,t) can be solved with respect to £ = £(z,t) in some
neighborhood of the point (xp,0). We show that u(z,t) = v(£(z,t),t) is a solution
of the overdetermined system (S®). Exchanging the variables (z,t) onto (£,t) we

have
9_0. .9 0 __ 0
ot ot ' "oz’ 06 Ttz
where z; = g—z. The left hand side of the differential constraints in the new

independent variables is

1
B\ Lu; + W, BaLug + ¢ = —(BiLvg + ¥, BaLvg + 7).
3

Let H = (B; + ¥, By)Lvg + z¢¢. By using the conditions of involutiveness (13),
we obtain that H = H({,t) satisfies the linear differential equations

dd

— =GH,
dt
where G = G(&,t) is some matrix, % is the partial derivative % in the variables

(&,t). Because the initial values H(£,0) = 0 and by virtue of the uniqueness of
solution of the Cauchy problem of system of ordinary differential equations

H(E,t) = 0.

It means that the differential constraints are satisfied. Rewriting equations (14)
in the coordinates (z,t) one finds that

BlL(U,t + AUZ‘) =B (A — )\Em)Bi(ﬁ + BiLf,

Substitution ¢ = —(Bq + ¥, Bs)Lu, into the last equations gives

Bl (Lut + ALU;C) = BlLf,
BQ (Lut + ALU;C) = Bsz

Here it is used that A = By ABS and conditions (12).

Therefore, for constructing a generalized simple wave one needs to satisfy the
differential constraints on some curve () which is not the characteristic zf # A,
then the solution can be found by integrating the system of ordinary differential
equations (14).

By the same way one can construct a solution of a problem with the initial data
on a characteristic curve of the overdetermined system (S®) and with a singularity
of the rarefaction wave type at the point (0,0) [12]. Tn fact there exists an unique
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solution of the system (S) in some domain V € R? that satisfies the following
conditions.

1. On the characteristic curve Il : © = zo(t) the value u(xo(t),t) = ux(t)
satisty (14).

2. The point (0,0) € II C V is singular: the solution is multiply defined
at this point. The value u = wug(a) of the solution at this point depends on the
parameter a, (ug(0) = ux(0)) and it defines the curve in the space BR™ satisfying
the equations

(B1 + ¥, (ug(a),0,0)B2) L(ug(a),0,0)ug(a) = 0, (15)
%(Uo(a)a(],())%(a) < D’ (O S a S aO)' (16)

Here the parameter a plays role of the variable £ at the point of singularity (0,0).
The solution of this problem generalizes the well-known rarefaction wave in
gas dynamics.

3 One-dimensional gas dynamics equations
An unsteady one-dimensional flow of a gas is described by the equations

ug + uty + p~'p. =0,
pr+ upsz + puy =0, (17)
pt + up, + A(p, p)u, = 0.

Here p is the density, 7 = 1/p is the specific volume, wu is the velocity, p is the
pressure, £ is the internal energy, T is the temperature, n is the entropy, and ¢
is a sound speed (¢ = A/p). For a polytropic gas 4 = vp, v > 1, and the
thermodynamical parameters are related by the following formulas

T=pRp)~", e=(v—1)""p/p, n=glpp™"),

where ¢ is some function.
System (17) can be rewritten in a matrix form

S=Lu +ALu, =0,

with
u 0 -4 p u 0 0
u=| p |, L= pe 0 1 =] 0 u+c 0
o) —pc 0 1 0 0 U —c

Since system (17) is strictly hyperbolic the differential constraints of first order
for it must be quasilinear. The well-known Riemann waves (or simple waves) are
obtained by assuming that v = u(p), p = p(p). The entropy in the Riemann
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waves is constant. It can be shown that the Riemann waves belong to the class of
solutions which is characterized by the following differential constraints

D — pa2px =0, pu,+ap, =0,

where @ = +e¢. Note that the matrix B, = (0,1,0)* for « = ¢ and By = (0,0,1)*
for o = —c.

Let us study more general class of solutions which is characterized by the
differential constraints

Pe — Cpa =0, U+ p lau, = ¢, (18)

where ¢ = ¥(¢t, x,u, p,p) and ¢ = ¢(t, x,u, p,p). The DP-conditions (12), (13) for
this class of solutions are

~pYP — Ypp + Y+ P(y +1) =0 (19)

Pr +uhy — Yy (Pp~' +ag) =0 (20)

—4¢aypp — ddpap® +4duyp — 3Py + ¢ap(3 —v) =0 (21)
—Ppt = ud — e — $pthap + dpdypp + ,6p°— (22)

G+ $utp — dudap — dapla+u) —¢°p =0
Note that if ¢» = 0, then ¢ can be not equal to zero only for v = 3 and
~v = 5/3 (one-atomic gas). But in the case ¢y = 0 the one-dimensional gas dynamics
equations are transformed to the Darboux equation 4. If v = 3 or v = 5/3, then
the general solution of the Darboux equation is expressed through the D’Alambert
solution [13]. Therefore further the case of ¢ # 0 is studied.
The general solution of equation (19) is

where £ = u+ % n = pp~ 7. After that one can solve equation (21). The general
solution of equation (21) is

3apr
p(3y—1)

After substituting the representations of ¢ and ¢ into (20) one has

¢ =pBP B (t,2,6,m) - U (t,7,8,m).

1
-0 - ap<3—’*>/4c1>) T, = 0. (23)

2a
P - —¥, 3
e+ (€ 7_1) +<P 3y —

Splitting this equation® with respect to p one obtains

U, =0, ¥, =0, U, = 0.

See, for example, [13].
SFor splitting it is essential that v > 1.
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After substituting the representations of ¢ and ¢ into (22) one hag®
a1pd +a2pt 7 +azpt T 4 aap? + asp? +agpd? =0, (24)

where p; = p'/%, the coefficients a; depend on (t,z,¢,7). Analysis of the linear
functions (powers of p1) gives that for v > 1, the degrees 4 + 37,3 +6v and 2 + 5v
have different values and they differ from the degrees 5, 2 + v, and 3. Thus,
as =0, az = 0, a4 = 0. These equations give

3y 3(y=3)
= U, b, = ——~
"3y T 3T

®, B, = 0. (25)

In the strength of ®¢ = 0, equation (24) can be split with respect to &:
®, =0. (26)
The general solution of (25), (26) is

3 M(y—3
W=, o =i, (5= g 0= 02D

where k is constant. Equation (24) is reduced to the equation
377 (v + Dnth? + 4h' = 0.

If v # 3, then from this equation one obtains h = 0. If v = 3, then h = (¢t +
k1)~', (ki = const).

Theorem 3 The general solution of the D P-conditions for differential con-
straints (18) (for nonisentropic flows ¢ # 0 and arbitrary polytropic exponent)
is

3y
(3y — Dap

_ v _
(=1 o=+

b =kp"p’, =~ b,

= k;é()). (27)

A generalized simple wave (k # 0) along the characteristics

= 2
g U (28)

satisfies the system of ordinary differential equations (equations (14))

dp p du a dp
> _ £ = _ = _:_3k31 Berl. 29
D "3 dp 3 di Ykp™tp (29)

Al calculations are done in REDUCE [14]
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These equations can be integrated. The general solution of (29) is
1/3 —1 1/3 1/3 8 -t
p=c1p? u= -7 ep T ? tes, p/? = (fycllkt—f—cQ) , (30)
where a = v1,/c1p~ /% and v = £,/7. Hence,

u—a=(y- 1y Ve (fyc’flkt—l— 62) +c3,

and ( .

r = %)yrlw/cl (yc?lth + 202t) + cst + £
Here ¢, ¢, ¢3 and £ are arbitrary constants of integration. These constants are
defined, for example, by the initial values at + =0 :

uo(§) = u(0,§), po(§) = p(0,8), po(§) = p(0,8) (31)
c1(€) = po/pt?. e = uo + 7 Nep, 3, o = py 3, (32)

vy—1) _ _ 9 _
z=021 5 Lot 2o (vp81 720/t + 20,1151

+ (uo + 71 P20+ €

The functions ue(£), po(€), po(€) have to satisfy the differential constraints (18)
with the functions (27). It is proven in [8] that if the initial values at ¢ = 0
(31) satisly the differential constraints (18), then the solution of the gas dynamics
equations satisfies this differential constraints at time ¢ > 0. Note that in the initial
values one can choose one arbitrary function, the other functions are defined by
the system of ordinary differential equations. Let us take, for example, p, = const.
In this case equations (18) can be integrated as follows

)(1—37) 671

— —-1/2,1/2 k
, Ug (1_37)/)0 b + 2

where k; and ko are arbitrary constants.

It should be also noted that by using the generalized simple waves one can
obtain nonisentropic rarefaction waves. This solution is constructed by integrating
(28), (29) with singular initial values, which satisfy the equations (equations (15),
(16))

pe — pa’pe =0,  pug + ape = 0.
These conditions in gas dynamics are called (p,u)-diagram. Note that the (p,u)-
diagram for nonisentropic case is the same as for isentropic rarefaction waves.

4 Conclusion

Nonisentropic solutions of one-dimensional gas dynamics equations having one ar-
bitrary function in defining were constructed. This class of solutions is defined by
two differential constraints of first order. They can be considered as a generaliza-
tion of Riemann waves for nonisentropic case.
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