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Abstract In this paper, we defined an inner product on the collection of intervals in Rn within a
vector space framework, demonstrating its consistency with the properties of standard inner products.

We further established that the collection of intervals in Rn forms a Hilbert space under the proposed

inner product. Additionally, we explored applications of this framework to interval linear programming
problems and interval support vector machines, highlighting the practical relevance and usefulness of the

theoretical results.
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1. Introduction

In the real world, uncertainty is inherent in various situations. For instance, in pro-
duction planning, prices fluctuate over time. One way to represent uncertainty in real
numbers is through intervals. By defining upper and lower bounds on value changes
within a given mathematical programming problem, we can consider both optimistic and
pessimistic solutions. However, such a collection of intervals neither forms a vector space
in the traditional sense nor allows for a well-defined inner product, for exapmle, see [1].

It is well-known that convex sets can be embedded into a vector space, see [2]. While
this embedding addresses the vector space structure, to the best of our knowledge, no
existing work explores the definition of an inner product for intervals in such spaces. The
purpose of this paper is to define an inner product for a collection of intervals in Rn,
analyze its properties, and provide practical examples. The remainder of this paper is
organized as follows. In Section 2, we introduce the collection of intervals in Rn and
define the sum and non-negative scalar product on the collection. Section 3 presents the
foundational results of this paper. We define a vector space in which the intervals in Rn

are embedded, provide inner products on the vector space, and discuss the dimension of
the inner product spaces. As a result, the inner product spaces are Hilbert spaces. In
Section 4, we explore applications to interval linear programming and interval support
vector machines. Finally, Section 5 concludes the paper with a summary of our results.
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Copyright © 2024 by TJM. All rights reserved.
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2. Intervals in Rn

For any a = (a1, a2, . . . , an)
T , b = (b1, b2, . . . , bn)

T ∈ Rn, define partial order ≦ on Rn

by a ≦ b if ai ≦ bi for all i ∈ {1, · · · , n}, and define the interval [a, b] as follows:

[a, b] := {x ∈ Rn | a ≦ x ≦ b} =

n∏
i=1

[ai, bi]

whenever a ≦ b. Let M be the family of all intervals in Rn as follows:

M = {[a, b] | a ≦ b}.

For any a ∈ Rn, [a, a] means singleton {a} and we treat the element a as the singleton
interval [a, a] if necessary. On M, the sum and non-negative scalar product are defined
as follows:

[a, b] + [c, d] = [a+ c, b+ d] and t[a, b] = [ta, tb]

for any t ≧ 0. Remark that we do avoid defining [a, b] − [c, d] and t[a, b] for any t < 0
in order to prevent misunderstanding regarding the additive inverse. Indeed the additive
inverse of [a, b] does not exist whenever a ̸= b. In order to clarify the structure involving
the additive inverse, we construct a vector space N in which M is embedded in the next
section, by using the same way by R̊adström, see [2]. The main purpose of the paper is
to provide an inner product in the vector space N .

3. A Hilbert Space in Which Intervals in Rn Are Embedded

3.1. A Vector Space in Which Intervals in Rn Are Embedded

At first we define a binary relation ∼ on M2 as follows:

([a, b] , [c, d]) ∼ ([a′, b′] , [c′, d′]) ⇐⇒
{

a− c = a′ − c′

b− d = b′ − d′,

for any ([a, b], [c, d]) and ([a′, b′], [c′, d′]) ∈ M2. We can see this binary relation is reflexive,
symmetric and transitive, so it is an equivalence relation. For any ([a, b] , [c, d]) ∈ M2,

[a, b]⊖ [c, d] := {([a′, b′] , [c′, d′]) ∈ M2 | ([a, b] , [c, d]) ∼ ([a′, b′] , [c′, d′])}

denotes the equivalence class to which ([a, b] , [c, d]) belongs.

N = M2/∼ = {[a, b]⊖ [c, d] | [a, b] , [c, d] ∈ M}

denotes the quotient set of M2 by ∼. On N , the sum and scalar product are defined as
follows:

[a, b]⊖ [c, d] + [a′, b′]⊖ [c′, d′] := [a+ a′, b+ b′]⊖ [c+ c′, d+ d′]

λ([a, b]⊖ [c, d]) :=

{
[λa, λb]⊖ [λc, λd] if λ ≧ 0,
[−λc,−λd]⊖ [−λa,−λb] if λ < 0.

Then we can check that N is a vector space with this sum and scalar product. Here the
null vector has the form [a, b]⊖ [a, b] containing [0, 0]⊖ [0, 0], and the additive inverse of
[a, b]⊖ [c, d] ∈ N is [c, d]⊖ [a, b]. In order to embed M to N , we identify an interval [a, b]
of M with [a, b]⊖ [0, 0]. These arguments are similar to R̊adström, see [2].
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3.2. Inner Products on R2n

Before to discuss inner products on N , we observe inner products on R2n, by using
the standard inner product ⟨·, ·⟩ on Rn, that is, ⟨x, y⟩ = xT y for any x, y ∈ Rn. Let P be

a square 2n× 2n invertible matrix over R which forms P =

(
S T
U V

)
where S, T, U , and

V are square n× n matrices. Define the following function from R2n × R2n to R by〈(
a
b

)
,

(
a′

b′

)〉
P

:= ⟨Sa+ Tb, Sa′ + Tb′⟩+ ⟨Ua+ V b, Ua′ + V b′⟩

for any a, b, a′, b′ ∈ Rn.

Proposition 3.1. The function

〈(
·
·

)
,

(
·
·

)〉
P

is an inner product on R2n.

Proof. For any a, b ∈ Rn, observe the following value〈(
a
b

)
,

(
a
b

)〉
P

= ⟨Sa+ Tb, Sa+ Tb⟩+ ⟨Ua+ V b, Ua+ V b⟩ .

It is clear that the value is non-negative from the positive semi-definiteness of the inner
product ⟨·, ·⟩ on Rn. Next, if the value is zero, then Sa+ Tb = 0 and Ua+ V b = 0, that
is, (

S T
U V

)(
a
b

)
=

(
0
0

)
.

Since P is invertible, it follows that a = b = 0.
Also, it is relatively easy to confirm that the linearity in the second argument and

the symmetry hold by using the matrix product properties S(a′ + a′′) = Sa′ + Sa′′,
S(λa′) = λSa′, and the inner product property of ⟨·, ·⟩ on Rn. Therefore, the function is
an inner product on R2n. This completes the proof.

Remark that the converse of Proposition 3.1 holds as follows:

Proposition 3.2. Any inner product on R2n can be expressed in the form for some square
2n× 2n invertible matrix P over R.

Proof. Let

〈(
·
·

)
,

(
·
·

)〉
be an inner product on R2n, and define a square 2n× 2n matrix

by

Q = (⟨ei, ej⟩)i,j∈{1,2,...,2n},

where {e1, . . . , e2n} is the standard basis of R2n. Then we can check that Q is a symmetric
positive definite matrix and for all a, b ∈ Rn,〈(

a
b

)
,

(
a′

b′

)〉
= (aT , bT )Q

(
a′

b′

)
.



512 Thai J. Math. Vol. 22 (2024) /D. Kuroiwa and T. Mori

Also there exists the square root R of Q, that is R2 = Q. Let R =

(
A B
C D

)
, where

A,B,C,D are n× n matrix. Then we have〈(
a
b

)
,

(
a′

b′

)〉
= (aT , bT )Q

(
a′

b′

)
=

(
R

(
a
b

))T

R

(
a′

b′

)
=

(
Aa+Bb
Ca+Db

)T (
Aa′ +Bb′

Ca′ +Db′

)
= ⟨Aa+Bb,Aa′ +Bb′⟩+ ⟨Ca+Db,Ca′ +Db′⟩

=

〈(
a
b

)
,

(
a′

b′

)〉
R

.

Since R is a symmetric positive definite matrix, R is also invertible. This completes the
proof.

We observe the inner product when S, T, U , and V are diagonal matrices, where S =
diag(s), T = diag(t), U = diag(u), V = diag(v), s = (s1, . . . , sn)

T , t = (t1, . . . , tn)
T ,

u = (u1, . . . , un)
T , and v = (v1, . . . , vn)

T ∈ Rn. Then we have〈(
a
b

)
,

(
a′

b′

)〉
P

= ⟨diag(s)a+ diag(t)b,diag(s)a′ + diag(t)b′⟩

+ ⟨diag(u)a+ diag(v)b,diag(u)a′ + diag(v)b′⟩

=

n∑
i=1

((siai + tibi)(sia
′
i + tib

′
i) + (uiai + vibi)(uia

′
i + vib

′
i)) .

Proposition 3.3. If sivi−tiui ̸= 0 for all i = 1, 2, . . . , n, then

〈(
·
·

)
,

(
·
·

)〉
P

is an inner

product on R2n.

Proof. It is a direct consequence from Proposition 3.1 because

detP = det



s1 O
. . .

O sn

t1 O
. . .

O tn
u1 O

. . .

O un

v1 O
. . .

O vn


=

n∏
i=1

(sivi − tiui)

and it is not zero from the assumption.

Example 3.4. If si > 0, vi > 0, and ti = ui = 0, then sivi − tiui = sivi > 0 and〈(
a
b

)
,

(
a′

b′

)〉
P

=
∑n

i=1(siaia
′
i+vibib

′
i) is an inner product on R2n and called a weighted

inner product on R2n. Especially if si = vi = 1 and ti = ui = 0, then

〈(
a
b

)
,

(
a′

b′

)〉
P

=
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⟨a, a′⟩+ ⟨b, b′⟩ is the standard inner product on R2n. If si = vi = 1, ui = −1, and ti = 0,

then sivi− tiui = 1 and

〈(
a
b

)
,

(
a′

b′

)〉
P

= ⟨a, a′⟩+ ⟨b− a, b′ − a′⟩ is an inner product on

R2n which has another structure from the standard inner product.

3.3. An Inner Product on N

Now we define an inner product on N . Let

〈(
·
·

)
,

(
·
·

)〉
be an inner product in R2n.

Define a function from N 2 to R by

⟨[a, b]⊖ [c, d] , [a′, b′]⊖ [c′, d′]⟩ :=
〈(

a− c
b− d

)
,

(
a′ − c′

b′ − d′

)〉
,

for any [a, b]⊖ [c, d] , [a′, b′]⊖ [c′, d′] ∈ N .

Theorem 3.5. The function defined above is well-defined on N 2 and it is an inner
product on N .

Proof. At first, we show that this function is well-defined. Let [a, b] ⊖ [c, d] , [a′, b′] ⊖
[c′, d′] , [a′′, b′′]⊖ [c′′, d′′] , [a′′′, b′′′]⊖ [c′′′, d′′′] ∈ N , and assume that [a, b]⊖ [c, d] = [a′′, b′′]⊖
[c′′, d′′] and [a′, b′]⊖ [c′, d′] = [a′′′, b′′′]⊖ [c′′′, d′′′].

Since ([a, b] , [c, d]) ∼ ([a′′, b′′] , [c′′, d′′]) and ([a′, b′] , [c′, d′]) ∼ ([a′′′, b′′′] , [c′′′, d′′′]), we
have {

a− c = a′′ − c′′

b− d = b′′ − d′′
and

{
a′ − c′ = a′′′ − c′′′

b′ − d′ = b′′′ − d′′′.

We observe that

⟨[a, b]⊖ [c, d] , [a′, b′]⊖ [c′, d′]⟩ =
〈(

a− c
b− d

)
,

(
a′ − c′

b′ − d′

)〉
=

〈(
a′′ − c′′

b′′ − d′′

)
,

(
a′′′ − c′′′

b′′′ − d′′′

)〉
= ⟨[a′′, b′′]⊖ [c′′, d′′] , [a′′′, b′′′]⊖ [c′′′, d′′′]⟩ ,

and then the function is well-defined.
(i) We show the positive definiteness. For any [a, b]⊖ [c, d] ∈ N ,

⟨[a, b]⊖ [c, d] , [a, b]⊖ [c, d]⟩ =
〈(

a− c
b− d

)
,

(
a− c
b− d

)〉
≧ 0,

and ⟨[a, b]⊖ [c, d] , [a, b]⊖ [c, d]⟩ = 0 if and only if

(
a− c
b− d

)
=

(
0
0

)
, that is, a = c and

b = d, or equivalently [a, b]⊖ [c, d] = [a, b]⊖ [a, b], which is the null vector of N .
(ii) We show the symmetry as follows:

⟨[a, b]⊖ [c, d] , [a′, b′]⊖ [c′, d′]⟩ =
〈(

a− c
b− d

)
,

(
a′ − c′

b′ − d′

)〉
=

〈(
a′ − c′

b′ − d′

)
,

(
a− c
b− d

)〉
= ⟨[a′, b′]⊖ [c′, d′] , [a, b]⊖ [c, d]⟩ .
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(iii) The additivity in the second argument is shown as follows:

⟨[a, b]⊖ [c, d] , ([a′, b′]⊖ [c′, d′]) + ([a′′, b′′]⊖ [c′′, d′′])⟩
= ⟨[a, b]⊖ [c, d] , [a′ + a′′, b′ + b′′]⊖ [c′ + c′′, d′ + d′′]⟩

=

〈(
a− c
b− d

)
,

(
a′ + a′′ − c′ − c′′

b′ + b′′ − d′ − d′′

)〉
=

〈(
a− c
b− d

)
,

(
a′ − c′

b′ − d′

)〉
+

〈(
a− c
b− d

)
,

(
a′′ − c′′

b′′ − d′′

)〉
= ⟨[a, b]⊖ [c, d] , [a′, b′]⊖ [c′, d′]⟩+ ⟨[a, b]⊖ [c, d] , [a′′, b′′]⊖ [c′′, d′′]⟩ .

Next, we show the homogeneity in the second argument. When λ ≧ 0, we have

⟨[a, b]⊖ [c, d] , λ([a′, b′]⊖ [c′, d′])⟩ = ⟨[a, b]⊖ [c, d] , [λa′, λb′]⊖ [λc′, λd′]⟩

=

〈(
a− c
b− d

)
,

(
λa′ − λc′

λb′ − λd′

)〉
= λ

〈(
a− c
b− d

)
,

(
a′ − c′

b′ − d′

)〉
= λ ⟨[a, b]⊖ [c, d] , [a′, b′]⊖ [c′, d′]⟩ ,

and when λ < 0, we have

⟨[a, b]⊖ [c, d] , λ([a′, b′]⊖ [c′, d′])⟩ = ⟨[a, b]⊖ [c, d] , [−λc′,−λd′]⊖ [−λa′,−λb′]⟩

=

〈(
a− c
b− d

)
,

(
−λc′ + λa′

−λd′ + λb′

)〉
= λ

〈(
a− c
b− d

)
,

(
a′ − c′

b′ − d′

)〉
= λ ⟨[a, b]⊖ [c, d] , [a′, b′]⊖ [c′, d′]⟩ .

From (i) to (iii), the function is an inner product on N . This completes the proof.

Remark that this new inner product has consistency with the standard inner product
because ⟨[a, a]⊖ [0, 0], [b, b]⊖ [0, 0]⟩P = ⟨a, b⟩ for all a, b ∈ Rn, where si = vi =

1√
2
and

ti = ui = 0.

3.4. The Dimension of N
From the previous theorem, N is established as a pre-Hilbert space equipped with

a defined sum, scalar product, and inner product. We now proceed to show that N is
finite-dimensional, and therefore can be regarded as a Hilbert space.

Theorem 3.6. The dimension of N is 2n and N is a Hilbert space for the defined sum,
scalar product, and inner product.

Proof. At first we define a map φ from N to R2n as follows:

φ([a, b]⊖ [c, d]) :=

(
a− c
b− d

)
.

If [a, b] ⊖ [c, d] = [a′, b′] ⊖ [c′, d′], then a − c = a′ − c′ and b − d = b′ − d′. This shows
that the map φ is well-defined. This map is also linear. Indeed, the additivity is shown
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as follows: for any [a, b]⊖ [c, d] , [a′, b′]⊖ [c′, d′] ∈ N ,

φ([a, b]⊖ [c, d] + [a′, b′]⊖ [c′, d′]) = φ([a+ a′, b+ b′]⊖ [c+ c′, d+ d′])

=

(
(a+ a′)− (c+ c′)
(b+ b′)− (d+ d′)

)
=

(
a− c
b− d

)
+

(
a′ − c′

b′ − d′

)
= φ([a, b]⊖ [c, d]) + φ([a′, b′]⊖ [c′, d′]).

The homogeneity is shown as follows: for any [a, b]⊖ [c, d] ∈ N and λ ∈ R, if λ ≧ 0, then

φ(λ([a, b]⊖ [c, d])) = φ([λa, λb]⊖ [λc, λd])

=

(
λa− λc
λb− λd

)
= λ

(
a− c
b− d

)
= λφ([a, b]⊖ [c, d]),

and if λ < 0, then

φ(λ([a, b]⊖ [c, d])) = φ([−λc,−λd]⊖ [−λa,−λb])

=

(
−λc− (−λa)
−λd− (−λb)

)
= λ

(
a− c
b− d

)
= λφ([a, b]⊖ [c, d]).

The injectivity is shown as follows: for any [a, b]⊖ [c, d] , [a′, b′]⊖ [c′, d′] ∈ N , if φ([a, b]⊖
[c, d]) = φ([a′, b′]⊖ [c′, d′]), then(

a− c
b− d

)
=

(
a′ − c′

b′ − d′

)
,

that is, a−c = a′−c′ and b−d = b′−d′, and this shows that [a, b]⊖ [c, d] = [a′, b′]⊖ [c′, d′].
Finally, the surjectivity is shown as follows: for any y, z ∈ Rn, put

ai = yi, bi = max{yi, zi}, ci = 0, and di = max{yi − zi, 0},

then

ai ≦ bi, ci ≦ di, ai − ci = yi, and bi − di = zi,

for each i ∈ {1, 2, . . . , n}. The last equality is shown since max{yi, zi} = zi + max{yi −
zi, 0}. Therefore, [a, b]⊖ [c, d] ∈ N and

φ([a, b]⊖ [c, d]) =

(
a− c
b− d

)
=

(
y
z

)
.

Consequently, we have that the dimension of N is 2n. Therefore N is also a Hilbert space
because every pre-Hilbert spaces have finite dimension are known to be Hilbert space.
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4. Applications

4.1. Application to Interval Linear Programming Problems

Consider the following interval programming problem:

(P0)

 Maximize ⟨c, x⟩
subject to ⟨ai, x⟩ ≤ bi, i = 1, 2, . . . ,m

x = [x, x] ∈ M,

where c = [c, c] ∈ M, ai = [ai, ai] ∈ M, i = 1, 2, . . . ,m, b ∈ Rm. It is natural that
the coefficients of mathematical programming problem may contain some errors, and
intervals can represent the range in which these errors may move. Here, the above function

⟨·, ·⟩ : M2 → R is given by an arbitrary inner product

〈(
·
·

)
,

(
·
·

)〉
on R2n as follows:

⟨c, x⟩ =
〈(

c
c

)
,

(
x
x

)〉
.

Instead of the problem (P0), we solve the next problem (P) on Hilbert space N :

(P)

 Maximize ⟨c⊖ 0, x⊖ x′⟩
subject to ⟨ai ⊖ 0, x⊖ x′⟩ ≤ bi, i = 1, 2, . . . ,m,

x⊖ x′ ∈ N ,

which is a kind of relaxation of (P0), because ⟨c⊖ 0, x⊖ x′⟩ =

〈(
c
c

)
,

(
x− x′

x− x′

)〉
and

it equals ⟨c, x⟩ when x′ = [0, 0]. Therefore, the optimal value of (P0), val(P0), is less
than or equal to the optimal value of (P), val(P). Also, if x⊖ x′ is a solution of (P) and
x − x′ ≤ x − x′, then [x − x′, x − x′] is a solution of (P0). Next, problem (P) can be
characterized by duality. Since (P) is a linear programming problem with finite affine
constraints on N , then FM, the Farkas Minkowski property, holds and Theorem 4.1 in
[3] can be applied to this problem. Therefore, the objective value of (P) is given by its
dual form as follows:

val(P) =max{⟨c⊖ 0, x⊖ x′⟩ | ⟨ai ⊖ 0, x⊖ x′⟩ ≤ bi, x⊖ x′ ∈ N}
=− inf{⟨−c⊖ 0, x⊖ x′⟩ | ⟨ai ⊖ 0, x⊖ x′⟩ ≤ bi, x⊖ x′ ∈ N}

=−max
yi≥0

inf
x⊖x′∈N

{
⟨−c⊖ 0, x⊖ x′⟩+

m∑
i=1

yi(⟨ai ⊖ 0, x⊖ x′⟩ − bi)

}

=−max
yi≥0

inf
x⊖x′∈N

{〈(
−c+

m∑
i=1

yiai

)
⊖ 0, x⊖ x′

〉
−

m∑
i=1

yibi

}
.

We can see that −c+
∑m

i=1 yiai ̸= 0 for any yi ≥ 0 if and only if val(P ) = +∞. Otherwise

val(P ) = − max
yi≥0∑m

i=1 yiai=c

−
m∑
i=1

yibi = min
yi≥0∑m

i=1 yiai=c

m∑
i=1

yibi = val(D),
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where val(D) is the optimal value of the following programming problem:

(D)


Minimize ⟨b, y⟩

subject to
m∑
i=1

yiai = c

yi ≥ 0, i = 1, 2, . . . ,m,

or equivalently

(D)



Minimize ⟨b, y⟩

subject to
m∑
i=1

yiai = c

m∑
i=1

yiai = c

yi ≥ 0, i = 1, 2, . . . ,m.

The latter form of problem (D) becomes a typical linear optimization problem.

4.2. Application to Interval Support Vector Machines

Consider the following interval data points for classification:

(x1, y1), (x2, y2), . . . , (xl, yl),

where xi ∈ M and yi ∈ {1,−1}, i = 1, 2, . . . , l. It is a natural situation that data contains
some errors. Assume that the lower limit of the i-th data is xi and the upper limit is xi.
To consider the classification of the data, we solve the one of the following data sets on
N :

(x1 ⊖ 0, y1), (x2 ⊖ 0, y2), . . . , (xl ⊖ 0, yl).

Since N is a Hilbert space, the soft-margin problem for this classification is easily given
as follows:

Minimize ∥w ⊖ w′∥2 + C

l∑
i=1

ξi

subject to yi(⟨w ⊖ w′, xi ⊖ 0⟩ − b) ≥ 1− ξi, ξi ≥ 0, ∀i = 1, 2, . . . , l,

w ⊖ w′ ∈ N , b ∈ R, ξ ∈ Rl,

where ⟨w ⊖ w′, x⊖ x′⟩ :=
〈(

w − w′

w − w′

)
,

(
x− x′

x− x′

)〉
, and

〈(
·
·

)
,

(
·
·

)〉
is an arbitrary inner

product on R2n. Define L : N × R× Rl × Rl × Rl → R by

L(w ⊖ w′, b, ξ, u, v) = ∥w ⊖ w′∥2 + C

l∑
i=1

ξi

+

l∑
i=1

ui(1− ξi − yi(⟨w ⊖ w′, xi ⊖ 0⟩ − b))−
l∑

i=1

viξi.

If (w ⊖ w′, b, ξ) ∈ N × R × Rl is a solution of the soft-margin problem, by using the
Lagrange duality theorem, Theorem 5.1 in [3], there exist u, v ∈ Rl such that ui ≥ 0,
ui(1− ξi − yi(⟨w ⊖ w′, xi ⊖ 0⟩ − b)) = 0, vi ≥ 0, viξi = 0, i = 1, 2, . . . , l, and

(0⊖ 0, 0, 0) ∈ ∂L(·, ·, ·, u, v)(w ⊖ w′, b, ξ).
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Then we have

0⊖ 0 = 2w⊖w′ −
l∑

i=1

uiyixi ⊖ 0, 0 =

l∑
i=1

uiyi, and 0 = (C, . . . , C)T − u− v,

that is,

w⊖w′ =
1

2

l∑
i=1

uiyixi⊖0, w′ = 0, 0 =

l∑
i=1

uiyi, and 0 = (C, . . . , C)T−u−v.

In this case,

L(w ⊖ w′, b, ξ, u, v) = −1

4
∥

l∑
i=1

uiyixi ⊖ 0∥2 +
l∑

i=1

ui

= −1

4

l∑
i=1

l∑
j=1

uiujyiyj

〈(
xi

xi

)
,

(
xj

xj

)〉
+

l∑
i=1

ui,

and the dual problem is the following quadratic maximization problem:

Maximize − 1

4

l∑
i=1

l∑
j=1

uiujyiyj

〈(
xi

xi

)
,

(
xj

xj

)〉
+

l∑
i=1

ui

subject to

l∑
i=1

uiyi = 0, and 0 ≤ ui ≤ C, ∀i = 1, 2, . . . , l.

This problem is the typical dual form of the soft-margin problem for SVM.

5. Conclusions

In this study, we introduced a novel inner product structure for intervals within a vector
space setting. We showed that this inner product preserves the key properties of standard
inner products, which allowed us to establish that the set of intervals forms a Hilbert
space. This new framework not only enriches the theoretical understanding of intervals
but also provides a solid foundation for practical applications. We applied this structure
to interval linear programming and interval support vector machines, illustrating that
our interval Hilbert space approach makes these models easier to analyze and interpret,
especially in situations with uncertainties represented as intervals. This approach enables
inner product calculations directly within the space of intervals, offering new insights for
problems where uncertainties play a significant role.

References

[1] M. Zhu, D. Li, Bases and dimension of interval vector space, Comput. Appl. Math.
40 (2021) Article no. 6.

[2] H. R̊adström, An embedding theorem for spaces of convex sets, Proc. Amer. Math.
Soc. 3 (1952) 165–169.
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