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Exchange General Rings

with Bounded Indices are Clean

W. Chen

Abstract : It is proven that an exchange general ring with bounded index is a
clean general ring. In particular, an ideal I with bounded index in an exchange
ring R is a clean ideal, which gives a positive answer to a question of H. Chen and
M. Chen (Internat. J. Math. Math. Sci. 2003). Moreover, it is proven that each
bounded matrix over an exchange ring R is a sum of an invertible matrix and an
idempotent matrix, extending one of the main results of S. Wang and H. Chen
(Bull. Korean Math. Soc. 43(1)(2006)).
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1 Introduction

In this note, the term a ring means an associative ring with unity and a general
ring means an associative ring with or without unity (cf. [12]). A ring R is called
an exchange ring if RR has the exchange property introduced by Crawley and
Jonsson in their fundamental work [7]. This property is left-right symmetric by
Warfield [14]. And it is proven independently by Goodearl and Warfield [8], and
Nicholson [11] that R is an exchange ring if and only if for each a ∈ R there exists
an idempotent e ∈ R such that e ∈ aR and 1− e ∈ (1− a)R. Exchange rings arise
in functional analysis. It is known that, for unital C∗-algebras, being an exchange
ring is the same as having real rank zero (cf. [12]). The notion of clean rings was
introduced by Nicholson [11]. A ring R is called clean if each element of R can be
written as a sum of a unit and an idempotent. Clean rings are exchange rings and
the converse is not true in general [4]. There are numerous papers to investigate
exchange rings, clean rings and their generalizations. For instance, Ara [2] defined
a general ring I to be an exchange ring if for each a ∈ I there exist an idempotent
e ∈ I and x, y ∈ I such that e = ax = a + y − ay, and proved that if I is a
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general ring and K is an ideal of I then I is an exchange general ring if and only
if I/K and K are exchange general rings and idempotents in I/K can be lifted to
I. In [3], Ara proved that a right (left) ideal of an exchange general ring is also
an exchange general ring. Nicholson and Zhou [12] defined a general ring I to be
clean if each element a of I can be written as a = e + q where e2 = e ∈ I and
q ∈ Q(I) = {q|q + p + qp = p + q + pq = 0 for some p in I}, and proved that
clean general rings are exchange general rings in the scene of Ara [2]. In another
situation, H. Chen and M. Chen [6] defined an ideal I of a ring R to be clean in
case each element in I is a sum of a unit and an idempotent of R. However, it
is an open question whether an exchange ideal with bounded index in a ring is a
clean ideal (see [6, p. 3951]). The main purpose of this note is to give a positive
answer to this question.

As usual, we use the symbol J(I) to denote the Jacobson radical of a general
ring I. Mn(I) denotes the ring of n×n matrices over I, and Id(I) denotes the set
of idempotents of I. Let I be a general ring and K be an ideal of I, and e ∈ Id(I).
We write (1 − e)K = {a − ea | a ∈ K} and eK(1 − e) = {ea − eae | a ∈ K},
and write (1 − e)K(1 − e) = {a − ea − ae + eae | a ∈ K} (cf. [10, §1.5]). The
meaning of other symbols like these is similar to that of the above. For example, if
a1, a2, ···, an, b ∈ K, then we write b−Σn

i=1aib+Σi<jaiajb−···+(−1)na1a2 ···anb =
(1 − a1) · · · (1 − an)b for simplicity.

2 The Results

We start this section with the following lemmas.

Lemma 2.1. ([12, Proposition 7 (1), (2)]) Let R be a ring and I be an ideal of
R. Then I is a clean ideal in R if and only if I is a clean general ring.

The next lemma was first observed by Nicholson and Zhou in [12].

Lemma 2.2. Let I be a general ring. If all right primitive factor rings of I are
right artinian, then I is a clean general ring.

Proof. It is very similar to the proof of [5, Theorem 1], so we omit the details (cf.
the proof of [12, Theorem 10 (2)]) .

Proposition 2.3. Let I be an exchange general ring and e ∈ Id(I). Then (1 −
e)I(1 − e) is an exchange general subring of I. Moreover, if K is an ideal of I
then (1− e)K(1− e) is an exchange ideal of (1− e)I(1− e) and (1− e)K(1− e) =
K

⋂
[(1 − e)I(1 − e)].

Proof. It is known and easy to prove that (1− e)I(1− e) is a subring of I (cf. [10,
§1.5]). For any b ∈ (1 − e)I(1 − e), then b = a − ae − ea + eae with a ∈ I. Since
I is an exchange general ring and b ∈ I, there exist f ∈ Id(I) and x, y ∈ I such
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that f = xb = y + b− yb. Clearly, be = eb = 0 and so fe = xbe = 0, which implies
(f − ef)2 = f − ef . Moreover, f − ef = f − fe− ef + efe ∈ (1− e)I(1− e). Using
eb = 0, then f − ef = xb − exb = (x − ex − xe + exe)b ∈ (1 − e)I(1 − e) since
x − ex − xe + exe, b ∈ (1 − e)I(1 − e). On the other hand, since f = y + b − yb
and eb = be = fe = 0, we have ye = 0, and f − ef = y + b − yb − e(y + b − yb) =
(y − ey) + b + (−yb + eyb) = (y − ey − ye + eye) + b − (y − ey − ye + eye)b where
y − ey − ye + eye ∈ (1 − e)I(1 − e). Hence (1 − e)I(1 − e) is an exchange general
subring of I. Obviously, (1− e)K(1− e) is an additive subgroup of (1− e)I(1− e).
For any b ∈ (1 − e)I(1 − e), and x ∈ (1 − e)K(1 − e), then b = a − ea − ae + eae
and x = x1 − ex1 − x1e + ex1e where a ∈ I and x1 ∈ K. Since e[(1− e)I(1− e)] =
[(1 − e)I(1 − e)]e = 0, bx = bx1 − bx1e = bx1 − bx1e − ebx1 + ebx1e. Note that
x1 ∈ K, we have bx ∈ (1 − e)K(1 − e). Similarly, xb ∈ (1 − e)K(1 − e) and so
(1−e)K(1−e) is an ideal of (1−e)I(1−e). By [2, Theorem 2.2], (1−e)K(1−e) is
an exchange ideal of (1−e)I(1−e). Clearly, (1−e)K(1−e) ⊆ K

⋂
[(1−e)I(1−e)]

holds. Conversely, for any a ∈ K
⋂

[(1−e)I(1−e)], then a = x−ex−xe+exe where
a ∈ K and x ∈ I. Since ae = ea = 0, we get a = a−ae−ea+eae ∈ (1−e)K(1−e).
The proof is completed.

Lemma 2.4. Let I be an exchange general ring and K be an ideal of I. Then
every finite or countably infinite sequence of orthogonal idempotents in I/K can
be orthogonally lifted to I.

Proof. Let f1, f2, · · ·, fn, · · · be any sequence of orthogonal idempotents in I/K.
Since I is an exchange general ring, there exists e1 ∈ Id(I) such that ē1 = f1 in
I/K. Now take t2 in I such that t̄2 = f2 in I/K. Let s2 = t2− t2e1−e1t2 +e1t2e1.
Then we have s2 ∈ (1−e1)I(1−e1) and s̄2 = f2 in I/K and hence s2

2−s2 ∈ K. This
implies that s2

2 − s2 ∈ K
⋂

[(1− e1)I(1− e1)] = (1− e1)K(1− e1). By Proposition
2.3, (1 − e1)K(1 − e1) is an exchange ideal of (1 − e1)I(1 − e1). Since s̄2 is an
idempotent in (1 − e1)I(1 − e1)/(1 − e1)K(1 − e1), there exists an idempotent
e2 in (1 − e1)I(1 − e1) such that ē2 = s̄2. Note that e1[(1 − e1)I(1 − e1)] =
[(1 − e1)I(1 − e1)]e1 = 0. We have e1e2 = e2e1 = 0 and ē2 = f2 in I/K.

For any n ≥ 2, assume that we have already obtained idempotents e1, e2, ···, en

such that eiej = 0 whenever i 6= j, and ēi = fi ∈ I/K. Let e = e1 + e2 + · · ·+ en.
Then e ∈ Id(I), similar to the proof of the above paragraph, there exists en+1 ∈
Id(I) such that en+1 = fn+1 ∈ I/K and een+1 = en+1e = 0. This implies that
eien+1 = en+1ei = 0 for all i < n + 1. By induction, we obtain a sequence of
orthogonal idempotents e1, e2, · · ·, en, · · · in I such that ēi = fi ∈ I/K.

A general ring I is called semipotent if each right ideal not contained in J(I)
contains a nonzero idempotent [12]. In particular, in case J(I) = 0 then every
nonzero right ideal contains a nonzero idempotent. It is proven by [12, Proposi-
tion 5] that every exchange general ring is semipotent. And it is well known that
an exchange ring is a semiperfect ring if and only if it has no infinite sequence of
nonzero orthogonal idempotents (cf. [4, Corollary 2]).

The next lemma is crucial to obtaining our main result of this note.



356 Thai J. Math. 7(2) (2009)/ W. Chen

Lemma 2.5. Let I be an exchange general ring such that J(I) = 0. If I has
no infinite sequence of nonzero orthogonal idempotents, then I is a right artinian
general ring.

Proof. Assume that I is not a right artinian ring. Then I is not a minimal right
ideal and it contains a nonzero proper right ideal I1. By [3, Proposition 1.3], I1 is an
exchange general ring. And [1, Proposition 9.14] implies that J(I1) = 0. So there
exists a nonzero idempotent e1 in I1. Hence I = e1I⊕(1−e1)I is a direct sum of two
right ideals of I. Clearly, e1I and (1−e1)I are both nonzero since e1I ⊂ I1, and e1I
or (1−e1)I is not right artinian. If e1I is not right artinian, then e1I must contain
an infinite of sequence of nonzero orthogonal idempotents of I. In fact, there exists
a general ring surjective homomorphism f : e1I → e1Ie1 given by f(e1a) = e1ae1

where a ∈ I. Obviously, kerf = e1I(1 − e1). So e1I/e1I(1 − e1) ∼= e1Ie1. Since
[e1I(1 − e1)]

2 = 0, we have e1I(1 − e1) ⊆ J(e1I) = 0. Hence e1I ∼= e1Ie1 and
e1I is a ring with unity e1. If e1I is not right artinian, then it is not semiperfect
since J(e1I) = 0, and so it contains an infinite sequence of nonzero orthogonal
idempotents of I ([4, Corollary 2]). Now assume that (1−e1)I is not right artinian.
Since J(I) = J(e1I) ⊕ J((1 − e1)I) and J(I) = 0, we have J((1 − e1)I) = 0 by
[1, Proposition 9.19]. Similar to the above argument for I, there exists a nonzero
idempotent e2 in (1 − e1)I such that e2(1 − e1)I and (1 − e2)(1 − e1)I are both
nonzero and (1−e1)I = e2(1−e1)I⊕(1−e2)(1−e1)I. Hence I = e1I⊕e2(1−e1)I⊕
(1− e2)(1− e1)I. It is easy to see that e1e2 = 0 since e2 ∈ (1− e1)I. In this case,
e2(1−e1) = e2−e2e1 ∈ I and e2(1−e1)e2(1−e1) = e2(e2−e1e2)(1−e1) = e2(1−e1).
Since I and e1I are not right artinian, e2(1− e1)I or (1− e2)(1− e2)I is not right
artinian. Hence e2(1 − e1)I contains an infinite sequence of nonzero orthogonal
idempotents of I provided that e2(1 − e1)I is not right artinian. Now we can
assume that (1−e1)(1−e2)I is not right artinian. More generally, assume that we
have already obtained nonzero idempotents e1, e2, · · ·, en such that I = e1I⊕e2(1−
e1)I⊕···⊕en(1−en−1)···(1−e1)I⊕(1−en)(1−en−1)···(1−e1)I in which every direct
summand is nonzero and ei ∈ (1−ei−1)···(1−e1)I for i ≥ 2. Not lose the generality,
we may assume that (1−en)(1−en−1)···(1−e1)I is not right artinian, so there exists
a nonzero idempotent en+1 ∈ (1−en)(1−en−1) · · · (1−e1)I such that (1−en)(1−
en−1)···(1−e1)I = en+1(1−en)(1−en−1)···(1−e1)I⊕(1−en+1)(1−en)···(1−e1)I
with enen+1 = 0. And so I = e1I⊕e2(1−e1)I⊕···⊕en+1(1−en)· · ·(1−e1)I⊕(1−
en+1)(1−en) · · · (1−e1)I. By induction, we obtain an infinite sequence of nonzero
idempotents e1, e2, ···, en, ··· such that ei+1 ∈ (1−ei)···(1−e1)I and eiei+1 = 0. We
claim that e1, e2(1−e1), ···, en(1−en−1)···(1−e1)··· is an infinite sequence of nonzero
orthogonal idempotents of I. To prove this, first we prove that eiej = 0 for all
i < j. It is known that eiei+1 = 0 for any i ≥ 1. Assume that eiek = 0 for all k < n.
Then eien ∈ ei(1−en−1) · · ·(1−ei) · · ·(1−e1)I = ei(1−ei) · · ·(1−e1)I = 0. Second
we prove that e1, e2(1−e1), · · ·, en(1−en−1) · · ·(1−e1), · · · is an infinite sequence of
nonzero orthogonal idempotents of I. For any n ≥ 1, en(1−en−1) · · ·(1−e1)en(1−
en−1)···(1−e1) = enen(1−en−1)···(1−e1) = en(1−en−1)···(1−e1). Moreover, for
any i < j, ei(1−ei−1)···(1−e1)ej(1−ej−1)···(1−e1) = eiej(1−ej−1)···(1−e1) = 0.
And ej(1−ej−1) · · · (1−ei) · · · (1−e1)ei(1−ei−1) · · · (1−e1) = ej(1−ej−1) · · · (1−
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ei)ei(1− ei−1) · · · (1− e1) = 0. At last we prove that en(1− en−1) · · · (1− e1) 6= 0.
Otherwise, we have en = en(1−en−1) · · · (1−e1)en = 0, a contradiction. From the
above argument, if I is not right artinian then it must contain an infinite sequence
of nonzero orthogonal idempotents, which contradicts the assumption. The proof
is completed.

Recall that the index of a nilpotent element x in a general ring I is the least
positive integer n such that xn = 0. The index of a two-sided ideal K in I is the
supremum of the indices of all nilpotent elements of K. If this supremum is finite,
then K is said to have bounded index (cf. [9, p.71]).

Theorem 2.6. Let I be an exchange general ring. If I has bounded index, then
each right primitive factor ring of I is right artinian and so I is a clean general
ring.

Proof. Let k be the bounded index of I. Then for any right primitive ideal P of I,
each set of nonzero orthogonal idempotents of I/P contains at most k elements.
Otherwise, let f1, f2, · · ·, fk, fk+1 be a set of nonzero orthogonal idempotents of
I/K. By lemma 2.4, we can orthogonally lift them to orthogonal idempotents
e1, e2, · · ·, ek, ek+1 ∈ I. Now P is a right primitive ideal of I implies that it is a
prime ideal. Since ei /∈ P , by induction, we can obtain x1, x2, · · ·, xk+1 ∈ I such
that e1x1e2x2 · · · ek+1xk+1 /∈ P . Now let y = e1x1e2 + e2x2e3 + · · · + ekxkek+1.
Then yk = e1x1e2x2 · · · ekxkek+1 and yk+1 = 0. Hence we have yk = 0, that is,
e1x1e2x2 · · · ekxkek+1xk+1 = 0, a contradiction. Since J(I/P ) = 0, I/P is right
artinian by Lemma 2.5. Hence I is a clean general ring by Lemma 2.2.

Corollary 2.7. Let R is an exchange ring and I be an ideal of R. If I has bounded
index, then I is a clean ideal of R.

Proof. By [2, Theorem 2.2], I is a exchange general ring. Now we obtain the
desired result from Theorem 2.6 and Lemma 2.1.

A ring R is called von Neumann regular if for each a ∈ R there exists b ∈ R
such that a = aba. Is is well known that a von Neumann ring is an exchange
ring. Let R be a ring. In [13], a n × n matrix A ∈ Mn(R) is called a bounded
matrix in case Mn(R)AMn(R) is a bounded ideal (an ideal with bounded index)
of Mn(R). And [13, Lemma 1] states that for a bounded matrix A ∈ Mn(R) over
a von Neumann regular ring R, there exists a bounded ideal I of R such that
A ∈ Mn(I). In fact, this conclusion is true for any ring R.

Lemma 2.8. Let A ∈ Mn(R) be a bounded matrix over any ring R. Then there
exists a bounded ideal I of R such that A ∈ Mn(I).

Proof. Since A is a bounded matrix, Mn(R)AMn(R) is a bounded ideal of Mn(R).
Let eij be the usual matrix units for 1 ≤ i, j ≤ n and A = (ast)n×n ∈ Mn(R).

Since ejiAejj = eji

n∑

s=1

n∑

t=1

astestejj = aijejj , there exists a ring isomorphism:
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ejiMn(R)ejj
∼= R. Thus ejiMn(R)ejjejiAejjejiMn(R)ejj

∼= RaijR, and so RaijR

is a bounded ideal of R. Let I =
n∑

i=1

n∑

j=1

RaijR. We prove that I is a bounded

ideal of R. It is sufficient to prove that if K and L are two ideals of R and A, B
have the bounded indices m and n, respectively, then the bounded index of K +L
is no more then mn. Assume that a ∈ K, b ∈ L. Then (a + b)m = am + b1 = b1

for some b1 ∈ L and so (a + b)mn = 0. Hence the sum of finitely many ideals of
bounded indices is an ideal of bounded index by induction. Now I is a bounded
ideal of R and clearly A ∈ Mn(I).

Theorem 2.9. Each bounded matrix over an exchange ring R is a sum of an
invertible matrix and an idempotent matrix.

Proof. Let A ∈ Mn(R) be a bounded matrix over an exchange ring R. By Lemma
2.8, there exists a bounded ideal I of R such that A ∈ Mn(I). Corollary 2.7 implies
that I is a clean ideal of R and so Mn(I) is a clean ideal of Mn(R) by [6, Theorem
1.9]. Therefore A is a sum of an invertible matrix and an idempotent matrix.

Corollary 2.10. ([13, Theorem 5]) Each bounded matrix over a von Neumann
ring R is a sum of an invertible matrix and an idempotent matrix.
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