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Exchange General Rings
with Bounded Indices are Clean

W. Chen

Abstract : It is proven that an exchange general ring with bounded index is a
clean general ring. In particular, an ideal I with bounded index in an exchange
ring R is a clean ideal, which gives a positive answer to a question of H. Chen and
M. Chen (Internat. J. Math. Math. Sci. 2003). Moreover, it is proven that each
bounded matrix over an exchange ring R is a sum of an invertible matrix and an
idempotent matrix, extending one of the main results of S. Wang and H. Chen
(Bull. Korean Math. Soc. 43(1)(2006)).
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1 Introduction

In this note, the term a ring means an associative ring with unity and a general
ring means an associative ring with or without unity (cf. [12]). A ring R is called
an exchange ring if Rp has the exchange property introduced by Crawley and
Jonsson in their fundamental work [7]. This property is left-right symmetric by
Warfield [14]. And it is proven independently by Goodearl and Warfield [8], and
Nicholson [11] that R is an exchange ring if and only if for each a € R there exists
an idempotent e € R such that e € aR and 1 — e € (1 — a)R. Exchange rings arise
in functional analysis. It is known that, for unital C*-algebras, being an exchange
ring is the same as having real rank zero (cf. [12]). The notion of clean rings was
introduced by Nicholson [11]. A ring R is called clean if each element of R can be
written as a sum of a unit and an idempotent. Clean rings are exchange rings and
the converse is not true in general [4]. There are numerous papers to investigate
exchange rings, clean rings and their generalizations. For instance, Ara [2] defined
a general ring I to be an exchange ring if for each a € I there exist an idempotent
e € I and z,y € I such that e = ar = a + y — ay, and proved that if I is a
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general ring and K is an ideal of I then [ is an exchange general ring if and only
if I/K and K are exchange general rings and idempotents in /K can be lifted to
I. In [3], Ara proved that a right (left) ideal of an exchange general ring is also
an exchange general ring. Nicholson and Zhou [12] defined a general ring I to be
clean if each element a of I can be written as a = e + ¢ where €2 = e € I and
qge Q) ={ql¢g+p+ap=p+q+pg =0 for some pin I}, and proved that
clean general rings are exchange general rings in the scene of Ara [2]. In another
situation, H. Chen and M. Chen [6] defined an ideal I of a ring R to be clean in
case each element in I is a sum of a unit and an idempotent of R. However, it
is an open question whether an exchange ideal with bounded index in a ring is a
clean ideal (see [6, p. 3951]). The main purpose of this note is to give a positive
answer to this question.

As usual, we use the symbol J(I) to denote the Jacobson radical of a general
ring I. M, (I) denotes the ring of n x n matrices over I, and Id(I) denotes the set
of idempotents of I. Let I be a general ring and K be an ideal of I, and e € Id(I).
We write (1 —e)K = {a—ea | a € K} and eK(1 —¢) = {ea —eae | a € K},
and write (1 —e)K(1 —¢) = {a —ea —ae + eae | a € K} (cf. [10, §1.5]). The
meaning of other symbols like these is similar to that of the above. For example, if
ai,az, - an,b € K, then we write b—37" a;b+X;<ja;a;0—--+(—=1)"ara2---apb =
(I —ay)--- (1 —ay)b for simplicity.

2 The Results

We start this section with the following lemmas.

Lemma 2.1. ([12, Proposition 7 (1), (2)]) Let R be a ring and I be an ideal of
R. Then I is a clean ideal in R if and only if I is a clean general ring.

The next lemma was first observed by Nicholson and Zhou in [12].

Lemma 2.2. Let I be a general ring. If all right primitive factor rings of I are
right artinian, then I is a clean general ring.

Proof. Tt is very similar to the proof of [5, Theorem 1], so we omit the details (cf.
the proof of [12, Theorem 10 (2)]) . O

Proposition 2.3. Let I be an exchange general ring and e € Id(I). Then (1 —
e)I(1 — e) is an exchange general subring of I. Moreover, if K is an ideal of T
then (1 —e)K (1 —e) is an exchange ideal of (1 —e)I(1—e) and (1—e)K(1—e¢) =
KNI - Il —e)].

Proof. Tt is known and easy to prove that (1 —e)I(1 —e) is a subring of I (cf. [10,

§1.5]). For any b € (1 —e)I(1 —e), then b = a — ae — ea + eae with a € I. Since
I is an exchange general ring and b € I, there exist f € Id(I) and x,y € I such
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that f = 2b=y+b—yb. Clearly, be = eb =0 and so fe = zbe = 0, which implies
(f—ef)?> = f—ef. Moreover, f—ef = f — fe—ef+efe€ (1—e)l(1—e). Using
eb =0, then f—ef = xb—exb = (v — ex — ze + exe)b € (1 — e)I(1 — e) since
x —ex —xe+exe,b € (1 —e)I(1 —e). On the other hand, since f =y + b — yb
and eb =be = fe=0, we have ye =0, and f —ef =y+b—yb—e(y +b—yb) =
(y—ey) +b+ (—yb+eyb) = (y — ey — ye +eye) + b — (y — ey — ye + eye)b where
y—ey—ye+eye € (1 —e)I(l—e). Hence (1 —e)I(1 —e) is an exchange general
subring of I. Obviously, (1—e)K (1 —e) is an additive subgroup of (1 —e)I(1—e).
Forany be (1 —e)I(1 —e), and x € (1 —e)K(1 —¢), then b = a — ea — ae + eae
and x = x; —ex; —x1e+exie where a € I and x; € K. Since e[(1—e)I(1 —¢)] =
[(1—=e)I(1—e)le =0, bxr =bry —brie = bxy — bxrie — ebry + ebxrie. Note that
x1 € K, we have bx € (1 — e)K(1 —e). Similarly, b € (1 —e)K(1 —e) and so
(1—e)K(1—e)is anideal of (1—e)I(1—e). By [2, Theorem 2.2, (1—e)K(1—e) is
an exchange ideal of (1—e)I(1—e). Clearly, (1—e)K(1—e) C KN[(1—e)I(1—e)]
holds. Conversely, for any a € K ()[(1—e)I(1—e)], then a = x—ex—ze+exe where
a € Kandz e I. Since ae = ea = 0, we get a = a—ae—ea+eae € (1—e)K(1—e).
The proof is completed. O

Lemma 2.4. Let I be an exchange general ring and K be an ideal of I. Then
every finite or countably infinite sequence of orthogonal idempotents in I/K can
be orthogonally lifted to I.

Proof. Let fi, fo,- -, fu,- -+ be any sequence of orthogonal idempotents in I/K.
Since [ is an exchange general ring, there exists e; € Id(I) such that €3 = f in
I/K. Now take to in I such that {5 = fo in I/K. Let so = tg —tae; —e1la +eqtae.
Then we have s € (1—e1)I(1—e;) and $3 = f2 in I/K and hence s3—s, € K. This
implies that s3 — s € K([(1 —e1)I(1 —e1)] = (1 —e1)K(1—e1). By Proposition
2.3, (1 —e1)K(1 — e1) is an exchange ideal of (1 —e1)I(1 — e1). Since $3 is an
idempotent in (1 — e1)I(1 —e1)/(1 — e1)K(1 — e1), there exists an idempotent
ez in (1 —eq)I(1 — e1) such that é; = 3. Note that ei[(1 — e1)I(1 — ey)] =
[(1—e1)I(1—e1)]er =0. We have ejea = ese; =0 and €3 = fo in I/ K.

For any n > 2, assume that we have already obtained idempotents ey, es, -+, e,
such that e;e; = 0 whenever ¢ # j, and é; = f; € /K. Let e =e1 +ea+-- -+ ep.
Then e € Id(I), similar to the proof of the above paragraph, there exists e, 11 €
Id(I) such that €,77 = fn41 € I/K and eepiq1 = epp1e = 0. This implies that
€ient1 = ept1€; = 0 for all ¢ < n 4+ 1. By induction, we obtain a sequence of
orthogonal idempotents eq, ea,- - -, e,,- -+ in I such that ¢; = f; € I/ K. O

A general ring I is called semipotent if each right ideal not contained in J(I)
contains a nonzero idempotent [12]. In particular, in case J(I) = 0 then every
nonzero right ideal contains a nonzero idempotent. It is proven by [12, Proposi-
tion 5] that every exchange general ring is semipotent. And it is well known that
an exchange ring is a semiperfect ring if and only if it has no infinite sequence of
nonzero orthogonal idempotents (cf. [4, Corollary 2]).

The next lemma is crucial to obtaining our main result of this note.



356 Thai J. Math. 7(2) (2009)/ W. Chen

Lemma 2.5. Let I be an exchange general ring such that J(I) = 0. If I has
no infinite sequence of nonzero orthogonal idempotents, then I is a right artinian
general Ting.

Proof. Assume that I is not a right artinian ring. Then [ is not a minimal right
ideal and it contains a nonzero proper right ideal I;. By [3, Proposition 1.3], I; is an
exchange general ring. And [1, Proposition 9.14] implies that J(I;) = 0. So there
exists a nonzero idempotent ey in I;. Hence I = e1I®(1—e1)1 is a direct sum of two
right ideals of I. Clearly, e; I and (1—e1)I are both nonzero since e; I C I, and e 1
or (1—eyq)[ is not right artinian. If e1 I is not right artinian, then e; I must contain
an infinite of sequence of nonzero orthogonal idempotents of I. In fact, there exists
a general ring surjective homomorphism f : e;I — ejle; given by f(eja) = ejaey
where a € I. Obviously, kerf = e1I(1 —e1). So e;l/e1I(1 —e1) = e1le;. Since
[erI(1 —e1)]? = 0, we have e;I(1 —e1) C J(erI) = 0. Hence eyl = ejle; and
el is a ring with unity e;. If e is not right artinian, then it is not semiperfect
since J(e1I) = 0, and so it contains an infinite sequence of nonzero orthogonal
idempotents of I ([4, Corollary 2]). Now assume that (1—ej)7 is not right artinian.
Since J(I) = J(e1I) ® J((1 — e1)]) and J(I) = 0, we have J((1 —e1)I) = 0 by
[1, Proposition 9.19]. Similar to the above argument for I, there exists a nonzero
idempotent es in (1 — eq1)I such that ex(1 —e1)] and (1 — e3)(1 — e1)] are both
nonzero and (1—eq)l = ea(1—e1)I®(1—ez)(1—ey)I. Hence I = e1 [ Pes(l—ey)Id
(1 —e2)(1 —eq)I. It is easy to see that ejes = 0 since e3 € (1 —eq)l. In this case,
ea(l—eq) = ea—egeq € Tand ex(1—eq)ea(l—eq) = ea(ea—ere)(1—e1) = ea(l—eq).
Since I and e1 are not right artinian, ea(1 —e1)I or (1 —e3)(1 — e2)I is not right
artinian. Hence ez(1 — e1)I contains an infinite sequence of nonzero orthogonal
idempotents of I provided that es(1 — eq)I is not right artinian. Now we can
assume that (1—ey)(1—e2)I is not right artinian. More generally, assume that we
have already obtained nonzero idempotents e1, €2, -+, e, such that I = e; 1P ea(1—
e)I®Pep(l—ep_1)(1—e1)I®(1—ep)(1—€p-1)---(1—e1)I in which every direct
summand is nonzero and ¢; € (1—¢;_1)--+(1—eq)I for i > 2. Not lose the generality,
we may assume that (1—e,)(1—e,—1)---(1—eq)I is not right artinian, so there exists
a nonzero idempotent e, +1 € (1 —e,)(1 —ep—1)--- (1 —e1)I such that (1—e,)(1—
en—1)(1—e)l =epi1(l—en)(1—ep_1)-(1—e)IB(1—ept1)(1—epn)---(1—eg)I
with epen11 =0. Andso I = e1I®ea(l—e)) [P @epi1(l—en) - (1—e))IB(1—
ent1)(l1—ey) - (1 —e1)I. By induction, we obtain an infinite sequence of nonzero
idempotents eg, g, -+, €y, - such that e;41 € (1—¢;)---(1—e1)I and e;e;41 = 0. We
claim that ey, ea(1—ey1), -+, en(1—e,_1)---(1—e1)-+- is an infinite sequence of nonzero
orthogonal idempotents of I. To prove this, first we prove that e;e; = 0 for all
i < j. It is known that e;e;;1 = 0 for any ¢ > 1. Assume that e;e, = 0 for all & < n.
Then e;epn, € ei(1—ep_1)--(1—€;)---(1—e1)] = e;(1—e;)---(1—e1)I = 0. Second
we prove that ey, ea(1—e€1), -, en(l—ep—1)---(1—e€1), - is an infinite sequence of
nonzero orthogonal idempotents of I. Forany n > 1, e,(1—e,—1)---(1—e1)e,(1—
en—1)(1—e1) =enen(l—en_1)---(1—e1) = en(l1—ep—1)---(1—e1). Moreover, for
anyi < j, ei(l—ei_l)-"(1—61)€j(1—6]‘_1)"'(1—61) == eiej(l—ej_l)---(l—el) =0.
And ej(l —ejfl) e (1—61) ce (1 —el)ei(l —61',1) e (1—61) = ej(l —ejfl) ce (1 —
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ei)ei(l1—ej—1)---(1—ey) =0. At last we prove that e, (1 —ep,—1) - (1 —e1) # 0.
Otherwise, we have e,, = e, (1 —e,—1)--- (1 —e1)e, = 0, a contradiction. From the
above argument, if I is not right artinian then it must contain an infinite sequence
of nonzero orthogonal idempotents, which contradicts the assumption. The proof
is completed. O

Recall that the index of a nilpotent element x in a general ring I is the least
positive integer n such that ™ = 0. The index of a two-sided ideal K in I is the
supremum of the indices of all nilpotent elements of K. If this supremum is finite,
then K is said to have bounded index (cf. [9, p.71]).

Theorem 2.6. Let I be an exchange general ring. If I has bounded index, then
each right primitive factor ring of I is right artinian and so I is a clean general
rIng.

Proof. Let k be the bounded index of I. Then for any right primitive ideal P of I,
each set of nonzero orthogonal idempotents of /P contains at most &k elements.
Otherwise, let f1, fo,- - -, fk, fe+1 be a set of nonzero orthogonal idempotents of
I/K. By lemma 2.4, we can orthogonally lift them to orthogonal idempotents
€1,€2, ek, ex+1 € I. Now P is a right primitive ideal of I implies that it is a
prime ideal. Since e; ¢ P, by induction, we can obtain x1, 9, - -, 241 € I such
that ejxiesxs - - - €121 ¢ P. Now let y = eqw1ea + eazaes + - - - + €pTxep41-
Then yk = e1x162%2 - - - exTrei+1 and ykJr1 = 0. Hence we have yk = 0, that is,
e1x1eaxs - + - eprrep+1Tk+1 = 0, a contradiction. Since J(I/P) =0, I/P is right
artinian by Lemma 2.5. Hence [ is a clean general ring by Lemma 2.2. O

Corollary 2.7. Let R is an exchange ring and I be an ideal of R. If I has bounded
index, then I is a clean ideal of R.

Proof. By [2, Theorem 2.2], I is a exchange general ring. Now we obtain the
desired result from Theorem 2.6 and Lemma 2.1. [l

A ring R is called von Neumann regular if for each a € R there exists b € R
such that a = aba. Is is well known that a von Neumann ring is an exchange
ring. Let R be a ring. In [13], a n x n matrix A € M, (R) is called a bounded
matrix in case M, (R)AM,(R) is a bounded ideal (an ideal with bounded index)
of M,,(R). And [13, Lemma 1] states that for a bounded matrix A € M,,(R) over
a von Neumann regular ring R, there exists a bounded ideal I of R such that
A € M,(I). In fact, this conclusion is true for any ring R.

Lemma 2.8. Let A € M, (R) be a bounded matriz over any ring R. Then there
exists a bounded ideal I of R such that A € M,(I).

Proof. Since A is a bounded matrix, M, (R)AM,(R) is a bounded ideal of M, (R).
Let e;; be the usual matrix units for 1 < 4,5 < n and A = (ast)nxn € Mp(R).

n n
Since ej;Aej; = ej; Y, D asiesie;; = a;je;i, there exists a ring isomorphism:
s=1t=1
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ejiMn(R)ejj =~ R. Thus ejiMn(R)ejjejiAejjejiMn(R)ejj = Rain, and so Rain
is a bounded ideal of R. Let I = > ) Ra;j;R. We prove that I is a bounded

i=1j=1
ideal of R. It is sufficient to prove thajt if K and L are two ideals of R and A, B
have the bounded indices m and n, respectively, then the bounded index of K + L
is no more then mn. Assume that a € K,b € L. Then (a +b)™ = a™ + by = by
for some by € L and so (a + b)™" = 0. Hence the sum of finitely many ideals of
bounded indices is an ideal of bounded index by induction. Now I is a bounded
ideal of R and clearly A € M, (I). O

Theorem 2.9. FEach bounded matriz over an exchange ring R is a sum of an
invertible matriz and an idempotent matrix.

Proof. Let A € M,(R) be a bounded matrix over an exchange ring R. By Lemma
2.8, there exists a bounded ideal I of R such that A € M,,(I). Corollary 2.7 implies
that I is a clean ideal of R and so M,,(I) is a clean ideal of M, (R) by [6, Theorem
1.9]. Therefore A is a sum of an invertible matrix and an idempotent matrix. O

Corollary 2.10. ([13, Theorem 5]) Each bounded matriz over a von Neumann
ring R is a sum of an invertible matriz and an idempotent matrix.
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