Thai Journal of Mathematics Volume 7 (2009) Number 2 : 353–359

www.math.science.cmu.ac.th/thaijournal Online ISSN 1686-0209

Exchange General Rings with Bounded Indices are Clean

W. Chen

Abstract : It is proven that an exchange general ring with bounded index is a clean general ring. In particular, an ideal I with bounded index in an exchange ring R is a clean ideal, which gives a positive answer to a question of H. Chen and M. Chen (Internat. J. Math. Math. Sci. 2003). Moreover, it is proven that each bounded matrix over an exchange ring R is a sum of an invertible matrix and an idempotent matrix, extending one of the main results of S. Wang and H. Chen (Bull. Korean Math. Soc. 43(1)(2006)).

Keywords : Exchange general rings, Clean general rings, Clean ideals. **2000 Mathematics Subject Classification :** 16D25, 16E50.

1 Introduction

In this note, the term a ring means an associative ring with unity and a general ring means an associative ring with or without unity (cf. [12]). A ring R is called an exchange ring if R_R has the exchange property introduced by Crawley and Jonsson in their fundamental work [7]. This property is left-right symmetric by Warfield [14]. And it is proven independently by Goodearl and Warfield [8], and Nicholson [11] that R is an exchange ring if and only if for each $a \in R$ there exists an idempotent $e \in R$ such that $e \in aR$ and $1 - e \in (1 - a)R$. Exchange rings arise in functional analysis. It is known that, for unital C^* -algebras, being an exchange ring is the same as having real rank zero (cf. [12]). The notion of clean rings was introduced by Nicholson [11]. A ring R is called clean if each element of R can be written as a sum of a unit and an idempotent. Clean rings are exchange rings and the converse is not true in general [4]. There are numerous papers to investigate exchange rings, clean rings and their generalizations. For instance, Ara [2] defined a general ring I to be an exchange ring if for each $a \in I$ there exist an idempotent $e \in I$ and $x, y \in I$ such that e = ax = a + y - ay, and proved that if I is a

Copyright \bigodot 2009 by the Mathematical Association of Thailand. All rights reserved.

general ring and K is an ideal of I then I is an exchange general ring if and only if I/K and K are exchange general rings and idempotents in I/K can be lifted to I. In [3], Ara proved that a right (left) ideal of an exchange general ring is also an exchange general ring. Nicholson and Zhou [12] defined a general ring I to be clean if each element a of I can be written as a = e + q where $e^2 = e \in I$ and $q \in Q(I) = \{q|q + p + qp = p + q + pq = 0 \text{ for some } p \text{ in } I\}$, and proved that clean general rings are exchange general rings in the scene of Ara [2]. In another situation, H. Chen and M. Chen [6] defined an ideal I of a ring R to be clean in case each element in I is a sum of a unit and an idempotent of R. However, it is an open question whether an exchange ideal with bounded index in a ring is a clean ideal (see [6, p. 3951]). The main purpose of this note is to give a positive answer to this question.

As usual, we use the symbol J(I) to denote the Jacobson radical of a general ring I. $M_n(I)$ denotes the ring of $n \times n$ matrices over I, and Id(I) denotes the set of idempotents of I. Let I be a general ring and K be an ideal of I, and $e \in Id(I)$. We write $(1 - e)K = \{a - ea \mid a \in K\}$ and $eK(1 - e) = \{ea - eae \mid a \in K\}$, and write $(1 - e)K(1 - e) = \{a - ea - ae + eae \mid a \in K\}$ (cf. [10, §1.5]). The meaning of other symbols like these is similar to that of the above. For example, if $a_1, a_2, \dots, a_n, b \in K$, then we write $b - \sum_{i=1}^n a_i b + \sum_{i < j} a_i a_j b - \dots + (-1)^n a_1 a_2 \dots a_n b =$ $(1 - a_1) \dots (1 - a_n)b$ for simplicity.

2 The Results

We start this section with the following lemmas.

Lemma 2.1. ([12, Proposition 7 (1), (2)]) Let R be a ring and I be an ideal of R. Then I is a clean ideal in R if and only if I is a clean general ring.

The next lemma was first observed by Nicholson and Zhou in [12].

Lemma 2.2. Let I be a general ring. If all right primitive factor rings of I are right artinian, then I is a clean general ring.

Proof. It is very similar to the proof of [5, Theorem 1], so we omit the details (cf. the proof of [12, Theorem 10 (2)]).

Proposition 2.3. Let I be an exchange general ring and $e \in Id(I)$. Then (1 - e)I(1 - e) is an exchange general subring of I. Moreover, if K is an ideal of I then (1 - e)K(1 - e) is an exchange ideal of (1 - e)I(1 - e) and $(1 - e)K(1 - e) = K \bigcap [(1 - e)I(1 - e)].$

Proof. It is known and easy to prove that (1-e)I(1-e) is a subring of I (cf. [10, §1.5]). For any $b \in (1-e)I(1-e)$, then b = a - ae - ea + eae with $a \in I$. Since I is an exchange general ring and $b \in I$, there exist $f \in Id(I)$ and $x, y \in I$ such

that f = xb = y + b - yb. Clearly, be = eb = 0 and so fe = xbe = 0, which implies $(f-ef)^2 = f-ef$. Moreover, $f-ef = f-fe-ef+efe \in (1-e)I(1-e)$. Using eb = 0, then $f - ef = xb - exb = (x - ex - xe + exe)b \in (1 - e)I(1 - e)$ since $x - ex - xe + exe, b \in (1 - e)I(1 - e)$. On the other hand, since f = y + b - yb(y-ey)+b+(-yb+eyb)=(y-ey-ye+eye)+b-(y-ey-ye+eye)b where $y - ey - ye + eye \in (1 - e)I(1 - e)$. Hence (1 - e)I(1 - e) is an exchange general subring of I. Obviously, (1-e)K(1-e) is an additive subgroup of (1-e)I(1-e). For any $b \in (1-e)I(1-e)$, and $x \in (1-e)K(1-e)$, then b = a - ea - ae + eaeand $x = x_1 - ex_1 - x_1e + ex_1e$ where $a \in I$ and $x_1 \in K$. Since e[(1-e)I(1-e)] = $[(1-e)I(1-e)]e = 0, bx = bx_1 - bx_1e = bx_1 - bx_1e - ebx_1 + ebx_1e$. Note that $x_1 \in K$, we have $bx \in (1-e)K(1-e)$. Similarly, $xb \in (1-e)K(1-e)$ and so (1-e)K(1-e) is an ideal of (1-e)I(1-e). By [2, Theorem 2.2], (1-e)K(1-e) is an exchange ideal of (1-e)I(1-e). Clearly, $(1-e)K(1-e) \subseteq K \cap [(1-e)I(1-e)]$ holds. Conversely, for any $a \in K \cap [(1-e)I(1-e)]$, then a = x - ex - xe + exe where $a \in K$ and $x \in I$. Since ae = ea = 0, we get $a = a - ae - ea + eae \in (1-e)K(1-e)$. The proof is completed.

Lemma 2.4. Let I be an exchange general ring and K be an ideal of I. Then every finite or countably infinite sequence of orthogonal idempotents in I/K can be orthogonally lifted to I.

Proof. Let $f_1, f_2, \dots, f_n, \dots$ be any sequence of orthogonal idempotents in I/K. Since I is an exchange general ring, there exists $e_1 \in Id(I)$ such that $\bar{e_1} = f_1$ in I/K. Now take t_2 in I such that $\bar{t_2} = f_2$ in I/K. Let $s_2 = t_2 - t_2e_1 - e_1t_2 + e_1t_2e_1$. Then we have $s_2 \in (1-e_1)I(1-e_1)$ and $\bar{s_2} = f_2$ in I/K and hence $s_2^2 - s_2 \in K$. This implies that $s_2^2 - s_2 \in K \cap [(1-e_1)I(1-e_1)] = (1-e_1)K(1-e_1)$. By Proposition 2.3, $(1-e_1)K(1-e_1)$ is an exchange ideal of $(1-e_1)I(1-e_1)$. Since $\bar{s_2}$ is an idempotent in $(1-e_1)I(1-e_1)/(1-e_1)K(1-e_1)$, there exists an idempotent e_2 in $(1-e_1)I(1-e_1)$ such that $\bar{e_2} = \bar{s_2}$. Note that $e_1[(1-e_1)I(1-e_1)] = [(1-e_1)I(1-e_1)] = [(1-e_1)I(1-e_1)]$

For any $n \geq 2$, assume that we have already obtained idempotents e_1, e_2, \dots, e_n such that $e_i e_j = 0$ whenever $i \neq j$, and $\bar{e_i} = f_i \in I/K$. Let $e = e_1 + e_2 + \dots + e_n$. Then $e \in Id(I)$, similar to the proof of the above paragraph, there exists $e_{n+1} \in Id(I)$ such that $\overline{e_{n+1}} = f_{n+1} \in I/K$ and $ee_{n+1} = e_{n+1}e = 0$. This implies that $e_i e_{n+1} = e_{n+1}e_i = 0$ for all i < n + 1. By induction, we obtain a sequence of orthogonal idempotents $e_1, e_2, \dots, e_n, \dots$ in I such that $\bar{e_i} = f_i \in I/K$.

A general ring I is called semipotent if each right ideal not contained in J(I) contains a nonzero idempotent [12]. In particular, in case J(I) = 0 then every nonzero right ideal contains a nonzero idempotent. It is proven by [12, Proposition 5] that every exchange general ring is semipotent. And it is well known that an exchange ring is a semiperfect ring if and only if it has no infinite sequence of nonzero orthogonal idempotents (cf. [4, Corollary 2]).

The next lemma is crucial to obtaining our main result of this note.

Lemma 2.5. Let I be an exchange general ring such that J(I) = 0. If I has no infinite sequence of nonzero orthogonal idempotents, then I is a right artinian general ring.

Proof. Assume that I is not a right artinian ring. Then I is not a minimal right ideal and it contains a nonzero proper right ideal I_1 . By [3, Proposition 1.3], I_1 is an exchange general ring. And [1, Proposition 9.14] implies that $J(I_1) = 0$. So there exists a nonzero idempotent e_1 in I_1 . Hence $I = e_1 I \oplus (1-e_1) I$ is a direct sum of two right ideals of I. Clearly, e_1I and $(1-e_1)I$ are both nonzero since $e_1I \subset I_1$, and e_1I or $(1-e_1)I$ is not right artinian. If e_1I is not right artinian, then e_1I must contain an infinite of sequence of nonzero orthogonal idempotents of I. In fact, there exists a general ring surjective homomorphism $f: e_1I \to e_1Ie_1$ given by $f(e_1a) = e_1ae_1$ where $a \in I$. Obviously, $kerf = e_1I(1-e_1)$. So $e_1I/e_1I(1-e_1) \cong e_1Ie_1$. Since $[e_1I(1-e_1)]^2 = 0$, we have $e_1I(1-e_1) \subseteq J(e_1I) = 0$. Hence $e_1I \cong e_1Ie_1$ and e_1I is a ring with unity e_1 . If e_1I is not right artinian, then it is not semiperfect since $J(e_1I) = 0$, and so it contains an infinite sequence of nonzero orthogonal idempotents of I ([4, Corollary 2]). Now assume that $(1-e_1)I$ is not right artinian. Since $J(I) = J(e_1 I) \oplus J((1 - e_1)I)$ and J(I) = 0, we have $J((1 - e_1)I) = 0$ by [1, Proposition 9.19]. Similar to the above argument for I, there exists a nonzero idempotent e_2 in $(1-e_1)I$ such that $e_2(1-e_1)I$ and $(1-e_2)(1-e_1)I$ are both nonzero and $(1-e_1)I = e_2(1-e_1)I \oplus (1-e_2)(1-e_1)I$. Hence $I = e_1I \oplus e_2(1-e_1)I \oplus e_2(1-e_2)I \oplus e_2(1-e_2)I$ $(1-e_2)(1-e_1)I$. It is easy to see that $e_1e_2=0$ since $e_2\in (1-e_1)I$. In this case, $e_2(1-e_1) = e_2 - e_2 e_1 \in I$ and $e_2(1-e_1) = e_2(1-e_1) = e_2(e_2 - e_1 e_2)(1-e_1) = e_2(1-e_1)$. Since I and e_1I are not right artinian, $e_2(1-e_1)I$ or $(1-e_2)(1-e_2)I$ is not right artinian. Hence $e_2(1-e_1)I$ contains an infinite sequence of nonzero orthogonal idempotents of I provided that $e_2(1-e_1)I$ is not right artinian. Now we can assume that $(1-e_1)(1-e_2)I$ is not right artinian. More generally, assume that we have already obtained nonzero idempotents e_1, e_2, \dots, e_n such that $I = e_1 I \oplus e_2 (1 - e_1) \oplus e_2 (1 - e_2)$ e_1) $I \oplus \cdots \oplus e_n(1-e_{n-1})\cdots(1-e_1)I \oplus (1-e_n)(1-e_{n-1})\cdots(1-e_1)I$ in which every direct summand is nonzero and $e_i \in (1-e_{i-1})\cdots(1-e_1)I$ for $i \geq 2$. Not lose the generality, we may assume that $(1-e_n)(1-e_{n-1})\cdots(1-e_1)I$ is not right artinian, so there exists a nonzero idempotent $e_{n+1} \in (1-e_n)(1-e_{n-1})\cdots(1-e_1)I$ such that $(1-e_n)(1-e_n)(1-e_n)I$ $e_{n-1})\cdots(1-e_1)I = e_{n+1}(1-e_n)(1-e_{n-1})\cdots(1-e_1)I \oplus (1-e_{n+1})(1-e_n)\cdots(1-e_1)I \oplus (1-e_n)\cdots(1-e_n)I \oplus (1-e_n)(1-e_n) \oplus (1-e_n)I \oplus (1-e_n)$ with $e_n e_{n+1} = 0$. And so $I = e_1 I \oplus e_2 (1-e_1) I \oplus \cdots \oplus e_{n+1} (1-e_n) \cdots (1-e_1) I \oplus (1-e_n) \cdots (1-e_n) I \oplus (1-e_n) \cdots (1-e_n) I \oplus (1-e_n) I \oplus (1-e_n) = 0$. $(e_{n+1})(1-e_n)\cdots(1-e_1)I$. By induction, we obtain an infinite sequence of nonzero idempotents $e_1, e_2, \dots, e_n, \dots$ such that $e_{i+1} \in (1-e_i)\cdots(1-e_1)I$ and $e_ie_{i+1} = 0$. We claim that $e_1, e_2(1-e_1), \dots, e_n(1-e_{n-1})\cdots(1-e_1)\cdots$ is an infinite sequence of nonzero orthogonal idempotents of I. To prove this, first we prove that $e_i e_j = 0$ for all i < j. It is known that $e_i e_{i+1} = 0$ for any $i \ge 1$. Assume that $e_i e_k = 0$ for all k < n. Then $e_i e_n \in e_i (1 - e_{n-1}) \cdots (1 - e_i) \cdots (1 - e_1) I = e_i (1 - e_i) \cdots (1 - e_1) I = 0$. Second we prove that $e_1, e_2(1-e_1), \dots, e_n(1-e_{n-1})\cdots(1-e_1), \dots$ is an infinite sequence of nonzero orthogonal idempotents of *I*. For any $n \ge 1$, $e_n(1-e_{n-1})\cdots(1-e_1)e_n(1-e_n)e_n(1$ $e_{n-1}\cdots(1-e_1) = e_n e_n (1-e_{n-1})\cdots(1-e_1) = e_n (1-e_{n-1})\cdots(1-e_1)$. Moreover, for any $i < j, e_i(1-e_{i-1})\cdots(1-e_1)e_j(1-e_{j-1})\cdots(1-e_1) = e_ie_j(1-e_{j-1})\cdots(1-e_1) = 0.$ And $e_j(1-e_{j-1})\cdots(1-e_i)\cdots(1-e_1)e_i(1-e_{i-1})\cdots(1-e_1) = e_j(1-e_{j-1})\cdots(1$

 $e_i)e_i(1-e_{i-1})\cdots(1-e_1)=0$. At last we prove that $e_n(1-e_{n-1})\cdots(1-e_1)\neq 0$. Otherwise, we have $e_n=e_n(1-e_{n-1})\cdots(1-e_1)e_n=0$, a contradiction. From the above argument, if I is not right artinian then it must contain an infinite sequence of nonzero orthogonal idempotents, which contradicts the assumption. The proof is completed.

Recall that the index of a nilpotent element x in a general ring I is the least positive integer n such that $x^n = 0$. The index of a two-sided ideal K in I is the supremum of the indices of all nilpotent elements of K. If this supremum is finite, then K is said to have bounded index (cf. [9, p.71]).

Theorem 2.6. Let I be an exchange general ring. If I has bounded index, then each right primitive factor ring of I is right artinian and so I is a clean general ring.

Proof. Let k be the bounded index of I. Then for any right primitive ideal P of I, each set of nonzero orthogonal idempotents of I/P contains at most k elements. Otherwise, let $f_1, f_2, \dots, f_k, f_{k+1}$ be a set of nonzero orthogonal idempotents of I/K. By lemma 2.4, we can orthogonally lift them to orthogonal idempotents $e_1, e_2, \dots, e_k, e_{k+1} \in I$. Now P is a right primitive ideal of I implies that it is a prime ideal. Since $e_i \notin P$, by induction, we can obtain $x_1, x_2, \dots, x_{k+1} \in I$ such that $e_1x_1e_2x_2\cdots e_{k+1}x_{k+1} \notin P$. Now let $y = e_1x_1e_2 + e_2x_2e_3 + \dots + e_kx_ke_{k+1}$. Then $y^k = e_1x_1e_2x_2\cdots e_kx_ke_{k+1}$ and $y^{k+1} = 0$. Hence we have $y^k = 0$, that is, $e_1x_1e_2x_2\cdots e_kx_ke_{k+1}x_{k+1} = 0$, a contradiction. Since J(I/P) = 0, I/P is right artinian by Lemma 2.5. Hence I is a clean general ring by Lemma 2.2. □

Corollary 2.7. Let R is an exchange ring and I be an ideal of R. If I has bounded index, then I is a clean ideal of R.

Proof. By [2, Theorem 2.2], I is a exchange general ring. Now we obtain the desired result from Theorem 2.6 and Lemma 2.1.

A ring R is called von Neumann regular if for each $a \in R$ there exists $b \in R$ such that a = aba. Is is well known that a von Neumann ring is an exchange ring. Let R be a ring. In [13], a $n \times n$ matrix $A \in M_n(R)$ is called a bounded matrix in case $M_n(R)AM_n(R)$ is a bounded ideal (an ideal with bounded index) of $M_n(R)$. And [13, Lemma 1] states that for a bounded matrix $A \in M_n(R)$ over a von Neumann regular ring R, there exists a bounded ideal I of R such that $A \in M_n(I)$. In fact, this conclusion is true for any ring R.

Lemma 2.8. Let $A \in M_n(R)$ be a bounded matrix over any ring R. Then there exists a bounded ideal I of R such that $A \in M_n(I)$.

Proof. Since A is a bounded matrix, $M_n(R)AM_n(R)$ is a bounded ideal of $M_n(R)$. Let e_{ij} be the usual matrix units for $1 \le i, j \le n$ and $A = (a_{st})_{n \times n} \in M_n(R)$. Since $e_{ji}Ae_{jj} = e_{ji} \sum_{s=1}^n \sum_{t=1}^n a_{st}e_{st}e_{jj} = a_{ij}e_{jj}$, there exists a ring isomorphism: $e_{ji}M_n(R)e_{jj} \cong R$. Thus $e_{ji}M_n(R)e_{jj}e_{ji}Ae_{jj}e_{ji}M_n(R)e_{jj}\cong Ra_{ij}R$, and so $Ra_{ij}R$ is a bounded ideal of R. Let $I = \sum_{i=1}^n \sum_{j=1}^n Ra_{ij}R$. We prove that I is a bounded ideal of R. It is sufficient to prove that if K and L are two ideals of R and A, Bhave the bounded indices m and n, respectively, then the bounded index of K + Lis no more then mn. Assume that $a \in K, b \in L$. Then $(a + b)^m = a^m + b_1 = b_1$ for some $b_1 \in L$ and so $(a + b)^{mn} = 0$. Hence the sum of finitely many ideals of bounded indices is an ideal of bounded index by induction. Now I is a bounded ideal of R and clearly $A \in M_n(I)$.

Theorem 2.9. Each bounded matrix over an exchange ring R is a sum of an invertible matrix and an idempotent matrix.

Proof. Let $A \in M_n(R)$ be a bounded matrix over an exchange ring R. By Lemma 2.8, there exists a bounded ideal I of R such that $A \in M_n(I)$. Corollary 2.7 implies that I is a clean ideal of R and so $M_n(I)$ is a clean ideal of $M_n(R)$ by [6, Theorem 1.9]. Therefore A is a sum of an invertible matrix and an idempotent matrix. \square

Corollary 2.10. ([13, Theorem 5]) Each bounded matrix over a von Neumann ring R is a sum of an invertible matrix and an idempotent matrix.

Acknowledgement(s) : This research is supported by the Shandong Province Natural Science Foundation in China (No. Y2008A04).

References

- F. W. Anderson, K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York (1973), 120-128.
- [2] P. Ara, Extensions of Exchange rings, J. Algebra 197(1997), 409-423.
- [3] P. Ara, Local rings of exchange rings, Comm. Algebra 26(12)(1998), 4191-4205.
- [4] V. P. Camillo, H. P. Yu, Exchange rings, units and idempotents, Comm. Algebra 22(1994), 4737-4749.
- [5] H. Chen, Exchange rings with artinian primitive factors, Algebras Represent. Theory 2(1999), 201-207.
- [6] H. Chen, M. Chen, On clean ideals, Internat. J. Math. Math. Sci. 62(2003), 3949-3956.
- [7] P. Crawley, B. Jonsson, Refinements for infinite direct decompositions of algebraic systems, *Pacific J.* Math. 14(1964), 797-758.
- [8] K. R. Goodearl, R. B. Warfield Jr., Algebras over zero-dimensional rings, Math. Ann. 233(1976), 157-168.

- [9] K. R. Goodearl, Von Neumann Regular Rings, Pitman, London (1979), 71-80.
- [10] N. Jacobson, Structures of Rings, Amer. Math. Soc. Colloq. Publ., Vol. 37, (1964), 5-30.
- [11] W.K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229(1977),269-278.
- [12] W. K. Nicholson, Y. Zhou, Clean general rings, J. Algebra 291(2005): 297-311.
- [13] S. Wang, H. Chen, Bounded matrices over regular rings, Bull. Korean Math. Soc. 43(1)(2006), 1-7.
- [14] R. B. Warfield Jr., Exchange rings and decompositions of modules, Math. Ann. 199(1972), 31-36.

(Received 18 September 2009)

Weixing Chen Mathematics and Information Science School, Shandong Institute of Business and Technology, Yantai 264005, China e-mail: wxchen5888@163.com