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Abstract : In this paper, we introduce an iterative method for approximating
a fixed point of asymptotically nonexpansive in the intermediate sense nonself-
mapping in a uniformly convex Banach space. We establish some strong and weak
convergence theorems. The results generalize the corresponding some results of
Khan and Hussian [S.H. Khan, N. Hussian, Convergence theorems for nonself
asymptotically nonexpansive mappings, Comput. Math. Appl. 55 (2008) 2544–
2553] and many authors.

Keywords : asymptotically nonexpansive in the intermediate sense nonself-mappings;
iterative method
2000 Mathematics Subject Classification : 47H09; 47H10 (2000 MSC)

1 Introduction

Let C be a nonempty subset of normed space X and T : C → C a mapping.
Recall the following concepts.

(i) T is nonexpansive if
‖Tx− Ty‖ ≤ ‖x − y‖ for all x, y ∈ C.
(ii) T is asymptotically nonexpansive ([9]) if there exists a sequence {kn} ⊂

[1,∞) with limn→∞ kn = 1 such that
‖T nx − T ny‖ ≤ kn‖x − y‖ for all x, y ∈ C and n ≥ 1.
(iii) T is uniformly Lipschitzian if there exists a constant L > 0 such that
‖T nx − T ny‖ ≤ L‖x − y‖ for all x, y ∈ C and n ≥ 1.
(iv) T is asymptotically nonexpansive in the intermediate sense [2] provided

T is uniformly continuous and

lim supn→∞ supx,y∈C(‖T nx − T ny‖ − ‖x − y‖) ≤ 0. (1.1)

It is clear that every nonexpansive mapping is asymptotically nonexpansive
and every asymptotically nonexpansive mapping is asymptotically nonexpansive
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in the intermediate sense. It is know [15] that if C is a nonempty closed bounded
subset of a uniformly convex Banach space and T : C → C is asymptotically
nonexpansive in the intermediate sense, then F (T ) 6= ∅.

Iterative methods for approximation of asymptotically nonexpansive mappings
have been further studied by various authors (see e.g. [3, 4, 5, 13, 16, 17, 19, 21,
22, 23, 24, 28, 31, 33] and references therein).

The class of symptotically nonexpansive in the intermediate sense was intro-
duced by Bruck, Kuczumow and Reich [2] and iterative methods for the approxi-
mation of fixed points such types of non-Lipschitzian mappings have been studied
by Agarwal, O’Regan and Sahu [1], Bruck, Kuczumow and Reich [2], Chidume,
Shahzad and Zegeye [7], Kim and Kim [14] and many authors.

Resent results on approximation of fixed points of nonexpansive and asymp-
totically nonexpansive self and nonself single mappings can be found in ([5, 6, 10,
11, 18, 25, 27, 29, 30, 31, 34]).

The concept of asymptotically nonexpansive in the intermediate sense nonself-
mappings was introduced by Chidume et al.[7] as an important generalization of
nonself asymptotically nonexpansive mappings.

Definition 1.1 ([7]). Let C be a nonempty subset of a Banach space X. A
mapping T : C → X is said to be asymptotically nonexpansive in the intermediate
sense provided T is uniformly continuous and

lim supn→∞ supx,y∈C(‖T (PT )n−1x − T (PT )n−1y‖ − ‖x − y‖) ≤ 0, (1.2)

where P is a nonexpansive retraction of X onto C.

Remark 1.2. If T is a self-map, then PT = T . So that (1.2) coincide with (1.1).

Very recently, Khan and Hussian [12] introduced the following iterative method
and use it for the strong and weak convergence theorems for nonself asymptotically
nonexpansive mappings in a uniformly convex Banach space.















x1 ∈ C,

zn = P
(

anT (PT )n−1xn + (1 − an)xn

)

,

yn = P
(

bnT (PT )n−1zn + cnT (PT )n−1xn + (1 − bn − cn)xn

)

,

xn+1 = P
(

αnT (PT )n−1yn + βnT (PT )n−1zn + (1 − αn − βn)xn

)

,

(1.3)

for all n ≥ 1. Where {an}, {bn}, {cn}, {αn}, {βn} in [0, 1] are such that bn + cn

and αn + βn remain in [0, 1] and satisfy certain conditions.
The purpose of this paper is to establish several strong and weak convergence

theorems using (1.3) for asymptotically nonexpansive in the intermediate sense
(which not necessarily Lipschitzian) nonself mappings in a uniformly convex Ba-
nach space. As remarked earlier, Khan and Hussian [12] have established strong
and weak convergence theorems for nonself asymptotically nonexpansive mappings
while Chidume et al. [5] studied the Mann iterative process for the case of nonself
mappings. Our results generalize corresponding results of Khan and Hussian [12]
and others for nonself mappings.
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2 Preliminaries

Definition 2.1. Let C be a nonempty closed and convex subset of a Banach space
X. A mapping T : C → X is called demiclosed at y ∈ X if for each sequence {xn}
in C and each x ∈ X, xn → x weakly and Txn → y imply that x ∈ C and Tx = y.

In the sequel, the following lemmas are needed to prove our main results.

Lemma 2.2 ([28]). Let {an}, {bn} and {δn} be sequences of nonnegative real
numbers satisfying the inequality

an+1 ≤ (1 + δn)an + bn, ∀n = 1, 2, ....

If
∑∞

n=1
δn < ∞ and

∑∞

n=1
bn < ∞, then

(1) limn→∞ an exists.

(2) limn→∞ an = 0 whenever lim infn→∞ an = 0.

Lemma 2.3 ([32]). Let p > 0 and r > 0 be two fixed real numbers. Then a Banach
space X is uniformly convex if and only if there is a continuous strictly increasing
convex function g : [0,∞) → [0,∞) with g(0) = 0 such that

‖λx + (1 − λ)y‖p ≤ λ‖x‖p + (1 − λ)‖y‖p − wp(λ)g(‖x − y‖),

for all x, y ∈ Br = {x ∈ X : ‖x‖ ≤ r}, r > 0 and 0 ≤ λ ≤ 1, where wp(λ) =
λ(1 − λ)p + λp(1 − λ).

Lemma 2.4 ([8]). Let X be a uniformly convex Banach space and Br = {x ∈ X :
‖x‖ ≤ r}, r > 0. Then there exists a continuous strictly increasing, and convex
function g : [0,∞) → [0,∞), g(0) = 0 such that

‖λx + βy + γz‖2 ≤ λ‖x‖2 + β‖y‖2 + γ‖z‖2 − λβg(‖x − y‖),

for all x, y, z ∈ Br, and all λ, β, γ ∈ [0, 1] with λ + β + γ = 1.

Lemma 2.5 ([7]). Let X be a uniformly convex Banach space, C a nonempty
closed convex subset of X, and let P : X → C be a nonexpansive retraction.
Let T : C → X be a mapping which is uniformly continuous and asymptotically
nonexpansive in the intermediate sense. If {xn} is a sequence in C converging
weakly to x and if limj→∞(lim supk→∞ ‖xk − T (PT )j−1xk‖) = 0, then Tx = x.

Lemma 2.6 ([26]). Let X be a Banach space which satisfies Opial’s condition
and let {xn} be a sequence in X. Let u, v ∈ X be such that limn→∞ ‖xn − u‖
and limn→∞ ‖xn − v‖ exist. If {xnk

} and {xmk
} are subsequences of {xn} which

converge weakly to u and v, respectively, then u = v.
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3 Main Results

In this section, we prove weak and strong convergence theorems of the iterative
process (1.3) for asymptoticaly nonexpansive in the intermediate sense nonself-
mappings in a uniformly convex Banach space. In order to prove this, the following
lemma is needed.

Lemma 3.1. Let X be a uniformly convex Banach space, and let C be a nonempty
closed and convex subset of X. Let T : C → X be an asymptotically nonexpansive
mapping in the intermediate sense with F (T ) 6= ∅. Put

Gn = sup
x,y∈C

(‖T (PT )n−1x − T (PT )n−1y‖ − ‖x − y‖) ∨ 0, ∀n ≥ 1,

such that
∑∞

n=1
Gn < ∞. Let {an}, {bn}, {cn}, {αn}, {βn} be sequences in [0, 1]

such that bn + cn and αn + βn are in [0, 1] for all n ≥ 1. Let {xn}, {yn} and {zn}
be the sequences defined as in (1.3). Then we have the following:

1 If q ∈ F (T ) then limn→∞ ‖xn − q‖ exists.

2 If 0 < lim infn→∞ αn ≤ lim supn→∞(αn + βn) < 1 and 0 < lim infn→∞ bn ≤
lim supn→∞(bn + cn) < 1 then limn→∞ ‖xn − Txn‖ = 0.

Proof. (1) Let q ∈ F (T ). For each n ≥ 1, then by (1.3) it follows that

‖zn − q‖ ≤ ‖xn − q‖ + Gn,

‖yn − q‖ ≤ ‖xn − q‖ + 3Gn, (3.1)

‖xn+1 − q‖ ≤ ‖xn − q‖ + 6Gn.

Since
∑∞

n=1
Gn < ∞, it follows from Lemma 2.2 that limn→∞ ‖xn − q‖ exists.

(2) Let q ∈ F (T ). Then By (1.3) and Lemma 2.3, we have

‖zn − q‖2 = ‖P (anT (PT )n−1xn + (1 − an)xn) − Pq‖2

≤ ‖anT (PT )n−1xn + (1 − an)xn − q‖2

= ‖an(T (PT )n−1xn − q) + (1 − an)(xn − q)‖2

≤ an‖T (PT )n−1xn − q‖2 + (1 − an)‖xn − q‖2

−ω(an)g1(‖T (PT )n−1xn − xn‖)

≤ an[‖xn − q‖ + Gn]2 + (1 − an)‖xn − q‖2

≤ ‖xn − q‖2 + 2Gn‖xn − q‖ + G2
n, (3.2)
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Now, by (1.3), (3.1) and Lemma 2.4, we have

‖yn − q‖2 = ‖P (bnT (PT )n−1zn + cnT (PT )n−1xn + (1 − bn − cn)xn) − Pq‖2

≤ ‖bnT (PT )n−1zn + T (PT )n−1xn + (1 − bn − cn)xn − q‖2

= ‖bn(T (PT )n−1zn − q) + cn(T (PT )n−1xn − q)

+ (1 − bn − cn)(xn − q)‖2

≤ bn‖T (PT )n−1zn − q‖2 + cn‖T (PT )n−1xn − q‖2

+ (1 − bn − cn)‖xn − q‖2 − bn(1 − bn − cn)g2(‖T (PT )n−1zn − xn‖)

≤ bn[‖zn − q‖ + Gn]2 + (1 − bn − cn)‖xn − q‖2

+ cn[‖xn − q‖ + Gn]2

− bn(1 − bn − cn)g2(‖T (PT )n−1zn − xn‖)

= bn[‖zn − p‖2 + 2Gn‖zn − q‖ + G2
n]

+ cn[‖xn − q‖2 + 2Gn‖xn − p‖ + G2
n] + (1 − bn − cn)‖xn − q‖2

− bn(1 − bn − cn)g2(‖T (PT n−1zn − xn‖)

≤ bn[(‖xn − q‖2 + 2Gn‖xn − q‖ + G2
n)

+ 2Gn(‖xn − q‖ + Gn) + G2
n]

+ cn[‖xn − p‖2 + 2Gn‖xn − p‖ + G2
n] + (1 − bn − cn)‖xn − q‖2

− bn(1 − bn − cn)g2(‖T
nzn − xn‖)

≤ ‖xn − q‖2 + 6Gn‖xn − q‖ + 5G2
n

− bn(1 − bn − cn)g2(‖T (PT )n−1zn − xn‖). (3.3)

Moreover,

‖xn+1 − q‖2 = ‖P (αnT (PT )n−1yn + βnT (PT )n−1zn + (1 − αn − βn)xn) − Pq‖2

≤ ‖αnT (PT )n−1yn + βnT (PT )n−1zn + (1 − αn − βn)xn − q‖2

= ‖αn(T (PT )n−1yn − q) + βn(T (PT )n−1zn − q)

+ (1 − αn − βn)(xn − q)‖2

≤ αn‖T (PT )n−1yn − q‖2 + βn‖T (PT )n−1zn − q‖2

+ (1 − αn − βn)‖xn − q‖2

−αn(1 − αn − βn)g2(‖T (PT )n−1yn − xn‖)

≤ αn(‖yn − p‖ + Gn)2 + βn(‖zn − q‖ + Gn)2

+ (1 − αn − βn)‖xn − q‖2

−αn(1 − αn − βn)g2(‖T (PT )n−1yn − xn‖)

= αn[‖yn − q‖2 + 2Gn‖yn − q‖ + G2
n]

+ βn[‖zn − q‖2 + 2Gn‖zn − q‖ + G2
n]‖2

+ (1 − αn − βn)‖xn − q‖2

−αn(1 − αn − βn − λn)g2(‖T (PT )n−1yn − xn‖)
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≤ αn[(‖xn − q‖2 + 6Gn‖xn − q‖ + 5G2
n)

+ 2Gn(‖xn − q‖ + 3Gn) + G2
n]

+ βn[(‖xn − q‖2 + 2Gn‖xn − q‖ + G2
n)

+ 2Gn(‖xn − q‖ + Gn) + G2
n]

+ (1 − αn − βn)‖xn − q‖2

−αn(1 − αn − βn)g2(‖T (PT )n−1yn − xn‖)

≤ ‖xn − q‖2 + 12Gn‖xn − q‖ + 16G2
n

−αn(1 − αn − βn)g2(‖T (PT )n−1yn − xn‖) (3.4)

which imply that

αn(1 − αn − βn − λ)g2(‖T (PT )n−1yn − xn‖) ≤ ‖xn − q‖2 − ‖xn+1 − q‖2

+ 12LGn + 16G2
n (3.5)

and

bn(1 − bn − cn − µn)g2(‖T (PT )n−1zn − xn‖) ≤ ‖xn − q‖2 − ‖xn+1 − p‖2

+ 12LGn + 16G2
n, (3.6)

where L = sup{‖xn − q‖ : n ≥ 1}.
If 0 < lim infn→∞ αn ≤ lim supn→∞(αn + βn) < 1, then there exist a positive

integer n0 and η, η′ ∈ (0, 1) such that

0 < η < αn and αn + βn < η′ < 1 for all n ≥ n0.

This implies by (3.5) that

η(1 − η′)g2(‖T (PT )n−1yn − xn‖) ≤ ‖xn − q‖2 − ‖xn+1 − q‖2 + 12LGn + 16G2
n

≤ ‖xn − q‖2 − ‖xn+1 − q‖2 + 12LGn + 16MGn

≤ ‖xn − q‖2 − ‖xn+1 − q‖2 + 28KGn, (3.7)

where K = max{M = supn≥1 Gn, L}, for all n ≥ n0.

It follows from (3.7) that for m ≥ n0

m
∑

n=n0

g2(‖T (PT )n−1yn − xn‖) ≤
1

η(1 − η′)

( m
∑

n=n0

(‖xn − q‖2 − ‖xn+1 − q‖2)

+

m
∑

n=n0

28KGn

)

≤
1

η(1 − η′)

(

‖xn0
− q‖2 + 28K

m
∑

n=n0

Gn

)

.(3.8)

Since
∑∞

n=1
Gn < ∞. Let m → ∞ in inequality (3.8) we get that
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∑∞

n=n0
g2(‖T (PT )n−1yn−xn‖) < ∞, and therefore limn→∞ g2(‖T (PT )n−1yn−

xn‖) = 0. Since g is strictly increasing and continuous at 0 with g(0) = 0, it fol-
lows that limn→∞ ‖T (PT )n−1yn − xn‖ = 0.

If 0 < lim infn→∞ bn ≤ lim supn→∞(bn + cn) < 1, then by the using a similar
method together with inequality (3.6), it can be shown that

lim
n→∞

‖T (PT )n−1zn − xn‖ = 0.

Now, we have

lim
n→∞

‖T (PT )n−1yn − xn‖ = 0 and lim
n→∞

‖T (PT )n−1zn − xn‖ = 0. (3.9)

From yn = P (bnT (PT )n−1zn + cnT (PT )n−1xn + (1 − bn − cn)xn), we have

‖yn − xn‖ = ‖P (bnT (PT )n−1zn + cnT (PT )n−1xn + (1 − bn − cn)xn) − P (xn)‖

≤ ‖bnT (PT )n−1zn + cnT (PT )n−1xn + (1 − bn − cn)xn − xn‖

= ‖bn(T (PT )n−1zn − xn) + cn(T (PT )n−1xn − xn)‖

≤ bn‖T (PT )n−1zn − xn‖ + cn‖T (PT )n−1xn − xn‖ (3.10)

Thus

‖T (PT )n−1xn − xn‖ = ‖T (PT )n−1xn − T (PT )n−1yn + T (PT )n−1yn − xn‖

≤ ‖T (PT )n−1xn − T (PT )n−1yn‖ + ‖T (PT )n−1yn − xn‖

≤ ‖xn − yn‖ + Gn + ‖T (PT )n−1yn − xn‖

≤ bn‖T (PT )n−1zn − xn‖ + cn‖T (PT )n−1xn − xn‖

+ Gn + ‖T (PT )n−1yn − xn‖

and so

(1 − cn)‖T (PT )n−1xn − xn‖ ≤ bn‖T (PT )n−1zn − xn‖ + Gn

+ ‖T (PT )n−1yn − xn‖

Since lim supn→∞ cn < 1, it follows from (3.9) and
∑∞

n=1
Gn < ∞ that

lim
n→∞

‖T (PT )n−1xn − xn‖ = 0. (3.11)

It follows from (3.9), (3.10) and (3.11) that limn→∞ ‖yn − xn‖ = 0.

From xn+1 = P (αnT (PT )n−1yn + βnT (PT )n−1zn + (1 − αn − βn)xn), we have

‖xn+1 − xn‖ = ‖P (αnT (PT )n−1yn + βnT (PT )n−1zn + (1 − αn − βn)xn) − P (xn)‖

≤ αn‖T (PT )n−1yn − xn‖ + βn‖T (PT )n−1zn − xn‖ → 0 as n → ∞.

And

‖xn+1 − T (PT )n−1xn+1‖ ≤ ‖xn+1 − xn‖ + ‖T (PT )n−1xn+1 − T (PT )n−1xn‖

+ ‖T (PT )n−1xn − xn‖ → 0 as n → ∞.
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Since

‖xn+1 − Txn+1‖ ≤ ‖xn+1 − T (PT )nxn+1‖ + ‖Txn+1 − T (PT )n−1xn+1‖

and by uniform continuity of T and (3.11), it follows that limn→∞ ‖xn − Txn‖ =
0.

The following theorem generalizes Theorem 1 of Khan and Hussian [12].

Theorem 3.2. Let C, X, T and {xn} be as in Lemma 3.1. If, in addition, T

is either completely or demicompact and F (T ) 6= ∅, then {xn}, {yn} and {zn}
converge strongly to a fixed point of T .

Proof. Since T is completely continuous and {xn} ⊆ C is bounded, there ex-
ists a subsequence {xnk

} of {xn} such that {Txnk
} converges. Therefore from

limn→∞ ‖xn − Txn‖ = 0, {xnk
} converges. Let limk→∞ xnk

= q. By continuity
of T and limn→∞ ‖xn −Txn‖ = 0, we have that Tq = q, so q is a fixed point of
T . By Lemma 3.1 (i), limn→∞ ‖xn − q‖ exists. But limk→∞ ‖xnk

− q‖ = 0. Thus
limn→∞ ‖xn − q‖ = 0. Since ‖yn − xn‖ → 0 as n → ∞, and

‖zn − xn‖ = ‖P (anT (PT )n−1xn + (1 − an)xn) − P (xn)‖

≤ ‖T (PT )n−1xn − xn‖ → 0 as n → ∞,

it follows that limn→∞ yn = q and limn→∞ zn = q.
Next, assume that T is demicompact. Since {xn} is bounded and limn→∞ ‖xn−

Txn‖ = 0, there exists a subsequence {xnk
} of {xn} such that limk→∞ xnk

= q∗

(say). By Lemma 2.5, it implies that q∗ = Tq∗. Moreover, as limn→∞ ‖xn −
q
′

‖ exists for all q
′

∈ F (T ), therefore {xn} converges strongly to q∗. That is
limn→∞ ‖xn − q∗‖ = 0.
An argument similar to the above case proves that {yn} and {zn} also converge
strongly to a fixed q

′

of T . This completes the proof.

Remark 3.3. If T is nonself asymptotically nonexpansive mapping and cn = βn =
0, then Theorem 3.2 generalize theorem 2 of Khan and Hussian [12]. And also if
T is an asymptotically nonexpansive self-mapping and cn = βn = 0, then Theorem
3.2 generalize Theorem 2.4 of Suantai [26] and Theorem 2.1 of Xu and Noor [33].

The following theorem generalizes Theorem 3 of Khan and Hussian [12]

Theorem 3.4. Let X be a uniformly convex Banach space, and let C be a non-
empty closed and convex subset of X. Let T : C → X be an asymptotically
nonexpansive mapping in the intermediate sense with F (T ) 6= ∅. Put

Gn = sup
x,y∈C

(‖T (PT )n−1x − T (PT )n−1y‖ − ‖x − y‖) ∨ 0, ∀n ≥ 1,
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such that
∑∞

n=1
Gn < ∞. Let {bn} and {αn} be a sequence in [0, 1] be such that 0 <

lim infn→∞ αn ≤ lim supn→∞ αn < 1 and 0 < lim infn→∞ bn ≤ lim supn→∞ bn <

1. Let the sequence {xn} be defined as follows:







x1 ∈ C,

yn = P
(

bnT (PT )n−1xn + (1 − bn)xn

)

,

xn+1 = P
(

αnT (PT )n−1yn + (1 − αn)xn

)

, n ≥ 1,

If T is completely continuous and F (T ) 6= ∅, then {xn} and {yn} converge strongly
to a fixed point of T .

Proof. The choice an = cn = βn = 0 in Theorem 3.2 leads to the conclusion.

Remark 3.5. Theorem 2.5 of Suantai [26] and Theorem 3 of Rhoades [22] has
been generalized as Theorem 3.4.

The following theorem generalizes Theorem 4 of Khan and Hussian [12].

Theorem 3.6. Let X be a uniformly convex Banach space, and let C be a non-
empty closed and convex subset of X. Let T : C → X be an asymptotically
nonexpansive mapping in the intermediate sense with F (T ) 6= ∅. Put

Gn = sup
x,y∈C

(‖T (PT )n−1x − T (PT )n−1y‖ − ‖x − y‖) ∨ 0, ∀n ≥ 1,

such that
∑∞

n=1
Gn < ∞. Let {αn} be a sequence in [0, 1] be such that 0 <

lim infn→∞ αn ≤ lim supn→∞ αn < 1. Let the sequence {xn} be defined as follows:

{

x1 ∈ C,

xn+1 = P
(

αnT (PT )n−1xn + (1 − αn)xn

)

, n ≥ 1,
(3.12)

If T is completely continuous and F (T ) 6= ∅, then {xn} converge strongly to a fixed
point of T .

Proof. Put an = bn = cn = βn = 0 in Theorem 3.2.

Remark 3.7. Theorem 2.2 of Schu [23], Theorem 2.6 of Suantai [26], Theorem
2 of Rhoades [22] and Theorem 1.5 of Schu [24] has been generalized as Theorem
3.6.

In the same way, we can prove Lemma 3.1 under the conditions used by
Chidume et al. [5] to get the following:

Theorem 3.8. Let X be a uniformly convex Banach space, and let C be a non-
empty closed and convex subset of X. Let T : C → X be an asymptotically
nonexpansive mapping in the intermediate sense with F (T ) 6= ∅. Put

Gn = sup
x,y∈C

(‖T (PT )n−1x − T (PT )n−1y‖ − ‖x − y‖) ∨ 0, ∀n ≥ 1,
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such that
∑∞

n=1
Gn < ∞. Define a sequence {xn} in C as in (1.3) where {an},

{bn}, {cn}, {αn}, {βn}, {bn + cn}, {αn + βn} are in [ǫ, 1 − ǫ] for all n ≥ 1 and for
some ǫ in (0, 1). If T is completely continuous and F (T ) 6= ∅, then {xn}, {yn}
and {zn} converge strongly to a fixed point of T .

This theorem immediately gives the following:

Corollary 3.9 ([12] Theorem 5). Let X be a uniformly convex Banach space,
and let C be a nonempty closed and convex subset of X. Let T : C → X be a
nonself asymptotically nonexpansive mapping with the nonempty fixed points set
F (T ). Define a sequence {xn} in C as in (1.3) where {an}, {bn}, {cn}, {αn}, {βn},
{bn + cn}, {αn + βn} are in [ǫ, 1− ǫ] for all n ≥ 1 and for some ǫ in (0, 1). If T is
completely continuous and F (T ) 6= ∅, then {xn}, {yn} and {zn} converge strongly
to a fixed point of T .

Remark 3.10. Theorem 3.7 of Chidume [7] has been generalized as Theorem 3.8.

Now we turn our attention towards weak convergence. A Banach space X is
said to satisfy Opial’s condition [20] if xn → x weakly as n → ∞ and x 6= y imply
that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖.

Actually, if T is not taken to be completely continuous but X satisfy Opial’s
condition, then we have the following:

Theorem 3.11. Let X be a uniformly convex Banach space satisfying Opial’s
condition and let C be a nonempty closed and convex subset of X. Let T : C → X

be an asymptotically nonexpansive mapping in the intermediate sense. Put

Gn = sup
x,y∈C

(‖T (PT )n−1x − T (PT )n−1y‖ − ‖x − y‖) ∨ 0, ∀n ≥ 1,

such that
∑∞

n=1
Gn < ∞. Let {an}, {bn}, {cn}, {αn}, {βn} be sequences in [0, 1]

such that bn + cn and αn + βn are in [0, 1] for all n ≥ 1. Let {xn}, {yn} and {zn}
be the sequences defined as in (1.3). If F (T ) 6= ∅, then {xn} converges weakly to
a fixed point of T .

Proof. It follows from Lemma 3.1 (2) that limn→∞ ‖Txn − xn‖ = 0. Since X is
uniformly convex and {xn} is bounded, we may assume that xn → u weakly as
n → ∞, without loss of generality. By Lemma 2.5, it implies that u ∈ F (T ).
Suppose that subsequences {xnk

} and {xmk
} of {xn} converge weakly to u and

v, respectively. From Lemma 2.5, we have u, v ∈ F (T ). By Lemma 3.1 (1),
limn→∞ ‖xn − u‖ and limn→∞ ‖xn − v‖ exist. It follows from Lemma 2.6 that
u = v. Therefore {xn} converges weakly to a fixed point of T .

This theorem immediately gives the following:
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Corollary 3.12 (Khan and Hussian [12]). Let X be a uniformly convex Banach
space satisfying Opial’s condition and let C be a nonempty closed and convex
subset of X. Let T : C → X be a nonself asymptotically nonexpansive mapping.
Let {an}, {bn}, {cn}, {αn}, {βn} be sequences in [0, 1] such that {bn + cn} and
{αn + βn} are in [0, 1] for all n ≥ 1. Let {xn}, {yn} and {zn} be the sequences
defined as in (1.3). If F (T ) 6= ∅, then {xn} converges weakly to a fixed point of T .

Remark 3.13. Theorem 3.11 contain Theorem 6 of Khan and Hussian [12] and
Theorem 2.8. Corollary 2.9-2.11 of Suantai [26] as spacial cases when T is self-
mapping.
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