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1 Introduction

Let E be a real Banach space, C be a nonempty closed convex subset of E,
and T : C → C be a mapping. Recall that T is nonexpansive if

‖Tx− Ty‖ ≤ ‖x − y‖ for all x, y ∈ C.

We denote by F (T ) the set of fixed points of T , that is F (T ) = {x ∈ C : x = Tx}.
A mapping T is said to be quasi-nonexpansive if F (T ) 6= ∅ and

‖Tx − y‖ ≤ ‖x − y‖ for all x ∈ C and y ∈ F (T ).

It is easy to see that if T is nonexpansive with F (T ) 6= ∅, then it is quasi-
nonexpansive. Recently, several articles have appeared providing methods for
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approximating fixed points of relatively (quasi-)nonexpansive mappings [4, 5, 6, 8].
Matsushita and Takahashi [4] introduced the following iteration: a sequence {xn}
defined by

xn+1 = ΠCJ−1(αnJxn + (1 − αn)JTxn) (1.1)

where the initial guess element x0 ∈ C is arbitrary, {αn} is a real sequence in [0, 1],
T is a relatively nonexpansive mapping and ΠC denotes the generalized projection
from E onto a closed convex subset C of E. They prove that the sequence {xn}
converges weakly to a fixed point of T . Moreover, Matsushita and Takahashi [5]
proposed the following modification of iteration (1.1):























x0 ∈ C chosen arbitrarity,

yn = J−1(αnJxn + (1 − αn)JTxn),
Cn = {z ∈ C : φ(z, yn) ≤ φ(z, xn)},
Qn = {z ∈ C : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = ΠCn∩Qn

(x0), n = 0, 1, 2, . . .

(1.2)

and proved that the sequence {xn} converges strongly to ΠF (T )(x0).
In 2008, Takahashi et al. [8] proved the following theorem by a hybrid method.

We call such a method the shrinking projection method.

Theorem 1.1. (Takahashi et al. [8]). Let H be a hilbert space and let C be a
nonempty closed convex subset of H. Let T be a nonexpansive mapping of C into
H such that F (T ) 6= ∅ and let x0 ∈ H. For C1 = C and u1 = PC1

x0, define a
sequence {un} of C as follows:







yn = αnun + (1 − αn)Tun),
Cn+1 = {z ∈ Cn : ‖yn − z‖) ≤ ‖un − z‖},
un+1 = ΠCn+1

x0, n ∈ N,

(1.3)

where 0 ≤ αn ≤ a < 1 for all n ∈ N. Then, {un} converges strongly to z0 =
PF (T )x0.

Very recently, Yongfu Su et al. [7] extended Theorem 1.1 from a closed rel-
atively nonexpansive mapping to a closed hemi-relatively nonexpansive mapping.
They proved a strong convergence theorem by the (CQ) hybrid method.

In this paper, motivated by Takahashi et al.’s result [8] and Yongfu Su et
al.’s result [7], we prove a strong convergence theorem for fixed points of closed
hemi-relatively nonexpansive mappings in a Banach space by using the shrinking
projection method. Our results modify and improve the result of Matsushita and
Takahashi [5] and Yongfu Su et al. [7].

2 Preliminaries
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Let E be a real Banach space with dual E∗. Denote by 〈·, ·〉 the duality
product. The normalized duality mapping J from E to E∗ is defined by

Jx = {f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2}, (2.1)

for x ∈ E.

If C is a nonempty closed convex subset of real Hilbert space H and PC :
H → C is the metric projection, then PC is nonexpansive. Alber [1] has recently
introduced a generalized projection operator ΠC in a Banach space E which is an
analogue representation of the metric projection in Hilbert spaces.

Let E be a smooth Banach space. The function φ : E × E → R is defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉 + ‖y‖2 for x, y ∈ E. (2.2)

The generalized projection ΠC : E → C is a map that assigns to an arbitrary
point x ∈ E the minimum point of the functional φ(y, x), that is, ΠCx = x∗, where
x∗ is the solution to the minimization problem

φ(x∗, x) = min
y∈C

φ(y, x),

existence and uniqueness of the operator ΠC follow from the properties of the
functional φ(y, x) and strict monotonicity of the mapping J . In Hilbert space,
ΠC = PC . It is obvious from the definition of the function φ that

(‖ y‖ − ‖x‖)2 ≤ φ(y, x) ≤ (‖y‖ + ‖x‖)2 for x, y ∈ E. (2.3)

Remark 2.1. ([7]). If E is a strictly convex and smooth Banach space, then
for x, y ∈ E, φ(y, x) = 0 if, and only if, x = y. It is sufficient to show that if
φ(y, x) = 0 then x = y. From (2.3), we have ‖x‖ = ‖y‖. This implies 〈y, Jx〉 =
‖y‖2 = ‖Jx‖2. From the definition of J , we have Jx = Jy. Since J is one-to-one,
we have x = y.

Let C be a closed convex subset of E, and let T be a mapping from C into
itself. The set of fixed points of T is denoted by F (T ). A mapping T is said to be
hemi-relatively nonexpansive if

φ(p, Tx) ≤ φ(p, x) for all x ∈ C and p ∈ F (T ).

A point p in C is said to be an asymptotic fixed point of T [2] if C contains a
sequence {xn} which converges weakly to p such that the strong limn→∞(xn −
Txn) = 0. The set of asymptotic fixed points of T will be denoted by F̂ (T ).
A hemi-relatively nonexpansive mapping T from C into itself is called relatively
nonexpansive if F̂ (T ) = F (T ).

Lemma 2.2. ([3]). Let E be a uniformly convex and smooth real Banach space
and let {xn}, {yn} be two sequences of E. If φ(xn, yn) → 0 and either {xn} or
{yn} is bounded, then ‖xn − yn‖ → 0.



332 Thai J. Math. 7(2009)/ K. Wattanawitoon et al.

Lemma 2.3. ([1]). Let C be a nonempty closed convex subset of a smooth real
Banach space E and x ∈ E. Then, x0 = ΠCx if and only if

〈x0 − y, Jx − Jx0〉 ≥ 0, ∀y ∈ C. (2.4)

Lemma 2.4. ([1]). Let E be a reflexive, strictly convex, and smooth real Banach
space, let C be a nonempty closed convex subset of E and let x ∈ E. Then

φ(y, ΠCx) + φ(ΠCx, x) ≤ φ(y, x), ∀y ∈ C. (2.5)

Lemma 2.5. ([5]). Let E be a strictly convex and smooth real Banach space,
let C be a closed convex subset of E, and let T be a hemi-relatively nonexpansive
mapping from C into itself. Then F(T) is closed and convex.

3 Main Results

Theorem 3.1. Let E be a uniformly convex and uniformly smooth Banach space,
and let C be a nonempty closed convex subset of E. Let T : C → C be a closed
hemi-relatively nonexpansive mapping such that F (T ) 6= ∅. Assume that {αn} is
a sequence in [0,1] such that lim supn−→∞

αn < 1. Define a sequence {xn} in C

by the following algorithm:














x0 = x ∈ C, C0 = C,

yn = J−1(αnJxn + (1 − αn)JTxn),
Cn+1 = {z ∈ Cn : φ(z, yn) ≤ φ(z, xn)},
xn+1 = ΠCn+1

(x), n ∈ N,

(3.1)

where J is the duality mapping on E. Then {xn} converges strongly to ΠF (T )x,
where ΠF (T ) is the generalized projection from C onto F (T ).

Proof . We first show that Cn+1 is closed and convex for each n ≥ 0. From the
definition of Cn+1 it is obvious that Cn+1 is closed for each n ≥ 0. We show that
Cn+1 is convex for any n ≥ 0. Since

φ(z, yn) ≤ φ(z, xn) ⇐⇒ 2〈z, Jxn − Jyn〉 + ‖yn‖
2 − ‖xn‖

2 ≤ 0,

and hence Cn+1 is convex.
Next, we show that F (T ) ⊂ Cn for all n ≥ 0. Indeed, let p ∈ F (T ) and T is

hemi-relatively nonexpansive, we have

φ(p, yn) = φ(p, J−1(αnJxn + (1 − αn)JTxn))
≤ ‖p‖2 − 2〈p, αnJxn + (1 − αn)JTxn〉 + αn‖xn‖2

+(1 − αn)‖Txn‖2

≤ ‖p‖2 − 2αn〈p, Jxn〉 − 2(1 − αn)〈p, JTxn〉 + αnφ(p, xn)
+(1 − αn)φ(p, Txn)

= αnφ(p, xn) + (1 − αn)φ(p, Txn)
≤ αnφ(p, xn) + (1 − αn)φ(p, xn)
≤ φ(p, xn).
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This means that, p ∈ Cn+1 for all n ≥ 0. Thus, {xn} is well defined.
By definition of xn, we obtain

φ(xn, x) = φ(ΠCn
x0, x0) ≤ φ(p, x0) − φ(p, ΠCn

x0) ≤ φ(p, x),

for all p ∈ F (T ) ⊂ Cn. Thus, φ(xn, x0) is bounded. So, {xn} and {Txn} are
bounded.
Since xn = ΠCn+1

x0 and xn+1 ∈ Cn+1 ⊂ Cn, we get

φ(xn, x0) ≤ φ(xn+1, x0),

for all n ≥ 0. Therefore, {φ(xn, x0)} is nondecreasing. Thus limn−→∞φ(xn, x)
exists. By Lemma 2.4, we have

φ(xn+1, xn) = φ(xn+1, ΠCn
x0) ≤ φ(xn+1, x0) − φ(ΠCn

, x0)
= φ(xn+1, x0) − φ(xn, x0),

for all n ≥ 0. Thus, φ(xn+1, xn) → 0 as n → ∞.
Next, we show that {xn} is a Cauchy sequence. Assuming not, hence there

exists ε0 > 0 and subsequence {nk}, {mk} ⊂ {n} such that

‖xnk+mk
− xnk

‖ ≥ ε0,

for all k ≥ 1. Applying Lemma 2.4 that

φ(xnk+mk
, xnk

) ≤ φ(xnk+mk
, x) − φ(xnk

, x) → 0, as k → ∞. (3.2)

Since φ(xn, x) is bounded and the limit of φ(xn, x) exists, we obtain

lim
n→∞

φ(xnk+mk
− xnk

) = 0.

Hence, by Lemma 2.2, we have

lim
k→∞

‖xnk+mk
− xnk

‖ = 0.

This is a contradiction, so that {xn} is a Cauchy sequence, such that {xn} con-
verges strongly to p.
From xn+1 = ΠCn+1

∈ Cn+1, we have

φ(xn+1, yn) ≤ φ(xn+1, xn),

for all n ≥ 0. It follows from (3.2) that

φ(xn+1, yn) → 0, as n → ∞.

By using Lemma 2.2, we also have

lim
n→∞

‖xn+1 − yn‖ = lim
n→∞

‖xn+1 − xn‖ = 0. (3.3)
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Since J is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖Jxn+1 − Jyn‖ = lim
n→∞

‖Jxn+1 − Jxn‖ = 0. (3.4)

We observe that

‖Jxn+1 − Jyn‖ = ‖Jxn+1 − (αnJxn + (1 − αn)JTxn)‖
= ‖αn(Jxn+1 − Jxn) + (1 − αn)(Jxn+1) − JTxn‖
= ‖(1 − αn)(Jxn+1 − JTxn) − αn(Jxn − Jxn+1)‖
≥ (1 − αn)‖Jxn+1 − JTxn‖ − αn‖Jxn − Jxn+1‖.

It follows that

‖Jxn+1 − JTxn‖ ≤
1

1 − αn

(‖Jxn+1 − Jyn‖ + αn‖Jxn − Jxn+1‖).

By (3.4) and lim supn−→∞
αn < 1, we obtain

lim
n→∞

‖Jxn+1 − JTxn‖ = 0.

Since J−1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞

‖xn+1 − Txn‖ = 0. (3.5)

By triangle inequality, we get

‖xn − Txn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Txn‖.

From (3.3) and (3.5)
lim

n→∞

‖xn − Txn‖ = 0.

Finally, we prove that p = ΠF (T )x0. By Lemma 2.4, we have

φ(p, ΠF (T )x0) + φ(ΠF (T )x0, x0) ≤ Π(p, x0).

Since xn+1 = ΠCnx and F (T ) ⊂ Cn, for all n, we get from Lemma 2.4 that

φ(ΠF (T )x0, xn+1) + φ(xn+1, x0) ≤ φ(ΠF (T )x0, x0).

By the definition of φ(x, y), it follows that both φ(p, x0) ≤ φ(ΠF (T )x0, x0) and
φ(p, x0) ≥ φ(ΠF (T )x0, x0), hence φ(p, x0) = φ(ΠF (T )x0, x0). Thus, it follows from
the uniqueness of ΠF (T )x0 that p = ΠF (T )x0. 2

Corollary 3.2. Let E be a uniformly convex and uniformly smooth Banach space,
and let C be a nonempty closed convex subset of E. Let T : C → C be a closed
relatively nonexpansive mapping such that F (T ) 6= ∅. Assume that {αn} is a
sequence in [0,1] such that lim supn−→∞

αn < 1. Define a sequence {xn} in C by
the following algorithm:















x0 = x ∈ C, C0 = C,

yn = J−1(αnJxn + (1 − αn)JTxn),
Cn+1 = {z ∈ Cn : φ(z, yn) ≤ φ(z, xn)},
xn+1 = ΠCn+1

(x), n ∈ N,

(3.6)
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where J is the duality mapping on E. Then {xn} converges strongly to ΠF (T )x,
where ΠF (T ) is the generalized projection from C onto F (T ).

Proof . Since every relatively nonexpansive mapping is a hemi-relatively nonex-
pansive. 2

Theorem 3.3. Let E be a uniformly convex and uniformly smooth Banach space,
and let C be a nonempty closed convex subset of E. Let T : C → C be a closed
hemi-relatively nonexpansive mapping such that F (T ) 6= ∅. Define a sequence {xn}
in C by the following algorithm:















x0 = x ∈ C, C0 = C,

yn = Txn,

Cn+1 = {z ∈ Cn : φ(z, yn) ≤ φ(z, xn)},
xn+1 = ΠCn+1

(x), n ∈ N.

(3.7)

Then {xn} converges strongly to ΠF (T )x, where ΠF (T ) is the generalized projection
from C onto F (T ).

Proof . In Theorem 3.1 if αn = 0, then (3.6) reduced to (3.7). 2

4 Deduced Theorems

In Hilbert spaces, hemi-relatively nonexpansive and quasi-nonexpansive map-
pings are the same.
We obtain the following Theorem:

Theorem 4.1. Let C be a nonempty closed convex subset of a Hilbert space H.
Let T be a sequence of quasi-nonexpansive mappings from C into C such that
F (T ) 6= ∅. Assume that {αn} is a sequence in [0,1] such that lim supn−→∞

αn < 1.
Define a sequence {xn} in C by the following algorithm:















x0 = x ∈ C, C0 = C,

yn = αnxn + (1 − αn)Txn,

Cn+1 = {z ∈ Cn : ‖z − yn‖ ≤ ‖z − xn‖},
xn+1 = ΠCn+1

(x0), n ∈ N.

(4.1)

Then {xn} converges strongly to ΠF (T )x0.

Proof . Since J is an identity operator, we have

φ(x, y) = ‖x − y‖2

for every x, y ∈ H . Hence

‖Tx− z‖ ≤ ‖x − z‖ ⇔ φ(z, Tx) ≤ φ(z, x)
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for every x ∈ C and z ∈ F (T ). Therefore, T is quasi-nonexpansive if and only if T

is hemi-relatively nonexpansive. Thus, by Theorem 3.1, we obtain the theorem.2
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