Thai Journal of **Math**ematics Volume 22 Number 2 (2024) Pages 323–334

http://thaijmath.in.cmu.ac.th

F-Contraction-Type Fixed Point Theorems in *b*-Metric Spaces

Muhammad Sirajo Abdullahi^{1,2,*}, Abor Isa Garba¹, Jamilu Abubakar^{1,2} and Poom Kumam^{2,3}

¹ Department of Mathematics, Faculty of Physical and Computing Sciences, Usmanu Danfodiyo University, Sokoto, Sokoto State, Nigeria

e-mail : abdullahi.sirajo@udusok.edu.ng (M.S. Abdullahi); garba.isa@udusok.edu.ng (A.I. Garba); abubakar.jamilu@udusok.edu.ng (J. Abubakar)

² KMUTTFixed Point Research Laboratory, KMUTT-Fixed Point Theory and Applications Research Group, SCL 802 Fixed Point Laboratory, Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand e-mail : poom.kumam@mail.kmutt.ac.th (P. Kumam)

³ Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Science Laboratory Building, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand

Abstract In this paper, we present a generalization and improvement of some recent results concerning F-contraction. We establish some fixed point theorems in the setting of b-metric spaces. The obtained results are proper generalization of many results in the literature. Finally, we constructed some examples to support our findings.

MSC: 47H10; 47H09; 54E25Keywords: b-metric space; fixed point; F-contraction; generalized contractive map

Submission date: 26.06.2020 / Acceptance date: 10.08.2022

1. INTRODUCTION

The most fundamental result in metric fixed point theory was established by Stefan Banach [1] in 1922.

Theorem 1.1. Let (X,d) be a complete metric space and $T: X \to X$ be a contraction mapping, *i.e.*,

$$d(Tx, Ty) \le \lambda d(x, y) \text{ for all } x, y \in X,$$

$$(1.1)$$

where $\lambda \in [0, 1)$. Then T has a unique fixed point and for each $x \in X$, the sequence $\{T^n x\}$ converges to the fixed point.

In 1968, Kannan [2] gave the following contractive-type result:

^{*}Corresponding author.

Theorem 1.2. Let (X,d) be a complete metric space and $T: X \to X$ be a Kannan contraction, *i.e.*,

$$d(Tx, Ty) \le \lambda(d(x, Tx) + d(y, Ty)) \text{ for all } x, y \in X,$$
(1.2)

where $\lambda \in [0, \frac{1}{2})$. Then T has a unique fixed point and for each $x \in X$, the sequence $\{T^n x\}$ converges to the fixed point.

Afterwards in 1972, Chatterjea [3] presented the following contractive-type result:

Theorem 1.3. Let (X, d) be a complete metric space and $T : X \to X$ be a Chatterjea contraction, *i.e.*,

$$d(Tx, Ty) \le \lambda(d(x, Ty) + d(y, Tx)) \text{ for all } x, y \in X,$$
(1.3)

where $\lambda \in [0, \frac{1}{2})$. Then T has a unique fixed point and for each $x \in X$, the sequence $\{T^n x\}$ converges to the fixed point.

In [4] Hardy and Rogers considered combining the right hand sides of (1.1), (1.2) and that of (1.3) to obtain the following generalized type of contractive maps $T: X \to X$ satisfies

 $d(Tx, Ty) \leq \lambda_1 d(x, y) + \lambda_2 d(x, Tx) + \lambda_3 d(y, Ty) + \lambda_4 d(x, Tx) + \lambda_5 d(y, Ty), \quad (1.4)$ for all $x, y \in X$, where $\sum_{i=1}^{\infty} \lambda_i < 1$.

They established a nice result for the existence of a unique fixed point for maps satisfying (1.4) among others. In particular, we present it as follows.

Theorem 1.4. Let (X, d) be a complete metric space and $T : X \to X$ satisfies (1.4). Then T has a unique fixed point and for each $x \in X$, the sequence $\{T^nx\}$ converges to the fixed point.

In [5], Wardowski defined a new type of mappings as follows:

Definition 1.5. Let \mathcal{F} be the family of all functions $F : (0, +\infty) \to (-\infty, +\infty)$ satisfying: F_1) F is strictly increasing. I.e. for all $u, v \in (0, +\infty), u < v \implies F(u) < F(v)$;

- F_2) for each sequence $\{u_n\}_{n=1}^{\infty}$ of positive numbers, $\lim_{n\to\infty} u_n = 0$ if and only if $\lim_{n\to\infty} F(u_n) = -\infty$;
- F_3) there exists $k \in (0,1)$ such that $\lim_{\alpha \to 0^+} u^k F(u) = 0$.

Definition 1.6. [5] Let (X, d) be a metric space. A mapping $T : X \to X$ is called an *F*-contraction on (X, d) if there exist $F \in \mathcal{F}$ and $\tau > 0$ such that, for all $x, y \in X$,

$$d(Tx, Ty) > 0 \implies \tau + F(d(Tx, Ty)) \le F(d(x, y)).$$

$$(1.5)$$

Example 1.7. [5] Define a map $F: (0, +\infty) \to (-\infty, +\infty)$ by $F(\gamma) = \ln \gamma$. It is easy to see that the map F satisfies the conditions of Definition 1.5, for any $k \in (0, 1)$. Hence any mapping $T: X \to X$ satisfying (1.5) is an F-contraction such that

$$d(Tx, Ty) \le e^{-\tau} d(x, y),$$

for all $x, y \in X$, with $Tx \neq Ty$. More so, we can observe that, for $x, y \in X$ with Tx = Ty the following holds

$$d(Tx, Ty) \le e^{-\tau} d(x, y).$$

More precisely, we say that T is a Banach contraction.

Wardowski [5] gave a new generalization of Banach contraction principle as follows:

Theorem 1.8. Let (X, d) be a complete metric space and let $T : X \to X$ be an Fcontraction. Then T has a unique fixed point $x^* \in X$ and for every $x \in X$ the sequence $\{T^n x\}_{n=1}^{\infty}$ converges to $x^* \in X$.

Several articles study the generalizations and improvements of results in [5], we refer the reader to [6-10] and references therein. In Particular, Cosentino and Vetro in the paper [6] presented the following.

Theorem 1.9. Let (X, d) be a complete metric space and $T : X \to X$ be a map. Suppose there exists $\tau > 0$ such that for all $x, y \in X$,

$$d(Tx,Ty) > 0 \implies \tau + F(d(Tx,Ty))$$

$$\leq F(\alpha_1 d(x,y) + \alpha_2 d(x,Tx) + \alpha_3 d(y,Ty) + \alpha_4 d(x,Ty) + \alpha_5 d(y,Tx)),$$
(1.6)

where $F \in \mathcal{F}$, $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ are non-negative numbers with $\alpha_3 \neq 1, \alpha_1 + \alpha_2 + \alpha_3 + 2\alpha_4 = 1$ and $\alpha_1 + \alpha_4 + \alpha_5 \leq 1$. Then T has a unique fixed point and for each $x \in X$, the sequence $\{T^nx\}$ converges to the fixed point.

Recently, Popescu and Stan [10] gave a generalization of Theorem 1.1, 1.8 and 1.9, which is given below:

Theorem 1.10. Let (X, d) be a complete metric space and $T : X \to X$ be a self-map. Suppose there exists $\tau > 0$ such that for all $x, y \in X$,

$$d(Tx,Ty) > 0 \implies \tau + F(d(Tx,Ty))$$

$$\leq F(\alpha_1 d(x,y) + \alpha_2 d(x,Tx) + \alpha_3 d(y,Ty) + \alpha_4 d(x,Ty) + \alpha_5 d(y,Tx)),$$
(1.7)

where $F: (0, +\infty) \to (-\infty, +\infty)$ is an increasing mapping, $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ are nonnegative numbers with $\alpha_4 < \frac{1}{2}, \alpha_3 < 1, \alpha_1 + \alpha_2 + \alpha_3 + 2\alpha_4 = 1, 0 < \alpha_1 + \alpha_4 + \alpha_5 \leq 1$. Then T has a unique fixed point and for each $x \in X$, the sequence $\{T^nx\}$ converges to the fixed point.

For some other results related to b-metric and its variants, we refer the reader to [11–18] and references therein.

In this paper, motivated by the work of Popescu and Stan [10], we formulate our fixed point theorems in *b*-metric space. We study the problem of finding sufficient conditions on the contractive constants in *b*-metric spaces which guarantees the existence and uniqueness of fixed point for the map T and the convergence of the Picard iterative sequence $\{T^nx\}$ to the fixed point of T for any point $x \in X$.

2. Preliminaries

Let us recall the definition and some basic concepts of the *b*-metric space. Throughout, we denote \mathbb{R}, \mathbb{R}^+ and \mathbb{N} to represent the sets of real numbers, non-negative real numbers and natural numbers, respectively.

Definition 2.1. Let X be a nonempty set. A function $d_m : X \times X \to \mathbb{R}^+$ is called a metric on X if for all $x, y, z \in X$, d_m satisfies the following:

If d_m is a metric on X, then the pair (X, d_m) is called a metric space.

Modifying the inequality in Definition 2.1, we obtain the following concept introduced by Stefan Czerwik [19] in 1993.

Definition 2.2. [19]. Let X be a nonempty set. A function $d: X \times X \to \mathbb{R}^+$, is called a *b*-metric on X, if there exists a real number $s \ge 1$ such that for all $x, y, z \in X$, d satisfies the following:

 $b_1. \ d(x, y) = 0$ if and only if x = y; $b_2. \ d(x, y) = d(y, x)$; $b_3. \ d(x, y) \le s[d(x, z) + d(z, y)].$

If d is a b-metric on X, then the pair (X, d) is called a b-metric space.

Note that, every metric space is a *b*-metric space when s = 1. However, in general the converse is not true.

Here, we give an example of *b*-metric space that is not a metric space.

Example 2.3. Let X = [0,2] and d be defined on X by $d(x,y) = (x-y)^2$, for every $x, y \in X$. Then (X, d) is a *b*-metric space with coefficient s > 1. However, (X, d) is not a metric space, because the condition m_3 . fails. For instance, we have

$$4 = d(0,2) \not\leq d(0,1) + d(1,2) = 2.$$

Definition 2.4. [19] Let (X, d) be a *b*-metric space with coefficient $s \ge 1$. Let $\{x_n\}$ be a sequence in (X, d) and $x \in X$. Then,

i. A sequence $\{x_n\}$ b-converges to x if and only if there exist x such that

$$\lim_{n \to \infty} d(x_n, x) = 0;$$

ii. A sequence $\{x_n\}$ is called *b*-Cauchy if and only if

$$\lim_{n,m\to\infty} d(x_n, x_m) = 0$$

iii. A *b*-metric space (X, d) is called *b*-complete *b*-metric space if every *b*-Cauchy sequence in (X, d) *b*-converges in (X, d).

Theorem 2.5. [19] Let (X, d) be a b-metric space with coefficient $s \ge 1$. Then the following holds:

- *i.* Any *b*-convergent sequence has a unique limit;
- *ii.* Every b-convergent sequence is b-Cauchy;
- iii. In general, a b-metric is not continuous.

Definition 2.6. Let (X, d) be a *b*-complete *b*-metric space with coefficient $s \ge 1$ and $T: X \to X$. Then, a point $x \in X$ is called a fixed point of T if x = Tx.

3. Fixed Point Theorems

Now, we present a new variant of F-contraction of Banach-type in the setting of b-metric spaces:

Theorem 3.1. Let (X,d) be a b-complete b-metric space with coefficient $s \ge 1$ and $T: X \to X$ be a map. Suppose there exists $\tau > 0$ such that for all $x, y \in X$,

$$d(Tx, Ty) > 0 \implies \tau + F(d(Tx, Ty)) \le F(\alpha \, d(x, y)), \tag{3.1}$$

where $F: (0, +\infty) \to \mathbb{R}$ is an increasing mapping, $0 \le \alpha \in \mathbb{R}$ such that $\alpha s^2 < 1$. Then T has a unique fixed point $x^* \in X$ and for each $x \in X$, the sequence $\{T^n\}$ converges to the fixed point.

Proof. (Existence:) Let $x \in X$ be arbitrary fixed. Define the sequence $\{x_n\}$ by $x_{n+1} = Tx_n$ for all $n \in \mathbb{N}$. If there exists some $N_0 \in \mathbb{N}$ such that $x_{N_0} = x_{N_0+1}$, then $x_{N_0} = T(x_{N_0})$, implying that x_{N_0} is a fixed point of T.

So, we suppose that $x_n \neq x_{n+1}$ for all $n \ge 0$. By (3.1), we have

$$\tau + F(d(Tx_{n-1}, Tx_n)) \le F(\alpha \, d(x_n, x_{n+1})).$$

This implies that

$$F(d(Tx_{n-1}, Tx_n)) \le F(\alpha \, d(x_n, x_{n+1}) - \tau < F(\alpha \, d(x_n, x_{n+1})),$$
(3.2)

which further implies that

$$d(x_n, x_{n+1}) < \alpha \, d(x_n, x_{n+1}),$$

and

$$(1-\alpha)\,d(x_n,x_{n+1}) < 0.$$

This suggests that

$$\lim_{n \to \infty} d(x_n, x_{n+1}) = 0.$$
(3.3)

Now, we assume that the sequence $\{x_n\}$ is not b-Cauchy, then there exists $\epsilon > 0$ and integers $n_i, m_i \in \mathbb{N}$ such that $m_i > n_i \ge i$ and

$$d(x_{n_i}, x_{m_i}) \ge \epsilon$$
, for $i \in \mathbb{N}$.

By choosing m_i as small as possible, we may assume that

$$d(x_{n_i}, x_{m_{i-1}}) < \epsilon.$$

Therefore, for each $i \in N$, we have

$$\epsilon \leq d(x_{n_i}, x_{m_i}) \leq s \Big(d(x_{n_i}, x_{m_{i-1}}) + d(x_{m_{i-1}}, x_{m_i}) \Big)$$

= $s d(x_{n_i}, x_{m_{i-1}}) + s d(x_{m_{i-1}}, x_{m_i})$
< $\epsilon + s d(x_{m_{i-1}}, x_{m_i}).$

Now, from (3.3) and the above inequality, we have

$$\lim_{i \to \infty} d(x_{n_i}, x_{m_i}) = \epsilon.$$

By the triangle inequality, we have

$$d(x_{n_i-1}, x_{m_i-1}) \leq s \Big(d(x_{n_i-1}, x_{n_i}) + d(x_{n_i}, x_{m_{i-1}}) \Big)$$

$$\leq s \Big(d(x_{n_i-1}, x_{n_i}) + s \Big[d(x_{n_i}, x_{m_i}) + d(x_{m_i}, x_{m_i-1}) \Big] \Big)$$

$$\leq s^2 \Big(d(x_{n_i-1}, x_{n_i}) + d(x_{n_i}, x_{m_i}) + d(x_{m_i}, x_{m_i-1}) \Big).$$

Thus by (3.1), we obtain

$$\begin{aligned} \tau + F(d(x_{n_i}, x_{m_i})) &= \tau + F(d(Tx_{n_i-1}, Tx_{m_i-1})) \\ &\leq F(\alpha \, d(x_{n_i-1}, x_{m_i-1})) \\ &\leq F\left(\alpha s^2 \Big[d(x_{n_i-1}, x_{n_i}) + d(x_{n_i}, x_{m_i}) + d(x_{m_i}, x_{m_i-1}) \Big] \right) \\ &= F\left(\alpha s^2 \, d(x_{n_i}, x_{m_i}) + \alpha s^2 \, d(x_{n_i-1}, x_{n_i}) + \alpha s^2 \, d(x_{m_i-1}, x_{m_i}) \right). \end{aligned}$$

Letting $n \to \infty$ in the above inequality and taking the limit, we have

$$\tau + F(\epsilon + 0) \le F(\epsilon + 0) < F(\epsilon + 0),$$

a contradiction. Hence, the sequence $\{x_n\}$ is b-Cauchy and since X is b-complete, we conclude that the sequence $\{x_n\}$ b-converges to a point say $x^* \in X$ as $n \to \infty$.

Now, it is left to show that $x^* = Tx^*$. If there exists a sequence $\{n_i\}_{i \in \mathbb{N}}$ of natural numbers such that $x_{n_i+1} = Tx_{n_i} = Tx^*$, then $\lim_{i\to\infty} x_{n_i+1} = x^*$, hence $Tx^* = x^*$. Otherwise, there exists $N \in \mathbb{N}$ such that $x_{n+1} = Tx_n \neq Tx^*$, for all $n \geq \mathbb{N}$. Now, suppose that $Tx^* \neq x^*$. Then, we have

$$\tau + F(d(Tx_n, Tx^*)) \le F(\alpha \, d(x_n, x^*)).$$

Since F is increasing and by taking the limit as $n \to \infty$, we have

$$d(Tx_n, Tx^*) < \alpha \, d(x_n, x^*),$$

and

$$d(Tx^*, Tx^*) < \alpha \, d(x^*, x^*),$$

a contradiction. Hence $x^* = Tx^*$.

(Uniqueness:) Let x' be a fixed of T different from x^* . BIt follows from (3.1) that

$$\tau + F(d(x^*, x')) = \tau + F(d(Tx^*, Tx')) \le F(\alpha \, d(x^*, x')) < F(d(x^*, x')),$$

which is a contradiction. Hence the fixed point x^* is unique.

For each $x \in X$, the convergence of $T^n x$ to x^* follows immediately.

Corollary 3.2. [1, 5] Let (X, d) be a complete metric space and $T : X \to X$ be a map. Suppose there exists $\tau > 0$ such that for all $x, y \in X$,

$$d(Tx, Ty) > 0 \implies \tau + F(d(Tx, Ty)) \le F(\alpha \, d(x, y)), \tag{3.4}$$

where $F: (0, +\infty) \to \mathbb{R}$ is an increasing mapping, $0 < \alpha < 1$. Then T has a unique fixed point $x^* \in X$ and for each $x \in X$, the sequence $\{T^n\}$ converges to the fixed point.

Now, we present a more generalized result in the form of a new variant results of Fcontraction of Hardy-Rogers type in the setting of *b*-metric spaces. This generalizes some
results in [6] and [10]:

Theorem 3.3. Let (X, d) be a b-complete b-metric space with coefficient $s \ge 1$ and $T: X \to X$ be a map. Suppose there exists $\tau > 0$ such that for all $x, y \in X$,

$$d(Tx,Ty) > 0 \implies \tau + F(d(Tx,Ty))$$

$$\leq F\Big(\alpha_1 d(x,y) + \alpha_2 d(x,Tx) + \alpha_3 d(y,Ty) + \alpha_4 d(x,Ty) + \alpha_5 d(y,Tx)\Big),$$
(3.5)

where $F: (0, +\infty) \to \mathbb{R}$ is an increasing mapping, $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ are non-negative real numbers such that $\alpha_3 + \alpha_4 < 1, \alpha_1 + \alpha_2 + \alpha_4 s < 1, \alpha_1 + \alpha_2 + \alpha_3 + 2\alpha_4 s = 1$ and $\alpha_1 s^2 + \alpha_4 s + \alpha_5 s \leq 1$. Then T has a unique fixed point $x^* \in X$ and for each $x \in X$, the sequence $\{T^n\}$ converges to the fixed point.

Proof. (Existence:) Let $x \in X$ be arbitrary fixed. Define the sequence $\{x_n\}$ by $x_{n+1} = Tx_n$ for all $n \in \mathbb{N}$. If there exists some $N_0 \in \mathbb{N}$ such that $x_{N_0} = x_{N_0+1}$, then $x_{N_0} = T(x_{N_0})$, implying that x_{N_0} is a fixed point of T.

So, we suppose that $x_n \neq x_{n+1}$ for all $n \ge 0$. By (3.5), we have

$$\begin{aligned} \tau + F(d(Tx_{n-1}, Tx_n)) \\ &\leq F\left(\alpha_1 d(x_n, x_{n+1}) + \alpha_2 d(x_n, Tx_n) + \alpha_3 d(x_{n+1}, Tx_{n+1}) \\ &+ \alpha_4 d(x_n, Tx_{n+1}) + \alpha_5 d(x_{n+1}, Tx_n)\right) \\ &= F\left(\alpha_1 d(x_n, x_{n+1}) + \alpha_2 d(x_n, x_{n+1}) + \alpha_3 d(x_{n+1}, x_{n+2}) \\ &+ \alpha_4 d(x_n, x_{n+2}) + \alpha_5 d(x_{n+1}, x_{n+1})\right) \\ &= F\left((\alpha_1 + \alpha_2) d(x_n, x_{n+1}) + \alpha_3 d(x_{n+1}, x_{n+2}) + \alpha_4 d(x_n, x_{n+2})\right) \\ &\leq F\left((\alpha_1 + \alpha_2 + \alpha_4 s) d(x_n, x_{n+1}) + (\alpha_3 + \alpha_4 s) d(x_{n+1}, x_{n+2})\right). \end{aligned}$$

This implies

$$F(d(Tx_{n-1}, Tx_n)) \leq F\left((\alpha_1 + \alpha_2 + \alpha_4 s) d(x_n, x_{n+1}) + (\alpha_3 + \alpha_4 s) d(x_{n+1}, x_{n+2})\right) - \tau \qquad (3.6)$$

$$< F\left((\alpha_1 + \alpha_2 + \alpha_4 s) d(x_n, x_{n+1}) + (\alpha_3 + \alpha_4 s) d(x_{n+1}, x_{n+2})\right),$$

which further implies that

$$d(x_n, x_{n+1}) < (\alpha_1 + \alpha_2 + \alpha_4 s) d(x_n, x_{n+1}) + (\alpha_3 + \alpha_4 s) d(x_{n+1}, x_{n+2}),$$

and

$$d(x_n, x_{n+1}) < \frac{(\alpha_3 + \alpha_4 s)}{1 - (\alpha_1 + \alpha_2 + \alpha_4 s)} d(x_{n+1}, x_{n+2}) < d(x_{n+1}, x_{n+2}).$$

This suggests that there exists $p = \lim_{n \to \infty} d(x_n, x_{n+1})$. So, suppose that p > 0. Then there exists $\lim_{x \to p+} F(x) = F(p+0)$ as F is increasing. Now, letting $n \to \infty$ in (3.6), we have

$$F(p+0) \le F(p+0) - \tau < F(p+0),$$

a contradiction. Therefore,

$$\lim_{n \to \infty} d(x_n, x_{n+1}) = 0.$$
(3.7)

Now, we assume that the sequence $\{x_n\}$ is not b-Cauchy, then there exists $\epsilon > 0$ and integers $n_i, m_i \in \mathbb{N}$ such that $m_i > n_i \ge i$ and

$$d(x_{n_i}, x_{m_i}) \ge \epsilon$$
, for $i \in \mathbb{N}$.

By choosing m_i as small as possible, we may assume that

 $d(x_{n_i}, x_{m_{i-1}}) < \epsilon.$

Therefore, for each $i \in N$, we have

$$\epsilon \leq d(x_{n_i}, x_{m_i}) \leq s \Big(d(x_{n_i}, x_{m_{i-1}}) + d(x_{m_{i-1}}, x_{m_i}) \Big)$$

= $s d(x_{n_i}, x_{m_{i-1}}) + s d(x_{m_{i-1}}, x_{m_i})$
< $\epsilon + s d(x_{m_{i-1}}, x_{m_i}).$

Now, from (3.7) and the above inequality, we have

 $\lim_{i \to \infty} d(x_{n_i}, x_{m_i}) = \epsilon.$

By the triangle inequality, we have

$$d(x_{n_i-1}, x_{m_i-1}) \leq s \Big(d(x_{n_i-1}, x_{n_i}) + d(x_{n_i}, x_{m_{i-1}}) \Big)$$

$$\leq s \Big(d(x_{n_i-1}, x_{n_i}) + s \Big[d(x_{n_i}, x_{m_i}) + d(x_{m_i}, x_{m_i-1}) \Big] \Big)$$

$$\leq s^2 \Big(d(x_{n_i-1}, x_{n_i}) + d(x_{n_i}, x_{m_i}) + d(x_{m_i}, x_{m_i-1}) \Big).$$

Thus by (3.5), we obtain

$$\begin{aligned} \tau + F(d(x_{n_i}, x_{m_i})) &= \tau + F(d(Tx_{n_i-1}, Tx_{m_i-1})) \\ &\leq F\left(\alpha_1 d(x_{n_i-1}, x_{m_i-1}) + \alpha_2 d(x_{n_i-1}, Tx_{n_i-1}) \\ &+ \alpha_3 d(x_{m_i-1}, Tx_{m_i-1}) + \alpha_4 d(x_{n_i-1}, Tx_{m_i-1}) \\ &+ \alpha_5 d(x_{m_i-1}, x_{m_i-1}) + \alpha_2 d(x_{n_i-1}, x_{n_i}) \\ &+ \alpha_3 d(x_{m_i-1}, x_{m_i}) + \alpha_4 d(x_{n_i-1}, x_{m_i}) \\ &+ \alpha_5 d(x_{m_i-1}, x_{n_i}) + \alpha_4 d(x_{n_i}, x_{m_i}) + d(x_{m_i}, x_{m_i-1}) \right] \\ &\leq F\left(\alpha_1 s^2 \left[d(x_{n_i-1}, x_{n_i}) + d(x_{n_i}, x_{m_i}) + d(x_{m_i}, x_{m_i-1}) \right] \\ &+ \alpha_2 d(x_{n_i-1}, x_{n_i}) + \alpha_3 d(x_{m_i-1}, x_{m_i}) \\ &+ \alpha_4 s \left[d(x_{m_i-1}, x_{m_i}) + d(x_{m_i}, x_{m_i}) \right] \\ &+ \alpha_5 s \left[d(x_{m_i-1}, x_{m_i}) + d(x_{m_i}, x_{m_i}) \right] \\ &+ (\alpha_1 s^2 + \alpha_2 + \alpha_4 s) d(x_{n_i-1}, x_{m_i}) \\ &+ (\alpha_1 s^2 + \alpha_3 + \alpha_5 s) d(x_{m_i-1}, x_{m_i}) \right). \end{aligned}$$

Letting $n \to \infty$ in the above inequality and taking the limit, we have

 $\tau + F(\epsilon + 0) \le F(\epsilon + 0) < F(\epsilon + 0),$

a contradiction. Hence, the sequence $\{x_n\}$ is b-Cauchy and since X is b-complete, we conclude that the sequence $\{x_n\}$ b-converges to a point say $x^* \in X$ as $n \to \infty$.

Now, it is left to show that $x^* = Tx^*$. If there exists a sequence $\{n_i\}_{i \in \mathbb{N}}$ of natural numbers such that $x_{n_i+1} = Tx_{n_i} = Tx^*$, then $\lim_{i\to\infty} x_{n_i+1} = x^*$, hence $Tx^* = x^*$. Otherwise, there exists $N \in \mathbb{N}$ such that $x_{n+1} = Tx_n \neq Tx^*$, for all $n \geq \mathbb{N}$. Now, suppose that $Tx^* \neq x^*$. Then, we have

$$\tau + F(d(Tx_n, Tx^*)) \\ \leq F\left(\alpha_1 d(x_n, x^*) + \alpha_2 d(x_n, Tx_n) + \alpha_3 d(x^*, Tx^*) \\ + \alpha_4 d(x_n, Tx^*) + \alpha_5 d(x^*, Tx_n)\right) \\ \leq F\left(\alpha_1 d(x_n, x^*) + \alpha_2 d(x_n, x_{n+1}) + \alpha_3 d(x^*, Tx^*) \\ + \alpha_4 d(x_n, Tx^*) + \alpha_5 d(x^*, x_{n+1})\right).$$

Since F is increasing and by taking the limit as $n \to \infty$, we have

$$d(Tx_n, Tx^*) < \alpha_1 d(x_n, x^*) + \alpha_2 d(x_n, x_{n+1}) + \alpha_3 d(x^*, Tx^*) + \alpha_4 d(x_n, Tx^*) + \alpha_5 d(x^*, x_{n+1}),$$

and

$$d(x^*, Tx^*) < \alpha_1 d(x^*, x^*) + \alpha_2 d(x^*, x^*) + \alpha_3 d(x^*, Tx^*) + \alpha_4 d(x^*, Tx^*) + \alpha_5 d(x^*, x^*) = (\alpha_3 + \alpha_4) d(x^*, Tx^*) < d(x^*, Tx^*),$$

a contradiction. Hence $x^* = Tx^*$.

(Uniqueness:) Let x' be a fixed of T different from x^* . It follows from (3.5) that

$$\begin{aligned} \tau + F(d(x^*, x')) &= \tau + F(d(Tx^*, Tx')) \\ &\leq F\left(\alpha_1 d(x^*, x') + \alpha_2 d(x^*, Tx^*) + \alpha_3 d(x', Tx') \\ &+ \alpha_4 d(x^*, Tx') + \alpha_5 d(x', Tx^*)\right) \\ &= F\left(\alpha_1 d(x^*, x') + \alpha_2 d(x^*, x^*) + \alpha_3 d(x', x') + \alpha_4 d(x^*, x') \\ &+ \alpha_5 d(x', x^*)\right) \\ &= F((\alpha_1 + \alpha_4 + \alpha_5) d(x^*, x')) \\ &= F(d(x^*, x')), \end{aligned}$$

which is a contradiction. Hence the fixed point x^* is unique.

For each $x \in X$, the convergence of $T^n x$ to x^* follows immediately.

Corollary 3.4. [10] Let (X, d) be a complete metric space and $T : X \to X$ be a map. Suppose there exists $\tau > 0$ such that for all $x, y \in X$,

$$d(Tx,Ty) > 0 \implies \tau + F(d(Tx,Ty))$$

$$\leq F\Big(\alpha_1 d(x,y) + \alpha_2 d(x,Tx) + \alpha_3 d(y,Ty) + \alpha_4 d(x,Ty) + \alpha_5 d(y,Tx)\Big),$$
(3.8)

where $F: (0, +\infty) \to \mathbb{R}$ is an increasing mapping, $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$ are non-negative real numbers such that $\alpha_3 + \alpha_4 < 1, \alpha_1 + \alpha_2 + \alpha_4 < 1, \alpha_1 + \alpha_2 + \alpha_3 + 2\alpha_4 = 1$ and $\alpha_1 + \alpha_4 + \alpha_5 \leq 1$. Then T has a unique fixed point $x^* \in X$ and for each $x \in X$, the sequence $\{T^n\}$ converges to the fixed point.

Corollary 3.5. [2] Let (X, d) be a b-complete b-metric space with coefficient $s \ge 1$ and $T: X \to X$ be a map. Suppose there exists $\tau > 0$ such that for all $x, y \in X$,

$$d(Tx,Ty) > 0 \implies \tau + F(d(Tx,Ty)) \le F\left(\frac{1}{2}\left(d(x,Tx) + d(y,Ty)\right)\right),\tag{3.9}$$

where $F : (0, +\infty) \to \mathbb{R}$ is an increasing mapping. Then T has a unique fixed point $x^* \in X$ and for each $x \in X$, the sequence $\{T^n\}$ converges to the fixed point.

Corollary 3.6. [3] Let (X, d) be a b-complete b-metric space with coefficient $s \ge 1$ and $T: X \to X$ be a map. Suppose there exists $\tau > 0$ such that for all $x, y \in X$,

$$d(Tx,Ty) > 0 \implies \tau + F(d(Tx,Ty)) \le F\left(\lambda\left(d(x,Ty) + d(y,Tx)\right)\right), \tag{3.10}$$

where $F: (0, +\infty) \to \mathbb{R}$ is an increasing mapping, $0 \le \lambda \le \frac{1}{2s}$. Then T has a unique fixed point $x^* \in X$ and for each $x \in X$, the sequence $\{T^n\}$ converges to the fixed point.

Corollary 3.7. [20] Let (X, d) be a b-complete b-metric space with coefficient $s \ge 1$ and $T: X \to X$ be a map. Suppose there exists $\tau > 0$ such that for all $x, y \in X$,

$$d(Tx,Ty) > 0 \implies \tau + F(d(Tx,Ty)) \le F\left(\lambda \, d(x,y) + \beta \, d(x,Tx) + \gamma \, d(y,Ty)\right), \quad (3.11)$$

where $F: (0, +\infty) \to \mathbb{R}$ is an increasing mapping, λ, β, γ are non-negative real numbers such that $\gamma < 1, \lambda + \beta < 1, \lambda + \beta + \gamma = 1$ and $\lambda s^2 \leq 1$. Then T has a unique fixed point $x^* \in X$ and for each $x \in X$, the sequence $\{T^n\}$ converges to the fixed point.

Corollary 3.8. Let (X,d) be a b-complete b-metric space with coefficient $s \ge 1$ and $T: X \to X$ be a map. Suppose there exists $\tau > 0$ such that for all $x, y \in X$,

$$d(Tx,Ty) > 0 \implies \tau + F(d(Tx,Ty)) \leq F\left(\lambda d(x,y) + \beta d(x,Ty) + \gamma d(y,Tx)\right),$$
(3.12)

where $F: (0, +\infty) \to \mathbb{R}$ is an increasing mapping, λ, β, γ are non-negative real numbers such that $\beta < 1, \lambda + \beta s < 1, \lambda + 2\beta s = 1$ and $\lambda s^2 + \beta s + \gamma s \leq 1$. Then T has a unique fixed point $x^* \in X$ and for each $x \in X$, the sequence $\{T^n\}$ converges to the fixed point.

4. CONCLUSION

In this paper, we established some *b*-metric fixed point theorems for some generalized F-contractive type mappings. Our results are proper generalization and improvement of results due to [10]. We have presented some sufficient conditions on the contractive constants for the existence and uniqueness of fixed point of some F-contractive type mappings. Finally, we have furnished some examples to support our findings.

Acknowledgments

The authors acknowledge the financial support provided by King Mongkut's University of Technology Thonburi through the "KMUTT 55^{th} Anniversary Commemorative Fund". The first author was supported by the "Petchra Pra Jom Klao Ph.D. Research Scholarship from King Mongkut's University of Technology Thonburi" (Grant No.: 35/2017).

References

- [1] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math. 3 (1) (1922) 133–181.
- [2] R. Kannan, Some results on fixed points, Bulletin of the Calcutta Mathematical Society 60 (1-2) (1968) 71.
- [3] S.K. Chatterjea, Fixed point theorems, C. R. Acad. Bulgare Sci. 25 (1972) 727–730.
- [4] G. Hardy, T. Rogers, A generalization of a fixed point theorem of Reich, Canad. Math. Bull. 16 (2) (1973) 201–206.
- [5] D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory and Applications 2012 (2012) Article no. 94.
- [6] M. Cosentino, P. Vetro, Fixed point results for F-contractive mappings of Hardy-Rogers-type, Filomat 28 (4) (2014) 715–722.
- [7] E. Gilić, D. Dolićanin-Đekić, Z.D. Mitrović, D. Pučić, H. Aydi, On some recent results concerning *F*-suzuki-contractions in *b*-metric spaces, Mathematics 8 (940) (2020) 1–13.
- [8] H. Piri, P. Kumam, Some fixed point theorems concerning F-contraction in complete metric spaces, Fixed Point Theory and Applications 2014 (2014) Article no. 210.
- [9] H. Piri, P. Kumam, Fixed point theorems for generalized F-Suzuki-contraction mappings in complete b-metric spaces, Fixed Point Theory and Applications 2016 (2016) Article no. 90.
- [10] O. Popescu, G. Stan, Two fixed point theorems concerning F-contraction in complete metric spaces, Symmetry 12 (58) (2020) 1–10.
- [11] M.S. Abdullahi, I.A. Garba, P. Kumam, K. Sitthithakerngkiet, Fixed point theorems for some generalized contractive maps in *b*-metric spaces, Journal of Nonlinear and Convex Analysis 22 (4) (2021) 723–733.
- [12] M.S. Abdullahi, P. Kumam, Partial $b_v(s)$ -metric spaces and fixed point theorems, Journal of Fixed Point Theory and Applications 20 (3) (2018) 1–13.
- [13] U.Y. Batsari, P. Kumam, K. Sitthithakerngkiet, Some globally stable fixed points in b-metric spaces, Symmetry 10 (11) (2018) 555.
- [14] O. Ege, Complex valued rectangular b-metric spaces and an application to linear equations, J. Nonlinear Sci. Appl 8 (6) (2015) 1014–1021.
- [15] A. Gholidahneh, S. Sedghi, O. Ege, Z.D. Mitrovic, M. de la Sen, The Meir-Keeler type contractions in extended modular *b*-metric spaces with an application, AIMS Mathematics 6 (2) (2021) 1781–1799.
- [16] M. Iqbal, A. Batool, O. Ege, M. de la Sen, Fixed point of almost contraction b-metric spaces, Journal of Mathematics 2020 (2020) 1–6.

- [17] H. Isık, B. Mohammadi, V. Parvaneh, C. Park, Extended quasi b-metric-like spaces and some fixed point theorems for contractive mappings, Applied Mathematics E-Notes 20 (2020) 204–214.
- [18] Z.D. Mitrovic, H. Işık, S. Radenovic, The new results in extended b-metric spaces and applications, International Journal of Nonlinear Analysis and Applications 11 (1) (2020) 473–482.
- [19] S. Czerwik, Contraction mappings in b-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis 1 (1) (1993) 5–11.
- [20] S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull. 14 (1) (1971) 121–124.