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1. Introduction

The most fundamental result in metric fixed point theory was established by Stefan
Banach [1] in 1922.

Theorem 1.1. Let (X, d) be a complete metric space and T : X → X be a contraction
mapping, i.e.,

d(Tx, Ty) ≤ λd(x, y) for all x, y ∈ X, (1.1)

where λ ∈ [0, 1). Then T has a unique fixed point and for each x ∈ X, the sequence {Tnx}
converges to the fixed point.

In 1968, Kannan [2] gave the following contractive-type result:
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Theorem 1.2. Let (X, d) be a complete metric space and T : X → X be a Kannan
contraction, i.e.,

d(Tx, Ty) ≤ λ(d(x, Tx) + d(y, Ty)) for all x, y ∈ X, (1.2)

where λ ∈ [0, 1
2 ). Then T has a unique fixed point and for each x ∈ X, the sequence {Tnx}

converges to the fixed point.

Afterwards in 1972, Chatterjea [3] presented the following contractive-type result:

Theorem 1.3. Let (X, d) be a complete metric space and T : X → X be a Chatterjea
contraction, i.e.,

d(Tx, Ty) ≤ λ(d(x, Ty) + d(y, Tx)) for all x, y ∈ X, (1.3)

where λ ∈ [0, 1
2 ). Then T has a unique fixed point and for each x ∈ X, the sequence {Tnx}

converges to the fixed point.

In [4] Hardy and Rogers considered combining the right hand sides of (1.1), (1.2) and
that of (1.3) to obtain the following generalized type of contractive maps T : X → X
satisfies

d(Tx, Ty) ≤ λ1d(x, y) + λ2d(x, Tx) + λ3d(y, Ty) + λ4d(x, Tx) + λ5d(y, Ty), (1.4)

for all x, y ∈ X, where
∑∞

i=1 λi < 1.
They established a nice result for the existence of a unique fixed point for maps satis-

fying (1.4) among others. In particular, we present it as follows.

Theorem 1.4. Let (X, d) be a complete metric space and T : X → X satisfies (1.4).
Then T has a unique fixed point and for each x ∈ X, the sequence {Tnx} converges to
the fixed point.

In [5], Wardowski defined a new type of mappings as follows:

Definition 1.5. Let F be the family of all functions F : (0,+∞) → (−∞,+∞) satisfying:

F1) F is strictly increasing. I.e. for all u, v ∈ (0,+∞), u < v =⇒ F (u) < F (v);
F2) for each sequence {un}∞n=1 of positive numbers, limn→∞un = 0 if and only if
limn→∞ F (un) = −∞;

F3) there exists k ∈ (0, 1) such that limα→0+ ukF (u) = 0.

Definition 1.6. [5] Let (X, d) be a metric space. A mapping T : X → X is called an
F -contraction on (X, d) if there exist F ∈ F and τ > 0 such that, for all x, y ∈ X,

d(Tx, Ty) > 0 =⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)). (1.5)

Example 1.7. [5] Define a map F : (0,+∞) → (−∞,+∞) by F (γ) = ln γ. It is easy to
see that the map F satisfies the conditions of Definition 1.5, for any k ∈ (0, 1). Hence any
mapping T : X → X satisfying (1.5) is an F -contraction such that

d(Tx, Ty) ≤ e−τd(x, y),

for all x, y ∈ X, with Tx ̸= Ty. More so, we can observe that, for x, y ∈ X with Tx = Ty
the following holds

d(Tx, Ty) ≤ e−τd(x, y).

More precisely, we say that T is a Banach contraction.

Wardowski [5] gave a new generalization of Banach contraction principle as follows:
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Theorem 1.8. Let (X, d) be a complete metric space and let T : X → X be an F -
contraction. Then T has a unique fixed point x∗ ∈ X and for every x ∈ X the sequence
{Tnx}∞n=1 converges to x∗ ∈ X.

Several articles study the generalizations and improvements of results in [5], we refer
the reader to [6–10] and references therein. In Particular, Cosentino and Vetro in the
paper [6] presented the following.

Theorem 1.9. Let (X, d) be a complete metric space and T : X → X be a map. Suppose
there exists τ > 0 such that for all x, y ∈ X,

d(Tx,Ty) > 0 =⇒ τ + F (d(Tx, Ty))

≤ F (α1d(x, y) + α2d(x, Tx) + α3d(y, Ty) + α4d(x, Ty) + α5d(y, Tx)),
(1.6)

where F ∈ F , α1, α2, α3, α4, α5 are non-negative numbers with α3 ̸= 1, α1+α2+α3+2α4 =
1 and α1+α4+α5 ≤ 1. Then T has a unique fixed point and for each x ∈ X, the sequence
{Tnx} converges to the fixed point.

Recently, Popescu and Stan [10] gave a generalization of Theorem 1.1, 1.8 and 1.9,
which is given below:

Theorem 1.10. Let (X, d) be a complete metric space and T : X → X be a self-map.
Suppose there exists τ > 0 such that for all x, y ∈ X,

d(Tx,Ty) > 0 =⇒ τ + F (d(Tx, Ty))

≤ F (α1d(x, y) + α2d(x, Tx) + α3d(y, Ty) + α4d(x, Ty) + α5d(y, Tx)),
(1.7)

where F : (0,+∞) → (−∞,+∞) is an increasing mapping, α1, α2, α3, α4, α5 are non-
negative numbers with α4 < 1

2 , α3 < 1, α1 + α2 + α3 + 2α4 = 1, 0 < α1 + α4 + α5 ≤ 1.
Then T has a unique fixed point and for each x ∈ X, the sequence {Tnx} converges to
the fixed point.

For some other results related to b-metric and its variants, we refer the reader to [11–18]
and references therein.

In this paper, motivated by the work of Popescu and Stan [10], we formulate our fixed
point theorems in b-metric space. We study the problem of finding sufficient conditions on
the contractive constants in b-metric spaces which guarantees the existence and uniqueness
of fixed point for the map T and the convergence of the Picard iterative sequence {Tnx}
to the fixed point of T for any point x ∈ X.

2. Preliminaries

Let us recall the definition and some basic concepts of the b-metric space. Throughout,
we denote R,R+ and N to represent the sets of real numbers, non-negative real numbers
and natural numbers, respectively.

Definition 2.1. Let X be a nonempty set. A function dm : X × X → R+ is called a
metric on X if for all x, y, z ∈ X, dm satisfies the following:

m1. dm(x, y) = 0 if and only if x = y;
m2. dm(x, y) = dm(y, x);
m3. dm(x, y) ≤ dm(x, z) + dm(z, y).

If dm is a metric on X, then the pair (X, dm) is called a metric space.
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Modifying the inequality in Definition 2.1, we obtain the following concept introduced
by Stefan Czerwik [19] in 1993.

Definition 2.2. [19]. Let X be a nonempty set. A function d : X ×X → R+, is called a
b-metric on X, if there exists a real number s ≥ 1 such that for all x, y, z ∈ X, d satisfies
the following:

b1. d(x, y) = 0 if and only if x = y;
b2. d(x, y) = d(y, x);
b3. d(x, y) ≤ s[d(x, z) + d(z, y)].

If d is a b-metric on X, then the pair (X, d) is called a b-metric space.

Note that, every metric space is a b-metric space when s = 1. However, in general the
converse is not true.

Here, we give an example of b-metric space that is not a metric space.

Example 2.3. Let X = [0, 2] and d be defined on X by d(x, y) = (x − y)2, for every
x, y ∈ X. Then (X, d) is a b-metric space with coefficient s > 1. However, (X, d) is not a
metric space, because the condition m3. fails. For instance, we have

4 = d(0, 2) ̸≤ d(0, 1) + d(1, 2) = 2.

Definition 2.4. [19] Let (X, d) be a b-metric space with coefficient s ≥ 1. Let {xn} be
a sequence in (X, d) and x ∈ X. Then,

i. A sequence {xn} b-converges to x if and only if there exist x such that

lim
n→∞

d(xn, x) = 0;

ii. A sequence {xn} is called b-Cauchy if and only if

lim
n,m→∞

d(xn, xm) = 0;

iii. A b-metric space (X, d) is called b-complete b-metric space if every b-Cauchy
sequence in (X, d) b-converges in (X, d).

Theorem 2.5. [19] Let (X, d) be a b-metric space with coefficient s ≥ 1. Then the
following holds:

i. Any b-convergent sequence has a unique limit;
ii. Every b-convergent sequence is b-Cauchy;
iii. In general, a b-metric is not continuous.

Definition 2.6. Let (X, d) be a b-complete b-metric space with coefficient s ≥ 1 and
T : X → X. Then, a point x ∈ X is called a fixed point of T if x = Tx.

3. Fixed Point Theorems

Now, we present a new variant of F -contraction of Banach-type in the setting of b-
metric spaces:

Theorem 3.1. Let (X, d) be a b-complete b-metric space with coefficient s ≥ 1 and
T : X → X be a map. Suppose there exists τ > 0 such that for all x, y ∈ X,

d(Tx, Ty) > 0 =⇒ τ + F (d(Tx, Ty)) ≤ F (αd(x, y)), (3.1)
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where F : (0,+∞) → R is an increasing mapping, 0 ≤ α ∈ R such that αs2 < 1. Then T
has a unique fixed point x∗ ∈ X and for each x ∈ X, the sequence {Tn} converges to the
fixed point.

Proof. (Existence:) Let x ∈ X be arbitrary fixed. Define the sequence {xn} by xn+1 =
Txn for all n ∈ N. If there exists someN0 ∈ N such that xN0

= xN0+1, then xN0
= T (xN0

),
implying that xN0

is a fixed point of T.
So, we suppose that xn ̸= xn+1 for all n ≥ 0. By (3.1), we have

τ + F (d(Txn−1, Txn)) ≤ F (αd(xn, xn+1)).

This implies that

F (d(Txn−1, Txn)) ≤ F (αd(xn, xn+1)− τ

< F (αd(xn, xn+1)),
(3.2)

which further implies that

d(xn, xn+1) < αd(xn, xn+1),

and

(1− α) d(xn, xn+1) < 0.

This suggests that

lim
n→∞

d(xn, xn+1) = 0. (3.3)

Now, we assume that the sequence {xn} is not b-Cauchy, then there exists ϵ > 0 and
integers ni,mi ∈ N such that mi > ni ≥ i and

d(xni , xmi) ≥ ϵ, for i ∈ N.

By choosing mi as small as possible, we may assume that

d(xni
, xmi−1

) < ϵ.

Therefore, for each i ∈ N , we have

ϵ ≤ d(xni
, xmi

) ≤ s
(
d(xni

, xmi−1
) + d(xmi−1

, xmi
)
)

= s d(xni , xmi−1) + s d(xmi−1 , xmi)

< ϵ+ s d(xmi−1 , xmi).

Now, from (3.3) and the above inequality, we have

lim
i→∞

d(xni
, xmi

) = ϵ.

By the triangle inequality, we have

d(xni−1, xmi−1) ≤ s
(
d(xni−1, xni) + d(xni , xmi−1)

)
≤ s

(
d(xni−1, xni) + s

[
d(xni , xmi) + d(xmi , xmi−1)

])
≤ s2

(
d(xni−1, xni) + d(xni , xmi) + d(xmi , xmi−1)

)
.
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Thus by (3.1), we obtain

τ + F (d(xni , xmi)) = τ + F (d(Txni−1, Txmi−1))

≤ F (αd(xni−1, xmi−1))

≤ F
(
αs2

[
d(xni−1, xni

) + d(xni
, xmi

) + d(xmi
, xmi−1)

])
= F

(
αs2 d(xni

, xmi
) + αs2 d(xni−1, xni

) + αs2 d(xmi−1, xmi
)
)
.

Letting n → ∞ in the above inequality and taking the limit, we have

τ + F (ϵ+ 0) ≤ F (ϵ+ 0) < F (ϵ+ 0),

a contradiction. Hence, the sequence {xn} is b-Cauchy and since X is b-complete, we
conclude that the sequence {xn} b-converges to a point say x∗ ∈ X as n → ∞.

Now, it is left to show that x∗ = Tx∗. If there exists a sequence {ni}i∈N of natural
numbers such that xni+1 = Txni

= Tx∗, then limi→∞ xni+1 = x∗, hence Tx∗ = x∗.
Otherwise, there exists N ∈ N such that xn+1 = Txn ̸= Tx∗, for all n ≥ N. Now, suppose
that Tx∗ ̸= x∗. Then, we have

τ + F (d(Txn, Tx
∗)) ≤ F (αd(xn, x

∗)).

Since F is increasing and by taking the limit as n → ∞, we have

d(Txn, Tx
∗) < αd(xn, x

∗),

and

d(Tx∗, Tx∗) < αd(x∗, x∗),

a contradiction. Hence x∗ = Tx∗.

(Uniqueness:) Let x′ be a fixed of T different from x∗. BIt follows from (3.1) that

τ + F (d(x∗, x′)) = τ + F (d(Tx∗, Tx′)) ≤ F (αd(x∗, x′)) < F (d(x∗, x′)),

which is a contradiction. Hence the fixed point x∗ is unique.
For each x ∈ X, the convergence of Tnx to x∗ follows immediately.

Corollary 3.2. [1, 5] Let (X, d) be a complete metric space and T : X → X be a map.
Suppose there exists τ > 0 such that for all x, y ∈ X,

d(Tx, Ty) > 0 =⇒ τ + F (d(Tx, Ty)) ≤ F (αd(x, y)), (3.4)

where F : (0,+∞) → R is an increasing mapping, 0 < α < 1. Then T has a unique fixed
point x∗ ∈ X and for each x ∈ X, the sequence {Tn} converges to the fixed point.

Now, we present a more generalized result in the form of a new variant results of F -
contraction of Hardy-Rogers type in the setting of b-metric spaces. This generalizes some
results in [6] and [10]:

Theorem 3.3. Let (X, d) be a b-complete b-metric space with coefficient s ≥ 1 and
T : X → X be a map. Suppose there exists τ > 0 such that for all x, y ∈ X,

d(Tx,Ty) > 0 =⇒ τ + F (d(Tx, Ty))

≤ F
(
α1d(x, y) + α2d(x, Tx) + α3d(y, Ty) + α4d(x, Ty) + α5d(y, Tx)

)
,

(3.5)
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where F : (0,+∞) → R is an increasing mapping, α1, α2, α3, α4, α5 are non-negative
real numbers such that α3 + α4 < 1, α1 + α2 + α4s < 1, α1 + α2 + α3 + 2α4s = 1 and
α1s

2 + α4s+ α5s ≤ 1. Then T has a unique fixed point x∗ ∈ X and for each x ∈ X, the
sequence {Tn} converges to the fixed point.

Proof. (Existence:) Let x ∈ X be arbitrary fixed. Define the sequence {xn} by xn+1 =
Txn for all n ∈ N. If there exists someN0 ∈ N such that xN0

= xN0+1, then xN0
= T (xN0

),
implying that xN0

is a fixed point of T.
So, we suppose that xn ̸= xn+1 for all n ≥ 0. By (3.5), we have

τ+F (d(Txn−1, Txn))

≤ F
(
α1d(xn, xn+1) + α2d(xn, Txn) + α3d(xn+1, Txn+1)

+ α4d(xn, Txn+1) + α5d(xn+1, Txn)
)

= F
(
α1d(xn, xn+1) + α2d(xn, xn+1) + α3d(xn+1, xn+2)

+ α4d(xn, xn+2) + α5d(xn+1, xn+1)
)

= F
(
(α1 + α2) d(xn, xn+1) + α3d(xn+1, xn+2) + α4d(xn, xn+2)

)
≤ F

(
(α1 + α2 + α4 s) d(xn, xn+1) + (α3 + α4 s) d(xn+1, xn+2)

)
.

This implies

F (d(Txn−1, Txn))

≤ F
(
(α1 + α2 + α4 s) d(xn, xn+1) + (α3 + α4 s) d(xn+1, xn+2)

)
− τ

< F
(
(α1 + α2 + α4 s) d(xn, xn+1) + (α3 + α4 s) d(xn+1, xn+2)

)
,

(3.6)

which further implies that

d(xn, xn+1) < (α1 + α2 + α4 s) d(xn, xn+1) + (α3 + α4 s) d(xn+1, xn+2),

and

d(xn, xn+1) <
(α3 + α4 s)

1− (α1 + α2 + α4 s)
d(xn+1, xn+2)

< d(xn+1, xn+2).

This suggests that there exists p = limn→∞ d(xn, xn+1). So, suppose that p > 0. Then
there exists limx→p+ F (x) = F (p + 0) as F is increasing. Now, letting n → ∞ in (3.6),
we have

F (p+ 0) ≤ F (p+ 0)− τ < F (p+ 0),

a contradiction. Therefore,

lim
n→∞

d(xn, xn+1) = 0. (3.7)

Now, we assume that the sequence {xn} is not b-Cauchy, then there exists ϵ > 0 and
integers ni,mi ∈ N such that mi > ni ≥ i and

d(xni
, xmi

) ≥ ϵ, for i ∈ N.
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By choosing mi as small as possible, we may assume that

d(xni , xmi−1) < ϵ.

Therefore, for each i ∈ N , we have

ϵ ≤ d(xni
, xmi

) ≤ s
(
d(xni

, xmi−1
) + d(xmi−1

, xmi
)
)

= s d(xni , xmi−1) + s d(xmi−1 , xmi)

< ϵ+ s d(xmi−1 , xmi).

Now, from (3.7) and the above inequality, we have

lim
i→∞

d(xni
, xmi

) = ϵ.

By the triangle inequality, we have

d(xni−1, xmi−1) ≤ s
(
d(xni−1, xni) + d(xni , xmi−1)

)
≤ s

(
d(xni−1, xni) + s

[
d(xni , xmi) + d(xmi , xmi−1)

])
≤ s2

(
d(xni−1, xni) + d(xni , xmi) + d(xmi , xmi−1)

)
.

Thus by (3.5), we obtain

τ + F (d(xni
, xmi

)) = τ + F (d(Txni−1, Txmi−1))

≤ F
(
α1d(xni−1, xmi−1) + α2d(xni−1, Txni−1)

+ α3d(xmi−1, Txmi−1) + α4d(xni−1, Txmi−1)

+ α5d(xmi−1, Txni−1)
)

= F
(
α1d(xni−1, xmi−1) + α2d(xni−1, xni

)

+ α3d(xmi−1, xmi) + α4d(xni−1, xmi)

+ α5d(xmi−1, xni)
)

≤ F
(
α1s

2
[
d(xni−1, xni) + d(xni , xmi) + d(xmi , xmi−1)

]
+ α2d(xni−1, xni

) + α3d(xmi−1, xmi
)

+ α4s [d(xni−1, xni
) + d(xni

, xmi
)]

+ α5s [d(xmi−1, xmi
) + d(xmi

, xni
)]
)

= F
(
(α1s

2 + α4s+ α5s) d(xni
, xmi

)

+ (α1s
2 + α2 + α4s) d(xni−1, xni)

+ (α1s
2 + α3 + α5s) d(xmi−1, xmi)

)
.

Letting n → ∞ in the above inequality and taking the limit, we have

τ + F (ϵ+ 0) ≤ F (ϵ+ 0) < F (ϵ+ 0),

a contradiction. Hence, the sequence {xn} is b-Cauchy and since X is b-complete, we
conclude that the sequence {xn} b-converges to a point say x∗ ∈ X as n → ∞.
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Now, it is left to show that x∗ = Tx∗. If there exists a sequence {ni}i∈N of natural
numbers such that xni+1 = Txni = Tx∗, then limi→∞ xni+1 = x∗, hence Tx∗ = x∗.
Otherwise, there exists N ∈ N such that xn+1 = Txn ̸= Tx∗, for all n ≥ N. Now, suppose
that Tx∗ ̸= x∗. Then, we have

τ+F (d(Txn, Tx
∗))

≤ F
(
α1d(xn, x

∗) + α2d(xn, Txn) + α3d(x
∗, Tx∗)

+ α4d(xn, Tx
∗) + α5d(x

∗, Txn)
)

≤ F
(
α1d(xn, x

∗) + α2d(xn, xn+1) + α3d(x
∗, Tx∗)

+ α4d(xn, Tx
∗) + α5d(x

∗, xn+1)
)
.

Since F is increasing and by taking the limit as n → ∞, we have

d(Txn, Tx
∗) < α1d(xn, x

∗) + α2d(xn, xn+1) + α3d(x
∗, Tx∗)

+ α4d(xn, Tx
∗) + α5d(x

∗, xn+1),

and

d(x∗, Tx∗) < α1d(x
∗, x∗) + α2d(x

∗, x∗) + α3d(x
∗, Tx∗)

+ α4d(x
∗, Tx∗) + α5d(x

∗, x∗)

= (α3 + α4) d(x
∗, Tx∗)

< d(x∗, Tx∗),

a contradiction. Hence x∗ = Tx∗.

(Uniqueness:) Let x′ be a fixed of T different from x∗. It follows from (3.5) that

τ + F (d(x∗, x′)) = τ + F (d(Tx∗, Tx′))

≤ F
(
α1d(x

∗, x′) + α2d(x
∗, Tx∗) + α3d(x

′, Tx′)

+ α4d(x
∗, Tx′) + α5d(x

′, Tx∗)
)

= F
(
α1d(x

∗, x′) + α2d(x
∗, x∗) + α3d(x

′, x′) + α4d(x
∗, x′)

+ α5d(x
′, x∗)

)
= F ((α1 + α4 + α5) d(x

∗, x′))

= F (d(x∗, x′)),

which is a contradiction. Hence the fixed point x∗ is unique.
For each x ∈ X, the convergence of Tnx to x∗ follows immediately.

Corollary 3.4. [10] Let (X, d) be a complete metric space and T : X → X be a map.
Suppose there exists τ > 0 such that for all x, y ∈ X,

d(Tx,Ty) > 0 =⇒ τ + F (d(Tx, Ty))

≤ F
(
α1d(x, y) + α2d(x, Tx) + α3d(y, Ty) + α4d(x, Ty) + α5d(y, Tx)

)
,

(3.8)
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where F : (0,+∞) → R is an increasing mapping, α1, α2, α3, α4, α5 are non-negative
real numbers such that α3 + α4 < 1, α1 + α2 + α4 < 1, α1 + α2 + α3 + 2α4 = 1 and
α1 + α4 + α5 ≤ 1. Then T has a unique fixed point x∗ ∈ X and for each x ∈ X, the
sequence {Tn} converges to the fixed point.

Corollary 3.5. [2] Let (X, d) be a b-complete b-metric space with coefficient s ≥ 1 and
T : X → X be a map. Suppose there exists τ > 0 such that for all x, y ∈ X,

d(Tx, Ty) > 0 =⇒ τ + F (d(Tx, Ty)) ≤ F
(1
2
(d(x, Tx) + d(y, Ty))

)
, (3.9)

where F : (0,+∞) → R is an increasing mapping. Then T has a unique fixed point
x∗ ∈ X and for each x ∈ X, the sequence {Tn} converges to the fixed point.

Corollary 3.6. [3] Let (X, d) be a b-complete b-metric space with coefficient s ≥ 1 and
T : X → X be a map. Suppose there exists τ > 0 such that for all x, y ∈ X,

d(Tx, Ty) > 0 =⇒ τ + F (d(Tx, Ty)) ≤ F
(
λ (d(x, Ty) + d(y, Tx))

)
, (3.10)

where F : (0,+∞) → R is an increasing mapping, 0 ≤ λ ≤ 1
2s . Then T has a unique fixed

point x∗ ∈ X and for each x ∈ X, the sequence {Tn} converges to the fixed point.

Corollary 3.7. [20] Let (X, d) be a b-complete b-metric space with coefficient s ≥ 1 and
T : X → X be a map. Suppose there exists τ > 0 such that for all x, y ∈ X,

d(Tx, Ty) > 0 =⇒ τ + F (d(Tx, Ty)) ≤ F
(
λ d(x, y) + β d(x, Tx) + γ d(y, Ty)

)
, (3.11)

where F : (0,+∞) → R is an increasing mapping, λ, β, γ are non-negative real numbers
such that γ < 1, λ+ β < 1, λ+ β + γ = 1 and λs2 ≤ 1. Then T has a unique fixed point
x∗ ∈ X and for each x ∈ X, the sequence {Tn} converges to the fixed point.

Corollary 3.8. Let (X, d) be a b-complete b-metric space with coefficient s ≥ 1 and
T : X → X be a map. Suppose there exists τ > 0 such that for all x, y ∈ X,

d(Tx, Ty) > 0 =⇒ τ+F (d(Tx, Ty))

≤ F
(
λ d(x, y) + β d(x, Ty) + γ d(y, Tx)

)
,

(3.12)

where F : (0,+∞) → R is an increasing mapping, λ, β, γ are non-negative real numbers
such that β < 1, λ + βs < 1, λ + 2βs = 1 and λs2 + βs + γs ≤ 1. Then T has a unique
fixed point x∗ ∈ X and for each x ∈ X, the sequence {Tn} converges to the fixed point.

4. Conclusion

In this paper, we established some b-metric fixed point theorems for some generalized
F -contractive type mappings. Our results are proper generalization and improvement
of results due to [10]. We have presented some sufficient conditions on the contractive
constants for the existence and uniqueness of fixed point of some F -contractive type
mappings. Finally, we have furnished some examples to support our findings.
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