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Abstract This paper examines a general form of the split common fixed point problem in which a

finite family of bounded linear operators is involved. We propose viscosity approximation methods with

choosing two different types of stepsizes (one depends on operator norms and the other is selected in a self-

adaptive way) for classes of attracting quasi-nonexpansive mappings and demicontractive mappings, re-

spectively. Using the Landweber technique and some properties of the attracting quasi-nonexpansiveness,

strong convergence results of the proposed methods are established in Hilbert spaces. Our results pre-

sented in this paper generalize many existing results in the literature.
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1. Introduction

The first instance of the split inverse problems, which was introduced by Censor and
Elfving [1] in 1994, is the so-called split feasibility problem (SFP). The number of research
works on the SFP has been continuously increasing (see [2–8] and the references therein)
because its model can be applied in other mathematical problems and many real-world
problems, such as in constrained least-squares problems, in linear programming problems,
in intensity-modulated therapy, in signal/image restoration, in pattern recognition, in
data prediction, etc., see [1, 4, 9–12] for instance. The SFP is a problem of finding a point
of a closed convex subset of one space, whose image under a bounded linear transformation
belongs to a closed convex subset of the image space.

Specifically, we suppose that X and Y are two real Hilbert spaces and hence the SFP
is formulated as finding a point

x ∈ C such that Ax ∈ Q, (1.1)
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where C ⊆ X and Q ⊆ Y are nonempty closed convex subsets and and A : X → Y is
bounded linear operator. Byrne [2] employed a projected Landweber method [13] called
the CQ-algorithm for solving the SFP (1.1) as follows: Choosing x1 ∈ X ,

xk+1 = PC

(
xk + γA∗ (PQ − I)Axk

)
, k ∈ N, (1.2)

where γ ∈
(
0, 2

∥A∥2

)
, PC and PQ are metric projections onto C and Q, respectively, I

denotes the identity mapping and A∗ stands for the adjoint operator of A. In the case
that ∥A∥ in the SFP (1.1) is difficult to calculate, López et al. [4] presented an alternative
way to select the stepsize

γk := λk ∥ (PQ − I)Axk∥2

∥A∗ (PQ − I)Axk∥2
, (1.3)

where λk ∈ (0, 2), for replacing the parameter γ in (1.2). One can see that the stepsize
γk (1.3) does not depend on ∥A∥ (indeed, it depends on xk). The CQ-algorithm (1.2)
with the stepsizes selected as (1.3) is called a self-adaptive CQ-algorithm.

A natural generalization of the SFP is to extand from one closed convex subset to a
finite family of such subsets or/and from one bounded linear operator to a finite family
of such linear tranformations. Another generalization is to extand from closed convex
subsets (emphasized only metric projections) to fixed point sets of any mappings. In
this paper, we pay attention to a general form of the above mentions, called the general
split common fixed point problem (GSCFPP), which was introduced by Gibali [14]. The
GSCFPP is formulated as finding a point

x ∈
m⋂
i=1

Fix (Si) such that Ajx ∈ Fix (Tj) , ∀j ∈ {1, 2, . . . , n}, (1.4)

where Si : X → X (i = 1, 2, . . . ,m) and Tj : Y → Y (j = 1, 2, . . . , n) are mappings
with nonempty fixed point sets Fix (Si) and Fix (Tj), respectively and Aj : X → Y
(j = 1, 2, . . . , n) are bounded linear operators. Note that if Aj = A for all j, then (1.4)
is called the well-known split common fixed point problem (SCFPP) [15]. Especially, if
Si := PCi and Tj := PQj , where Ci and Qj are closed convex subsets of X and Y,
respectively, then (1.4) is reduced to the constrained multiple-sets split feasibility problem
(CMSSCFP) [16] and if further Aj = A for all j, the problem becomes the multiple-sets
split feasibility problem (MSSFP) [10]. Recently, these problems have been widely studied
by many authors, see [6, 8, 17–27] for instance (also see [8] for application in compressed
sensing with using two different bounded linear operators). By making use of the product
space technique, Censor and Segal [15] presented a parallel algorithm for the SCFPP
for two finite families of directed mappings. Gibali [14] also used the same technique for
formulating a parallel algorithm for the GSCFPP for two finite families of demicontractive
mappings.

The aim of this paper is to formulate some algorithms for the GSCFPP for two finite
families of some nonlinear mappings and prove their strong convergence results in a sim-
ple way by using a technique different from that in [14] and [15]. In Section 3, we present
viscosity approximation methods in two cases of stepsize selection−one depends on oper-
ator norms ∥Aj∥ and the other is selected in the adaptive way similar to (1.3)−for solving
the GSCFPP (1.4) for classes of attracting quasi-nonexpansive mappings and demicon-
tractive mappings, respectively. We obtain strong convergence theorems of our proposed
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methods by using the Landweber technique and some properties of the attracting quasi-
nonexpansiveness, which are provided in Section 2. Finally, in Section 4, we give some
consequences of the main results for the constrained multiple-sets split feasibility problem
and the split common null point problem.

2. Attracting Quasi-Nonexpansiveness and Landweber-Type
Operators

This section reviews and collects the concepts and some properties of attracting quasi-
nonexpansive mappings and Landweber-type operators that will be useful tools for de-
signing our iterative methods and proving their convergence results for the GSCFPP in
Section 3.

Throughout the section, we assume that X and Y are real Hilbert spaces equipped
with their inner products ⟨·, ·⟩ and the induced norms ∥ ·∥. Let S : X → X be a mapping.
An element z ∈ X is called a fixed point of S if z = Sz. Denote by Fix(S) the set of all
fixed points of S. The mapping

Sβ := I + β(S − I),

where β ≥ 0, is called a β-relaxation of S. Note that Fix (Sβ) = Fix(S) for β ̸= 0. We say
that S satisfies the demi-closedness (DC) principle if for any sequence {xk} ⊂ X , there
holds the following implication:

xk ⇀ z and (S − I)xk → 0 =⇒ z ∈ Fix(S),

where the notations ⇀ and → stand for weak and strong convergence, respectively. A
mapping S with the nonexpansiveness always satisfies the DC principle (see [28, Lemma
2]). Obviously, if S satisfies the DC principle, then Sβ also satisfies the DC principle for
β ̸= 0.

Definition 2.1. A mapping S : X → X having a fixed point is said to be attracting
quasi-nonexpansive (AQNE) if there exists ρ > 0 such that

∥Sx− z∥2 ≤ ∥x− z∥2 − ρ∥Sx− x∥2, ∀x ∈ X ,∀z ∈ Fix(S). (2.1)

S satisfying (2.1) is also said to be ρ-attracting quasi-nonexpansive (ρ-AQNE) (see [29]).
If ρ = 1, then we call S a directed mapping.

The notion of mappings satisfying (2.1) was first introduced by Bruck [30] in metric
spaces and it is referred to [31–33] for the other names (also see [15, 34, 35] in the case
that ρ = 1). Note that the class of AQNE mappings generalizes the so-called classes of
firmly nonexpansive mappings and metric projections. There is an AQNE mapping which
is not firmly nonexpansive, see Example 2.2.8 in [32]. The following is a characterization
of AQNE mappings as follows.

Proposition 2.2. A mapping S : X → X is ρ-AQNE, where ρ > 0 if and only if

∥Sx− x∥2 ≤ 2

1 + ρ
⟨Sx− x, z − x⟩, ∀x ∈ X ,∀z ∈ Fix(S).

We give a relationship between an AQNE mapping and its relaxation that is a slight
generalization of Theorem 2.1.39 in [32] for the directed mapping case.

Proposition 2.3. Let S : X → X be a mapping having a fixed point and let ρ > 0,

β ∈ (0, 1 + ρ). Then, S is ρ-AQNE if and only if Sβ is
(
1+ρ−β

β

)
-AQNE.
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Proof. Let x ∈ X and z ∈ Fix(S) = Fix (Sβ). Consider the following expressions:

∥Sβx− z∥2 − ∥x− z∥2 +
(
1 + ρ− β

β

)
∥Sβx− x∥2

= ∥x+ β(Sx− x)− z∥2 − ∥x− z∥2 + β(1 + ρ− β)∥Sx− x∥2

= ∥(x− z) + β(Sx− x)∥2 − ∥x− z∥2 − β2∥Sx− x∥2 + β(1 + ρ)∥Sx− x∥2

= 2 ⟨x− z, β(Sx− x)⟩+ β(1 + ρ)∥Sx− x∥2

= β(1 + ρ)

(
∥Sx− x∥2 − 2

1 + ρ
⟨Sx− x, z − x⟩

)
.

Since β(1+ρ) > 0, the assertion follows readily from the above expressions together with
Proposition 2.2 and Definition 2.1.

The next proposition shows that the class of AQNE mappings respects the covex
combination and the composition.

Proposition 2.4 ([22, 32]). Let {Si : X → X}mi=1 be a finite family of ρi-AQNE map-

pings, where ρi > 0 such that
⋂m

i=1 Fix (Si) ̸= ∅. Suppose that S :=
∑m

i=1 ωiSi, where

ωi > 0 and
∑m

i=1 ωi = 1 and S′ := SmSm−1 . . . S1. Then:

(i) ([34]) Fix(S) = Fix (S′) =
⋂m

i=1 Fix (Si).

(ii) The mapping S is ρ-AQNE, where ρ =
(∑m

i=1
ωi

1+ρi

)−1− 1.

(iii) The mapping S′ is ρ′-AQNE, where ρ′ =
(∑m

i=1
1
ρi

)−1
.

(iv) If every Si satisfies the DC principle, then both S and S′ also satisfy the DC
principle.

Now let us focus on the notion of a Landweber-type operator [23] which is more general
than the classical Landweber operator [2, 13] for solving the linear equations and the split
feasibility problem.

Definition 2.5 ([23]). Let A : X → Y be a bounded linear operator with ∥A∥ > 0 and
T : Y → Y an AQNE mapping. An operator V : X → X defined by

V := I +
1

∥A∥2
A∗(T − I)A (2.2)

is called a Landweber-type operator related to T .

Define W : X → X by

Wx =

{
x+ ∥(T−I)Ax∥2

∥A∗(T−I)Ax∥2A∗(T − I)Ax, if Ax /∈ Fix(T ),

x, otherwise.
(2.3)

Note that W is an extrapolation of the Landweber-type operator V defined by (2.2), see
[23] for more details. Some important properties of a Landweber-type operator and its
extrapolation are shown below.

Proposition 2.6 ([22, 23]). Let A : X → Y be a bounded linear operator with ∥A∥ > 0
and T : Y → Y a ρ-AQNE mapping, where ρ > 0 such that im(A)∩Fix(T ) ̸= ∅. Further,
let V be a Landweber-type operator defined by (2.2) and W an extrapolation of V defined
by (2.3). Then:
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(i) Fix(V ) = Fix(W ) = A−1(Fix(T )).

(ii) The operators V and W are ρ-AQNE.

(iii) If T satisfies the DC principle, then both V and W also satisfy the DC principle.

We end this section with a strong convergence result for finding a fixed point of an
AQNE mapping under the viscosity approximation scheme [36]. Recall that a mapping
F : X → X is called a contraction with respect to C ⊆ X if there exists σ ∈ [0, 1) such
that ∥Fx− Fy∥ ≤ σ∥x− y∥ for all x ∈ X and for all y ∈ C.

Theorem 2.7 ([24, 37]). Let S : X → X be an AQNE mapping satisfying the DC
principle. Let F : X → X be a contraction with respect to Fix(S). Suppose that {xk}∞k=1

is a sequence in X generated iteratively by x1 ∈ X and

xk+1 = αkFxk + (1− αk)Sxk, k ∈ N,

where {αk}∞k=1 is a real sequence in (0, 1) such that αk → 0 and
∑∞

k=1 α
k = ∞. Then,

{xk}∞k=1 converges strongly to a point z ∈ Fix(S), where z is the unique fixed point of a
contraction PFix(S)F .

In fact, Theorem 2.7 holds for a strongly quasi-nonexpansive mapping S (see [37, Corollary
3.5]); however, it was proved that every AQNE mapping is strongly quasi-nonexpansive
(see [25, Proposition 2.6]).

3. Strong Convergence Results for the GSCFPP

To solve the GSCFPP, we first introduce an iteration formula based on the viscosity
approximation and prove two strong convergence theorems of the proposed formula with
choosing two different types of stepsizes which depend (or not) on operator norms for
two finite families of AQNE mappings. Subsequently, we modify our proposed formula to
extend the results to the larger class of demiconteactive mappings.

In the sequel, we suppose that

• X and Y are two real Hilbert spaces,

• {Si : X → X}mi=1 and {Tj : Y → Y}nj=1 are two families of nonlinear mappings,

• {Aj : X → Y}nj=1 is a family of bounded linear operators with ∥Aj∥ > 0 and

accompanying their adjoint operators A∗
j ,

• the solution set of the GSCFPP (1.4), denoted by Γ, is nonempty.

3.1. Attracting Quasi-Nonexpansive Mappings

Let us take a look at the following viscosity iteration formula: Let F : X → X be a
contraction with respect to Γ. Pick a starting point x1 ∈ X arbitrarily. For k ∈ N, let

xk+1 = αkFxk +
(
1− αk

) 1

m

m∑
i=1

Si

xk +
1

n

n∑
j=1

γk
j A

∗
j (Tj − I)Ajx

k

, (3.1)

where {γk
j }∞k=1 (j = 1, 2, . . . , n) are sequences of positive real numbers and {αk}∞k=1 is a

sequence of real numbers in (0, 1).
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Theorem 3.1. If Si (i = 1, 2, . . . ,m) are ρi-AQNE mappings, where ρi > 0 and Tj

(j = 1, 2, . . . , n) are ρ̃j-AQNE mappings, where ρ̃j > 0 such that both satisfy the DC
principle, then any sequence {xk}∞k=1 generated by (3.1), where the parameter sequences
{γk

j }∞k=1 (j = 1, 2, . . . , n) are chosen as:

γk
j := γj ∈

(
0,

1 + ρ̃j
∥Aj∥2

)
, (3.2)

converges strongly to a point x∗ ∈ Γ, provided that αk → 0 and
∑∞

k=1 α
k = ∞.

Proof. Let Vj be a Landweber-type operator related to Tj , that is,

Vj = I +
1

∥Aj∥2
A∗

j (Tj − I)Aj .

By Proposition 2.6(ii)&(iii), we obtain that Vj is ρ̃j-AQNE and satisfies the DC principle.

Let λj = γj∥Aj∥2 ∈ (0, 1 + ρ̃j). By Proposition 2.3, the λj-relaxation of Vj ,

(Vj)λj = I +
λj

∥Aj∥2
A∗

j (Tj − I)Aj = I + γjA
∗
j (Tj − I)Aj ,

is τj-AQNE, where τj =
1+ρ̃j−λj

λj
and also satisfies the DC principle. Set

S :=
1

m

m∑
i=1

Si and V :=
1

n

n∑
j=1

(Vj)λj
.

By Proposition 2.4(ii)&(iv), S and V are AQNE with coefficients ρ = m
(∑m

i=1
1

1+ρi

)−1−1

and ρ̃ = n
(∑n

j=1
1

1+τi

)−1−1, respectively and both satisfy the DC principle. By Proposi-

tion 2.4(iii)&(iv), we have SV is
(

ρρ̃
ρ+ρ̃

)
-AQNE and satisfies the DC principle. Using Pro-

position 2.4(i) and Proposition 2.6(i) yields

∅ ≠ Γ =

m⋂
i=1

Fix (Si) ∩
n⋂

j=1

A−1
j (Fix (Tj))

=

m⋂
i=1

Fix (Si) ∩
n⋂

j=1

Fix (Vj)

=

m⋂
i=1

Fix (Si) ∩
n⋂

j=1

Fix
(
(Vj)λj

)
= Fix(S) ∩ Fix(V )

= Fix(SV ).

Let {xk}∞k=1 be a sequence in X defined by (3.1). Now its iteration formula becomes

xk+1 = αkFxk +
(
1− αk

)
SV xk, k ∈ N.

As k → ∞, we conclude from Theorem 2.7 that xk → x∗ ∈ Γ, where x∗ is the unique
fixed point of PΓF .
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Theorem 3.2. If Si (i = 1, 2, . . . ,m) are ρi-AQNE mappings, where ρi > 0 and Tj

(j = 1, 2, . . . , n) are ρ̃j-AQNE mappings, where ρ̃j > 0 such that both satisfy the DC
principle, then any sequence {xk}∞k=1 generated by (3.1), where the stepsize sequences
{γk

j }∞k=1 (j = 1, 2, . . . , n) are selected as:

γk
j :=

λj
∥(Tj−I)Ajx

k∥2

∥A∗
j (Tj−I)Ajxk∥2 , if Ajx

k /∈ Fix (Tj) ,

1, otherwise,
and λj ∈ (0, 1 + ρ̃j) , (3.3)

converges strongly to a point x∗ ∈ Γ, provided that αk → 0 and
∑∞

k=1 α
k = ∞.

Proof. Let Wj : X → X be an extrapolation of the Landweber-type operator defined by

Wjx =

x+
∥(Tj−I)Ajx∥2

∥A∗
j (Tj−I)Ajx∥2A∗

j (Tj − I)Ajx, if Ajx /∈ Fix (Tj) ,

x, otherwise.

By Proposition 2.6(ii)&(iii), we obtain thatWj is ρ̃j-AQNE and satisfies the DC principle.

Using Proposition 2.3, the relaxation (Wj)λj defined by

(Wj)λj
x =

x+ λj
∥(Tj−I)Ajx∥2

∥A∗
j (Tj−I)Ajx∥2A∗

j (Tj − I)Ajx, if Ajx /∈ Fix (Tj) ,

x, otherwise,

is τj-AQNE, where τj =
1+ρ̃j−λj

λj
and also satisfies the DC principle. Set

S :=
1

m

m∑
i=1

Si and W :=
1

n

n∑
j=1

(Wj)λj .

By Proposition 2.4(ii)&(iv), S andW are AQNE with coefficients ρ = m
(∑m

i=1
1

1+ρi

)−1−1

and ρ̃ = n
(∑n

j=1
1

1+τi

)−1− 1, respectively and both satisfy the DC principle. By Propo-

sition 2.4(iii)&(iv), we have SW is
(

ρρ̃
ρ+ρ̃

)
-AQNE and satisfies the DC principle. By using

Proposition 2.4(i) and Proposition 2.6(i), one can show that Fix(SW ) = Γ. Now the
iteration formula (3.1) can be in the form:

xk+1 = αkFxk +
(
1− αk

)
SWxk, k ∈ N.

These together with employing Theorem 2.7 yield xk → x∗ ∈ Γ.

Remark 3.3. It is worth noting on Theorems 3.1 and 3.2 that:

(i) The stepsize γk
j defined in (3.2) requires to compute the norm of Aj . Mean-

while, that defined in (3.3) does not depend on any operator norms. It seems
that the iteration (3.1) with the stepsizes (3.2) is simple and convenient for use
if we know ∥Aj∥ for all j; however, we should pay attention to the choice of the
stepsizes (3.3) in the case that ∥Aj∥ is difficult to estimate for some j.

(ii) If ρi = 1 = ρ̃j , then we obtain two strong convergence results for the GSCFPP
for the class of directed mappings.

(iii) The limit x∗ of {xk} has the form as: x∗ = PΓFx∗. In particular, if F ≡ 0 is
constant, then x∗ is the minimum norm solution of (1.4).
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3.2. Demicontractive Mappings

Recall that a mapping S : X → X having a fixed point is said to be demicontractive
([38, 39]) if there exists µ ∈ [0, 1) such that

∥Sx− z∥2 ≤ ∥x− z∥2 + µ∥Sx− x∥2, ∀x ∈ X ,∀z ∈ Fix(S). (3.4)

A mapping S satisfying (3.4) with µ = 0 is said to be quasi-nonexpansive.
The following is a relationship between a demicontractive mapping and its relaxation.

Proposition 3.4 ([25]). Let S : X → X be a mapping having a fixed point and µ ∈ [0, 1),

β ∈ (0, 1− µ). Then, S is µ-demicontractive if and only if Sβ is
(
1−µ−β

β

)
-AQNE.

Using the above useful property, we slightly modify the iteration (3.1) and obtain con-
vergence results for the GSCFPP for the class of demicontractive mappings by Theorems
3.1 and 3.2.

Let F : X → X be a contraction with respect to Γ. Pick a starting point x1 ∈ X
arbitrarily. For k ∈ N, let

xk+1 = αkFxk +
(
1− αk

) 1

m

m∑
i=1

(Si)βi

xk +
1

n

n∑
j=1

γk
j A

∗
j (Tj − I)Ajx

k

, (3.5)

where {γk
j }∞k=1 (j = 1, 2, . . . , n) are sequences of positive real numbers, βi (i = 1, 2, ...,m)

are positive real numbers and {αk}∞k=1 is a sequence of real numbers in (0, 1).

Corollary 3.5. If Si (i = 1, 2, . . . ,m) are µi-demicontractive mappings, where 0 ≤ µi < 1
and Tj (j = 1, 2, . . . , n) are µ̃j-demicontractive mappings, where 0 ≤ µ̃j < 1 such that
both satisfy the DC principle, then any sequence {xk}∞k=1 generated by (3.5), where the
parameter sequences {γk

j }∞k=1 (j = 1, 2, . . . , n) are chosen as:

γk
j := γj ∈

(
0,

1− µ̃j

∥Aj∥2

)
, (3.6)

converges strongly to a point x∗ ∈ Γ (i.e., x∗ = PΓFx∗), provided that βi ∈ (0, 1− µi);

αk → 0 and
∑∞

k=1 α
k = ∞.

Proof. Let λj = γj∥Aj∥2 ∈ (0, 1 − µ̃j). By Proposition 3.4, both (Si)βi
and (Tj)λj

are

AQNE with coefficients ρi =
1−µi−βi

βi
and ρ̃j =

1−µ̃j−λj

λj
, respectively. Also, they satisfy

the DC principle with Fix ((Si)βi
) = Fix (Si) and Fix

(
(Tj)λj

)
= Fix (Tj). Since

(Tj)λj
− I = λj(Tj − I) = γj∥Aj∥2 (Tj − I) ,

the iteration (3.5) with choosing the stepsizes (3.6) can be rewritten in the form:

xk+1 = αkFxk+
(
1− αk

) 1

m

m∑
i=1

(Si)βi

xk +
1

n

n∑
j=1

1

∥Aj∥2
A∗

j

(
(Tj)λj

− I
)
Ajx

k

.
Since 0 < 1

∥Aj∥2 <
1+ρ̃j

∥Aj∥2 , the result is obtained directly by Theorem 3.1.
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Corollary 3.6. If Si (i = 1, 2, . . . ,m) are µi-demicontractive mappings, where 0 ≤ µi < 1
and Tj (j = 1, 2, . . . , n) are µ̃j-demicontractive mappings, where 0 ≤ µ̃j < 1 such that
both satisfy the DC principle, then any sequence {xk}∞k=1 generated by (3.5), where the
stepsize sequences {γk

j }∞k=1 (j = 1, 2, . . . , n) are selected as:

γk
j :=

λj
∥(Tj−I)Ajx

k∥2

∥A∗
j (Tj−I)Ajxk∥2 , if Ajx

k /∈ Fix(Tj),

1, otherwise,
and λj ∈ (0, 1− µ̃j) , (3.7)

converges strongly to a point x∗ ∈ Γ (i.e., x∗ = PΓFx∗), provided that βi ∈ (0, 1− µi);

αk → 0 and
∑∞

k=1 α
k = ∞.

Proof. Using Proposition 3.4, we obtain that (Si)βi and (Tj)λj are AQNE with coefficients

ρi =
1−µi−βi

βi
and ρ̃j =

1−µ̃j−λj

λj
, respectively such that both satisfy the DC principle with

Fix ((Si)βi) = Fix (Si) and Fix
(
(Tj)λj

)
= Fix (Tj). Since

(Tj)λj − I = λj(Tj − I),

the iteration (3.5) with selecting the stepsizes (3.7) can be rewritten in the form:

xk+1 = αkFxk +
(
1− αk

) 1

m

m∑
i=1

(Si)βi

xk +
1

n

n∑
j=1

δkjA
∗
j

(
(Tj)λj

− I
)
Ajx

k

,

where

δkj :=


∥((Tj)λj

−I)Ajx
k∥2

∥A∗
j ((Tj)λj

−I)Ajxk∥2 , if Ajx
k /∈ Fix

(
(Tj)λj

)
,

1, otherwise.

The result is obtained immediately by Theorem 3.2.

Remark 3.7. It is worth mentioning that:

(i) Applying Theorems 3.1 and 3.2, one can get iterative methods and their strong
convergence reults in the case that either {Si} or {Tj} is a finite family of demi-
contractive mappings by means of relaxing the class of demicontractive mappings.

(ii) If µi = 0 = µ̃j in Corollaries 3.5 and 3.6, then we get two strong convergence
results for the GSCFPP for the class of quasi-nonexpansive mappings.

4. Other Split Inverse Problems

This section devotes to some consequences of Theorems 3.1 and 3.2 for the constrained
multiple-sets split feasibility problem and the split common null point problem, respec-
tively.

4.1. Constrained Multiple-Sets Split Feasibility Problem

Let X and Y be real Hilbert spaces. The constrained multiple-sets split feasibility
problem (CMSSFP) [16] is formulated as finding a point

x ∈
m⋂
i=1

Ci such that Ajx ∈ Qj , ∀j ∈ {1, 2, . . . , n}, (4.1)
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where Ci ⊆ X (i = 1, 2, . . . ,m) and Qj ⊆ Y (j = 1, 2, . . . , n) are nonempty closed convex
subsets and Aj : X → Y (j = 1, 2, . . . , n) are bounded linear operators.

The CMSSFP (4.1) is a special case of the GSCFPP (1.4); namely that if we take
Si := PCi

and Tj := PQj
are metric projections, then Fix (Si) = Ci and Fix (Tj) = Qj .

Since every metric projection is firmly nonexpansive (i.e., 1-AQNE) and always satisfies
the DC principle, then the following convergence result for the CMSSFP (4.1) follows
from Theorems 3.1 and 3.2.

Corollary 4.1. Let Ci ⊆ X (i = 1, 2, . . . ,m) and Qj ⊆ Y (j = 1, 2, . . . , n) be nonempty
closed convex subsets and let Aj : X → Y (j = 1, 2, . . . , n) be bounded linear operators.
Assume that the solution set of (4.1), denoted by Ω, is nonempty and let F : X → X be a

contraction with respect to Ω. Let {xk}∞k=1 be a sequence in X defined by x1 ∈ X and

xk+1 = αkFxk +
(
1− αk

) 1

m

m∑
i=1

PCi

xk +
1

n

n∑
j=1

γk
j A

∗
j

(
PQj− I

)
Ajx

k

, k ∈ N, (4.2)

where {γk
j }∞k=1 ⊂ (0,∞) (j = 1, 2, . . . , n) and {αk}∞k=1 ⊂ (0, 1) satisfying that αk → 0

and
∑∞

k=1 α
k = ∞. If either γk

j := γj ∈
(
0, 2

∥Aj∥2

)
or

γk
j :=

λj
∥(PQj

−I)Ajx
k∥2

∥A∗
j (PQj

−I)Ajxk∥2 , if Ajx
k /∈ Qj ,

1, otherwise,
and λj ∈ (0, 2), (4.3)

then {xk}∞k=1 generated by (4.2) converges strongly to a point x∗ ∈ Ω, where x∗ = PΩFx∗.

4.2. Split Common Null Point Problem

Let X and Y be real Hilbert spaces. Given set-valued mappings Gi : X → 2X (i =
1, 2, . . . ,m) and Hj : Y → 2Y (j = 1, 2, . . . , n), and bounded linear operators Aj : X → Y
(j = 1, 2, . . . , n), the split common null point problem (SCNPP) [18] is to find a point

x ∈ X such that 0 ∈
m⋂
i=1

Gi(x) and 0 ∈
n⋂

j=1

Hj (Ajx) . (4.4)

The SCNPP (4.4) has often been discussed when Gi and Hj are maximal monotone.

Recall that a set-valued mapping G : X → 2X is called maximal monotone if G is
monotone, i.e.,

⟨x− y, v − w⟩ ≥ 0, ∀x, y ∈ dom(G),∀v ∈ Gx,w ∈ Gy,

where dom(G) = {x ∈ X : Gx ̸= ∅}, and the graph of G,

gph(G) := {(x, v) ∈ X × X : v ∈ Gx},
is not properly contained in the graph of any other monotone mapping.

A resolvent of G : X → 2X with ξ > 0 is defined by

JG
ξ := (I + ξG)

−1
.

It is well known ([18, 40]) that if G is maximal monotone, then JG
ξ : X → dom(G) is a

firmly nonexpansive single-valued mapping (i.e., 1-AQNE) and it also satisfies the DC

principle. Moreover, 0 ∈ Gx if and only if x ∈ Fix
(
JG
ξ

)
.
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Using the above properties, we obtain the following convergence result for the SCNPP
(4.4) from Theorems 3.1 and 3.2.

Corollary 4.2. Let Gi : X → 2X (i = 1, 2, . . . ,m) and Hj : Y → 2Y (j = 1, 2, . . . , n)

be maximal monotone mappings with their resolvents JGi

ξ and J
Hj

ξ , where ξ > 0. Let

Aj : X → Y (j = 1, 2, . . . , n) be bounded linear operators. Assume that the solution set of

(4.4), denoted by ∆, is nonempty and let F : X → X be a contraction with respect to ∆.

Let {xk}∞k=1 be a sequence in X defined by x1 ∈ X and

xk+1 = αkFxk +
(
1− αk

) 1

m

m∑
i=1

JGi

ξ

xk +
1

n

n∑
j=1

γk
j A

∗
j

(
J
Hj

ξ − I
)
Ajx

k

, k ∈ N, (4.5)

where {γk
j }∞k=1 ⊂ (0,∞) (j = 1, 2, . . . , n) and {αk}∞k=1 ⊂ (0, 1) satisfying that αk → 0

and
∑∞

k=1 α
k = ∞. If either γk

j := γj ∈
(
0, 2

∥Aj∥2

)
or

γk
j :=

λj

∥∥∥(JHj
ξ −I

)
Ajx

k
∥∥∥2∥∥∥A∗

j

(
J

Hj
ξ −I

)
Ajxk

∥∥∥2 , if 0 /∈ Hj

(
Ajx

k
)
,

1, otherwise,

and λj ∈ (0, 2), (4.6)

then {xk}∞k=1 generated by (4.5) converges strongly to a point x∗ ∈ ∆, where x∗ = P∆Fx∗.

5. Concluding Remarks

In this paper, we discuss the general split common fixed point problem (GSCFPP) in
Hilbert spaces, which was introduced in [14]. Strongly convergent algorithms for solving
the GSCFPP for the classes of attracting quasi-nonexpansive mappings and demicontrac-
tive mappings are presented in two cases of stepsize selection−one depends on the norms of
bounded linear operators and the other is independent of any operator norms. The proofs
of our main convergence results are concise and straightforward due to some useful prop-
erties of attracting quasi-nonexpansive mappings and Landweber-type operators (thanks
to [22–25, 29, 32, 33, 37]). Our Theorems 3.1 and 3.2 and Corollaries 3.5, 3.6, 4.1, and
4.2 extend some existing results in [4, 6, 18–21, 24–26] from one mapping/operator to the
finite family of such mappings/operators under the same/similar viscosity approximation
scheme.
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