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1 Introduction

The special algebraic properties of groups are that every group has identity ele-
ment, say e, and every element a has the unique inverse, say a−1 which aa−1 =
a−1a = e, therefore, aa−1a = a and a−1aa−1 = a−1.

For semigroups or monoids S, we may study a weaker algebraic property of
them, pseudo inverse. An x ∈ S is a pseudo inverse of a if axa = a. We say that
a ∈ S is regular if a has a pseudo inverse and the semigroup S is regular if every
element in S has pseudo inverse.

For a graph G, we say that G is endo-regular if the monoid End(G) of all
endomorphisms on G with the composition is regular.

E. Wilkeit [9], found out the characterization of endo-regular connected bi-
partite graphs, N. Pipattanajinda [8], characterized regular, completely regular of
path and of cycle endomorphisms.

There are some published papers to find the cardinality of the monoid of
endomorphisms on graphs, for instance [1], Sr. Arworn found the cardinality of
End(Pn), [7] N. Pipattanajinda found the cardinality of End(Cn). From [3] Sr.
Arworn and P. Wojtylak and [2], Sr. Arworn and Y. Kim, and [10] W. Wannasit,
they found three algorithms for the cardinality of Hom(Pn, Pm), the classes of all
homomorphisms from path Pn to path Pm.

For this paper, we considered cycle book graphs. We prove that every odd
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cycle book graphs are endo-regular and we find out the cardinality of their endo-
morphism monoids.

2 Definitions and Basic Knowledge

In this section we collect the information that will be needed for an understanding
of the other sections. Although, the details are included in some cases, many of
the fundamental principles of graph are merely stated without proof.

Definition 2.1. For any graph G, we denote V (G) and E(G) be the vertex set and
edge set of the graph G, respectively, where V (G) 6= ∅ and E(G) ⊆ {{x, y}| x 6=
y in V (G)}. A graph G1 is called a subgraph of a graph G2 if V (G1) ⊆ V (G2)
and E(G1) ⊆ E(G2).

Definition 2.2. The graph with vertex set {0, 1, ..., n − 1}, such that n ≥ 3 and
edge set {{i, i+1}|i = 0, 1, ..., n−1} (with addition modulo n)is called the cycle Cn.
Therefore, Cn has n vertices and n edges. We call Cn odd or even cycle if n is
odd or even, respectively.

Definition 2.3. A (graph) homomorphism of a graph G to a graph H is a
mapping f : V (G) → V (H) which preserves edges, i.e. {a, b} ∈ E(G) implies
{f(a), f(b)} ∈ E(H) for all a, b ∈ V (G), we may write f : G → H. If G = H, we
call f an endomorphism on G. If f : G → H is a bijective homomorphism and
f−1 : H → G is also a homomorphism, we call f an isomorphism, and say that
the graph G is isomorphic to the graph H.

Note that For any graph G, End(G) the class of all endomorphisms on the
graph G always forms a monoid with binary operation, composition.

Example 2.4. Examples of homomorphism and endomorphism.
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Let f =

(
1 2 3 4
1 2 3 3

)

. Then f is a homomorphism of the graph G1 to the

graph G2 but not a homomorphism of G2 to G1.

Let g =

(
1 2 3 4
1 2 1 2

)

. Then g ∈ End(G1) but g /∈ End(G2).
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Definition 2.5. An endomorphism, f ∈ End(G) is regular if there exists g ∈
End(G) such that fgf = f and we call g a pseudo inverse to f . We say End(G)
is regular if f is regular for all f ∈ End(G). In this case we like to say that the
graph G is endo − regular.

Note 1. Every injective endomorphism is regular.
2. If End(G) is a group, then End(G) is regular.
3. End(C2n+1) is a group for all positive integer n.

Example 2.6. Consider a regular endomorphism f on a graph G.
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Let f ∈ End(G) such that f =

(
1 2 3 4
2 1 2 4

)

and g1, g2 ∈ End(G) such

that

g1 = f , g2 =

(
1 2 3 4
2 3 2 4

)

,

Thus fg1f =

(
1 2 3 4
2 1 2 4

) (
1 2 3 4
2 1 2 4

) (
1 2 3 4
2 1 2 4

)

=

(
1 2 3 4
2 1 2 4

) (
1 2 3 4
1 2 1 4

)

=

(
1 2 3 4
2 1 2 4

)

,

and fg2f =

(
1 2 3 4
2 1 2 4

) (
1 2 3 4
2 3 2 4

) (
1 2 3 4
2 1 2 4

)

=

(
1 2 3 4
2 1 2 4

) (
1 2 3 4
1 2 1 4

)

=

(
1 2 3 4
2 1 2 4

)

.

Therefore, fg1f = f , fg2f = f then f is regular and both g1, g2 are pseudo
inverses of f .



322 Thai J. Math. 7(2)(2009)/ J. Thomkeaw and S. Arworn

Definition 2.7. Let f be an endomorphism on a graph G. A subgraph If of
G is the endomorphic image of G under f if V (If ) = f(V (G)) and ∀a, b ∈
V (G), {f(a), f(b)} ∈ E(If ) if and only if there exists c ∈ f−1(f(a)) and d ∈
f−1(f(b)) such that {c, d} ∈ E(G). By ρf we denote the equivalence relation on
V (G) induced by f , if ∀a, b ∈ V (G), (a, b) ∈ ρf if and only if f(a) = f(b).

Example 2.8. Example of endomorphic image If and equivalence relation ρf

Let G and f be as in the Example 2.6,
then ρf = {(1, 1), (2, 2), (3, 3), (4, 4), (1, 3), (3, 1)} and

V (If ) = {1, 2, 4} which f−1(1) = {2}, f−1(2) = {1, 3}, f−1(4) = {4},
and the graph If is the graph below.

u
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4

If :

The next theorem, W. Li characterized regular endomorphisms on arbitrary
graphs.

Theorem 2.9. [6] Let G be a graph and let f ∈ End(G). Then f is regular if and
only if there exist idempotent endomorphisms g, h ∈ End(G) such that ρg = ρf

and If = Ih.

Theorem 2.10, E. Wilkeit characterized endo-regular connected bipartite graphs
and Theorem 2.11, N. Pipattanajinda characterized endo-regular even cycles.

Theorem 2.10. [9] Let G be a connected bipartite graph.Then G is endo-regular
if and only if G is one of the following graphs:

1. completely bipartite graph Km,n, (including K1, K2, cycle C4 and tree T
with d(T ) = 2),

2. tree T with d(T ) = 3,
3. cycle C6 and C8,
4. path with 5 vertices, i.e. P5,

where d(T ) is the diameter of the tree T .

Theorem 2.11. [8] For any even cycle C2n is an endo-regular if and only if n ≤ 4.

Therefore, for even cycles, only C4, C6, C8 are endo-regular.

Definition 2.12 (Cycle Cn Book Graphs). For each i = 1, 2, ..., m, let Gi be a
graph which isomorphic to a cycle Cn with the following vertex set and edge set

V (Gi) = {0i, 1i, 2i, ..., (n − 1)i},
E(Gi) = {{xi, (x + 1)i}| x = 0, 1, 2, ..., n− 1}
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where 0i = 0, 1i = 1 for all i = 1, ..., m and + is the addition modulo n.
Let Bn(m) be the Cn book graph of m pages with

the vertex set V (Bn(m)) =
m⋃

i=1

V (Gi) and the edge set E(Bn(m)) =
m⋃

i=1

E(Gi).

Example 2.13. Examples of B5(2) and B5(3)
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Example 2.14. An example of a regular endomorphism on B5(2).

Let f =

(
0 1 21 31 41 22 32 42

1 21 31 41 0 31 41 0

)

,

g =

(
0 1 21 31 41 22 32 42

0 1 21 31 41 21 31 41

)

.

Then f, g ∈ End(B5(2)), g is an idempotent such that

V (If ) = V (Ig) = {0, 1, 21, 31, 41},

f−1(0) = {41, 42}, f
−1(1) = {0}, f−1(21) = {1}, f−1(31) = {21, 22}, f

−1(41) =
{31, 32},
g−1(0) = {0}, g−1(1) = {1}, g−1(21) = {21, 22}, g

−1(31) = {31, 32}, g
−1(41) =

{41, 42},
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and If = Ig :

And
ρf = ρg = {(0, 0), (1, 1), (21, 21), (31, 31), (41, 41), (41, 42), (42, 41), (21, 22),

(22, 21), (31, 32), (32, 31)}.

Therefore, by Theorem 2.9 (using h = g), f is regular.
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3 Regularity of the monoid End(B2n+1(m))

This section, we prove that the odd cycle book graphs, End(B2n+1(m)) are endo-
regular.

Since the graph endomorphisms preserve edges, it is easy to see that

Lemma 3.1. For any positive integers m, n, f ∈ End(B2n+1(m)) if and only if
f is in one of the following forms :

1.1 f(0) = 0, f(1) = 1, and for each i = 1, 2, ..., m there exists ji = 1, ..., m
such that f(xi) = xji

for all x = 2, 3, 4, ..., 2n.

1.2 f(0) = 1, f(1) = 0, and for each i = 1, 2, ..., m there exists ji = 1, ..., m
such that f(xi) = (2n − x + 2)ji

for all x = 2, 3, 4, ..., 2n.

1.3 There exist a ∈ {1, 2, 3, ..., 2n} and j ∈ {1, ..., m}
such that f(xi) = (a + x)j for all i = 1, 2, ..., m and for all x = 0, 1, 2, ..., 2n.

1.4 There exist a ∈ {0, 2, 3, ..., 2n} and j ∈ {1, ..., m}
such that f(xi) = (a − x)j for all i = 1, 2, ..., m and for all x = 0, 1, 2, ..., 2n.

Example 3.2. Example of endomorphisms on End(B5(5)) :

Let f1 =

(
0 1 21 31 41 22 32 42 23 33 43 24 34 44 25 35 45

0 1 24 34 44 23 33 43 23 33 43 21 31 41 24 34 44

)

,

f2 =

(
0 1 21 31 41 22 32 42 23 33 43 24 34 44 25 35 45

1 0 44 34 24 43 33 23 43 33 23 41 31 21 44 34 24

)

,

f3 =

(
0 1 21 31 41 22 32 42 23 33 43 24 34 44 25 35 45

24 34 44 0 1 44 0 1 44 0 1 44 0 1 44 0 1

)

,

f4 =

(
0 1 21 31 41 22 32 42 23 33 43 24 34 44 25 35 45

44 34 24 1 0 24 1 0 24 1 0 24 1 0 24 1 0

)

.

Then f1, f2, f3, f4 are in the form 1.1, 1.2, 1.3, 1.4 in Lemma 3.1, respectively.

From Lemma 3.1, then the forms of endomorphic image of odd cycle book
graphs B2n+1(m) are as the following lemma.

Lemma 3.3. If f ∈ End(B2n+1(m)), then If is in one of the following forms:
1. If f is in the form 1.1 or 1.2 in Lemma 3.1 then If is a C2n+1 book graph

of k pages for some positive integer k ≤ m.
2. If f is in the form 1.3 or 1.4 in Lemma 3.1 then If is isomorphic to

B2n+1(1), a C2n+1 book graph of one pages.

Lemma 3.4. Let f ∈ End(B2n+1(m)). If there exists x 6= 0, 1 and f(xi) = f(xj)
then (xi, xj) ∈ ρf for all x = 0, 1, 2, ..., 2n..
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Since End(B2n+1(1)) is isomorphic to cycle C2n+1 and End(C2n+1) is a group,

Lemma 3.5. For any positive integer n, End(B2n+1(1)) is regular.

Theorem 3.6. For any integer m ≥ 2, End(B2n+1(m)) is regular.
Proof: Let f ∈ End(B2n+1(m)).

Case 1 If f is in the form 1.1 or 1.2 in Lemma 3.1. Let Jf = {ji|i = 1, 2, ..., m}
and let g, h ∈ End(B2n+1(m)) be such that g(0) = 0, g(1) = 1, and for all x ∈
{2, 3, 4...., 2n},

g(xi) =

{
xi : i ∈ Jf

xj , for some j ∈ Jf : i /∈ Jf

And h(0) = 0, h(1) = 1, and for i1, i2 ∈ {2, ..., m}, if i1 ≤ i2 and ji1 = ji2 , we let
h(xi1) = h(xi2 ) = xi1 for all x = 2, 3, 4, ..., 2n.

Then g, h are an idempotent, If = Ig, where V (If ) = V (Ig) = {xj |j ∈
Jf and x = 0, 1, ..., 2n}, and ρf = ρh.

Therefore, by Theorem 2.9, f is regular.

Case 2 If f is in the form 1.3 or 1.4 in Lemma 3.1,
We let h = g ∈ End(B2n+1(m)) be such that
g(xi) = xj for all i = 1, 2, ..., m and for all x = 0, 1, 2, ..., 2n.
Then g, h are an idempotent, If = Ig and ρf = ρh. Therefore, f is regular.

�

4 Cardinality of the monoid End(B2n+1(m))

This section, we calculate for the cardinality of the monoid End(B2n+1(m)). There
are some previous results about these, for instance [1], Sr. Arworn found the cardi-
nality of End(Pn), [7] N. Pipattanajinda found the cardinality of End(Cn), [2],[3],
and [10] Sr. Arworn and P. Wojtylak , Y. Kim, W. Wannasit found three different
algorithms for the cardinality of Hom(Pn, Pm), the classes of all homomorphisms
from path Pn to path Pm.

Theorem 4.1. For any positive integer m, n,

|End(B2n+1(m))| = 2[mm + 2nm]

.
Proof: Let f ∈ End(B2n+1(m)). From Lemma 3.1,
Case 1 f is in the form 1.1,

f(0) = 0, f(1) = 1, and for each i = 1, 2, ..., m there exists ji = 1, ..., m such
that f(xi) = xji

for all x = 2, 3, 4, ..., 2n.
Therefore, f ∈ End(B2n+1(m)) of this form if and only if f is a mapping which

fixed 0, 1 and for each i = 1, 2, 3, ..., m, select any j ∈ {1, 2, 3, ..., m} and let f(xi) =
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xj . Then the number of endomorphisms in this form is m × m × m × . . . × m
︸ ︷︷ ︸

m term

=

mm.

Case 2 f is in the form 1.2,

f(0) = 1, f(1) = 0, for each i = 1, 2, ..., m there exists ji = 1, ..., m such that
f(xi) = (2n − x + 2)ji

for all x = 2, 3, 4, ..., 2n.

Similar to the case 1, f ∈ End(B2n+1(m)) of this form if and only if f is
a mapping which f(0) = 1, f(1) = 0 and for each i = 1, 2, 3, ..., m, select any
j ∈ {1, 2, 3, ..., m} and let f(xi) = (2n − x + 2)j. Then the number of endomor-
phisms in this form is m × m × m × . . . × m

︸ ︷︷ ︸

m term

= mm.

Case 3 f is in the form 1.3,

there exists a ∈ {1, 2, 3, ..., 2n} and j ∈ {1, ..., m} such that

f(xi) = (a + x)j for all i = 1, 2, ..., m and for all x = 0, 1, 2, ..., 2n.

For this case, we concentrate only how many ways we can map 0

to, the other points will follow the form of the mapping. Then the number of

endomorphisms in this form is

m∑

j=1

(2n) = (2n)m.

Case 4 f is in the form 1.4,

there exists a = 0, 2, 3, ..., 2n and j = 1, ..., m such that

f(xi) = (a − x)j for all i = 1, 2, ..., m and for all x = 0, 1, 2, ..., 2n.

As in the case 3, the number of endomorphisms in this form is
m∑

j=1

(2n) = (2n)m.

Therefore, |End(B2n+1(m))| = mm + mm + 2nm + 2nm = 2[mm + 2nm].

�
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