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Abstract Herein, estimation techniques for the two parameters of the weighted two-parameter exponen-

tial distribution (WTED) are presented. To this end, various methods such as maximum likelihood esti-

mation (MLE), method of moment (MOM), jackknife of MLE (JMLE), and jackknife of MOM (JMOM)

were utilized. In a simulation study, the performance of the proposed methods were compared based

on their mean square error estimates. The results show that JMLE, MLE, and MOM provide the most

suitable estimators for the WTED in cases where θ > β, θ = β, and θ < β, respectively.
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1. Introduction

Statistical inference based on parameter estimation is classified into two categories:
interval estimation and point estimation, both of which employ statistical distributions
to estimate parameters. Most data in real-world problems are not normally distributed,
and so distributions such as the weighted exponential distribution are used in these situ-
ations [1]. It has been widely employed in various research fields pertaining to reliability,
biomedicine, and ecology, among others [2].

As examples of applying the WED, Shakhatreh [2] analyzed two real datasets, one of
which comprised right-censored data, Gupta and Kundu [1] used it on a dataset compris-
ing the marks in mathematics assignments for students, and Hosmer and Lemeshow [3]
analyzed the survival times in months of 100 patients infected with HIV.

Many researchers have attempted to estimate distribution parameters using various
techniques. Of these, Azzalini [4] provided estimators for the skewness and shape param-
eters of normal distributions. In this approach, the density function of random variable
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Z is defined as

ϕ(z;λ) = 2ϕ(z)Φ(λz), (−∞ < z < ∞) (1.1)

where ϕ and Φ are the standard normal density and distribution function, respectively.
Then it can be obtained that Z is a skew-normal random variable with parameter λ.

Other researchers have also developed estimators for the parameters of symmetric
distributions [5], [6]. Concept of Azzalini was extended to exponential distributions by
Gupta and Kundu [1], who defined its shape parameter as follows:

Definition 1.1. Let X be a random sample drawn from weighted two-parameter expo-
nential distribution (WTED) [1], with the shape and scale parameters as θ > 0 and β > 0,
respectively, if the probability density function (PDF) of X is

f(x; θ, β) =

{
1+θ
θ βe−βx(1− e−βθx), if x > 0,

0, otherwise.
(1.2)

This model can be obtained as a hidden truncation model as it was observed by Arnold
and Beaver [5] in case of skew-normal distribution. Suppose Z and Y are two dependent
random variables with the joint PDF as given below for β > 0;

fZ,Y (z, y) = β2ze−z(1+y); z > 0, y > 0. (1.3)

Subsequently, the maximum likelihood estimation for the unknown parameter was
calculated, and its asymptotic distribution was considered.

Following that, Mezaal [7] used the numerical technique to compare the properties
of estimators for the parameters of the weighted two-parameter exponential distribution
(WTED) using three approaches: the jackknife method, the method of moments (MOM),
and maximum likelihood estimation (MLE). Mean squared error (MSE) estimation un-
covered that the Jackknife method was the most suitable technique for estimating the
two parameters.

Therefore, the aim of this study is to propose estimators for the parameters of WTED
based on MLE, MOM, JMLE, and JMOM. Since all of the estimators are mathematically
intractable, the Newton-Raphson method was applied to calculate the estimator of WTED
parameters. This method is different from the numerical technique proposed by Mezaal
[7]. The following condition is considered to obtain the estimator:∣∣∣θ̂i − θ̂i−1

∣∣∣+ ∣∣∣β̂i − β̂i−1

∣∣∣ < ε,

where i = 1, 2, . . . . The criteria for evaluating the performance of the proposed method
is the estimation of MSE.

The rest of this paper is organized as follows. Some basic definitions and useful statis-
tical properties of WTED are provided in Section 2, while the details of the MLE, MOM,
JMLE, and JMOM methods are presented in Section 3. The simulation study to test
the methods and the results thereof are contained in Section 4. An example using real
data is used to further compare the efficacies of the four estimation methods for WTED
is provided in Section 5. Finally, conclusions from the study are detailed in Section 6.
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2.Weighted Two-Parameter Exponential Distribution

First, cumulative distribution function (CDF), and other statistical properties are de-
rived, followed by estimation formulas for (θ) and (β) based on the four methods.

The CDF for WTED can be expressed as

FX(x) = P (X ≤ x)

=
x∫
0

f(t) dt

= 1+θ
θ

x∫
0

βe−βt(1− e−βθt) dt

= 1+θ
θ {

x∫
0

βe−βt dt−
x∫
0

βe−βt(1+θ) dt}

= 1+θ
θ {(1− e−βx)− 1

1+θ (1− e−βx(1+θ))}.

Thus,

FX(x) = 1+θ
θ

1
1+θ{(1 + θ)(1− e−βx)− (1− e−βx(1+θ)))}

= 1
θ{e

−βx(1+θ) + θ − e−βx(1 + θ)}. (2.1)

2.1. The Statistical Properties of WTED

The moment generating function is given by:

MX(t) = E(etx) =
∞∫
0

etxf(x;β, θ) dx

= ( 1+θ
θ )β

∞∫
0

etxe−βx(1− e−βθx) dx

= ( 1+θ
θ )β{

∞∫
0

e−x(β−t)dx−
∞∫
0

e−x(β−t+βθ) dx}.

So

MX(t) =
1 + θ

θ
β[

βθ

(β − t)(β − t+ βθ)
]. (2.2)

The expected value of X can be obtained by the following step. Let

M ′
X(t) = (1 + θ)β2{(β − t)−1(β − t+ βθ)−2 + (β − t+ βθ)−1(β − t)−2}.

Then

M ′
X(0) = (1 + θ)β2[β−1(β + βθ)−2 + (β + βθ)β−2]

= (1 + θ)β2[ 1
β(β+βθ)2 + 1

(β+βθ)β2 ]

= (1+θ)(2β+βθ)
(β+βθ)2

= β(1+θ)(2+θ)
β2(1+θ)2

= (2+θ)
β(1+θ) .

Therefore, the expected value of X can be easily obtained as

E(X) =
(2 + θ)

β(1 + θ)
. (2.3)
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Consider the variance of X. Let

M ′′
X(t) = (1 + θ)β2[{2(β − t)−1(β − t+ βθ)−3 + (β − t+ βθ)−2(β − t)−2}

+{2(β − t+ βθ)−1(β − t)−3 + (β − t)−2(β − t+ βθ)−2}].
Then

M ′′
X(0) = (1 + θ)β2[ 2

β(β+βθ)3 + 1
β2(β+βθ)2 + 2

β3(β+βθ) +
1

β2(β+βθ)2 ]

= (1 + θ)[ 2
β2(1+θ)3 + 1

β2(1+θ)2 + 2
β2(1+θ) +

1
β2(1+θ)2 ]

= 2
β2 [

3+3θ+θ2

(1+θ)2 ].

Subsequently,

E(X2) =
2(3 + 3θ + θ2)

β2(1 + θ)2
. (2.4)

Therefore, the variance of X is given by

V (X) = E(X2)− (E(X))2

= 2(3+3θ+θ2)
β2(1+θ)2 − ( (2+θ)

β(1+θ) )
2

= 2+2θ
β2(1+θ)2

= 2
β2(1+θ) .

(2.5)

3. Materials and Methods

3.1. Maximum Likelihood Method

The log likelihood function for WTED is given by:

L =

n∏
i=1

f(xi, β, θ) = (1 + θ)nθ−nβne−β
∑n

i=1 xi

n∏
i=1

(1− e−βθxi), (3.1)

logL = n log(1 + θ)− n log θ + n log β − β

n∑
i=1

xi + log[

n∏
i=1

(1− e−βθxi)]. (3.2)

Then, it can be obtained that

∂ logL

∂θ
=

n

1 + θ
− n

θ
+

n∑
i=1

βxie
−βθxi

1− e−βθxi
= 0.

This implies

n

θ
=

n

1 + θ
+

n∑
i=1

βxie
−βθxi

1− e−βθxi
.

So

θ =
n

n
1+θ +

∑n
i=1

βxie−βθxi

1−e−βθxi

. (3.3)

Similarly, it can be obtained that

∂ logL

∂β
=

n

β
−

n∑
i=1

xi −
n∑

i=1

−θxie
−βθxi

1− e−βθxi
= 0.
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Hence

n

β
=

n∑
i=1

xi −
n∑

i=1

θxie
−βθxi

1− e−βθxi
,

and

β =
n∑n

i=1 xi −
∑n

i=1
θxie−βθxi

1−e−βθxi

. (3.4)

Then the estimators θ̂MLE and β̂MLE can be obtained from

θ̂MLE =
n

n
1+θ̂MLE

+
∑n

i=1
β̂MLExie−β̂MLEθ̂MLExi

1−e−β̂MLEθ̂MLExi

, (3.5)

and

β̂MLE =
n∑n

i=1 xi −
∑n

i=1
θ̂MLExie−β̂MLEθ̂MLExi

1−e−β̂MLEθ̂MLExi

. (3.6)

3.2. Method of Moments

Let µ′
k = E(Xk) and M ′

k =
∑n

i=1 Xk
i

n represent the k-moment of the population and
the k-moment of the sample, respectively. The k-moment of the sample is well known
to be an approximation of the k-moment of the population, that is, µ′

k ≈ M ′
k, where

k = 1, 2, . . . (see Casella [8]).
Consider the k-moment with k = 1 and 2, which are obtained from the equation (2.3)

and (2.4) that

µ′
1 = E(X) =

2 + θ

β(1 + θ)
≈

∑n
i=1 Xi

n
, (3.7)

and

µ′
2 = E(X2) =

2(3 + 3θ + θ2)

β2(1 + θ)2
≈

∑n
i=1 X

2
i

n
. (3.8)

From equation (3.7), it can be obtained that

β(1 + θ) ≈ 2 + θ

X
. (3.9)

From equation (3.8), it can be obtained that∑n
i=1 X

2
i

n
β2(1 + θ)2 ≈ 2(3 + 3θ + θ2). (3.10)

By substituting equation (3.9) in equation (3.10), it can be obtained that∑n
i=1 X

2
i

n
· 2 + θ

X
β(1 + θ) ≈ 2(3 + 3θ + θ2). (3.11)

Then

β
∑n

i=1 X
2
i

n
≈ 2X(3 + 3θ + θ2)

2 + 3θ + θ2
, (3.12)

and so

β
∑n

i=1 X
2
i

n
≈ 2X(1 +

1

2 + 3θ + θ2
). (3.13)
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Hence

β̂MOM =
2nX∑n
i=1 X

2
i

(1 +
1

2 + 3θ̂MOM + θ̂2MOM

), (3.14)

and

θ̂MOM =
β̂MOMX − 2

1− β̂MOMX
, (3.15)

where 1 < β̂MOMX < 2.

3.3. Jackknife Method

In 1956, Quenouille [9] proposed the Jackknife method for estimating parameters to
decrease bias of estimator. The Jackknife method is a sampling method which generates
an additional sample from a single arbitrary sample without replacement (Resampling
without replacement).

This method requires eliminating a single value at position i, where i = 1, 2, ..., n, to
generate an additional sample of size n− 1. The cut-off values will be put back into the
original sample before generating the next new sample. By repeating this n times, the
data will be obtained and used to estimate parameters.

3.3.1. Jackknife of Maximum Likelihood

If θ̂MLE(j) and β̂MLE(j) are the maximum likelihood estimator after excluding j value,
then the bias-corrected jackknife estimators for θ defined as follows:

θ̂J MLE = nθ̂MLE − (n− 1)

∑n
j=1 θ̂MLE(j)

n
, (3.16)

and the bias-corrected jackknife estimator for β is defined as

β̂J MLE = nβ̂MLE − (n− 1)

∑n
j=1 β̂MLE(j)

n
. (3.17)

3.3.2. Jackknife of Method of Moments

If θ̂MOM (j) and β̂MOM (j) are the moment of method estimators after excluding j
value, then the jackknife estimator for θ defined as follows:

θ̂J MOM = nθ̂MOM − (n− 1)

∑n
j=1 θ̂MOM (j)

n
, (3.18)

and the jackknife estimator for β is defined as

β̂J MOM = nβ̂MOM − (n− 1)

∑n
j=1 β̂MOM (j)

n
. (3.19)

The above resulted equations have no explicit solutions. The Newton–Raphson of MLE,
MOM, JMLE, and JMOM method can be used to obtain the solution under the following
condition:∣∣∣θ̂i − θ̂i−1

∣∣∣+ ∣∣∣β̂i − β̂i−1

∣∣∣ < ε,

where i = 1, 2, . . . .
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4. Simulation Study and Results

The simulation study was conducted to provide a comparative analysis of the efficacies
of the four estimation methods for the parameters of the WTED. To this end, the values of
parameters (θ, β) were set as (0.3, 0.3), (0.3, 0.6), (0.3, 0.9), (0.3, 1.5), (0.6, 0.3), (0.9, 0.3),
(1.5, 0.3), (0.6, 0.6), (0.9, 0.9), or (1.5, 1.5), the sample size (n) was set as 30, 50, 100, and
300 and the specific error (ϵ) was set as 10−5. The instructions for the simulation were
written in the R language (version 4.2.3). Moreover, 10,000 iterations were conducted

for each scenario. The MŜE(θ̂, β̂), the criterion for evaluating the performances of the
proposed methods, was calculated as follows:

MŜE(θ̂, β̂) =
1

L

L∑
i=1

(θ̂i − θ)2 + (β̂i − β)2.

The method with the minimum MŜE(θ̂, β̂) for a particular scenario was chosen as the
best performing one.

The results of each experiment are shown in Table 1 - Table 3.

From the simulation results reported in Table 1 - Table 3, it can be observed that JMLE

provided the lowest MŜE(θ̂, β̂) values when θ > β for all of the sample size. Meanwhile,

when θ = β, MLE provided the lowest MŜE(θ̂, β̂) values except for (0.3, 0.3) and n
= 300, for which MOM provided the lowest value. Finally, MOM provided the lowest

MŜE(θ̂, β̂) values when θ < β for all of the sample sizes.

Table 1. MŜE(θ̂, β̂) of WTED for (θ = β)

θ = β n MLE MOM JMLE JMOM

0.3

30 0.001752 0.006635 0.049452 0.208724
50 0.000993 0.004230 0.048382 0.232898
100 0.000891 0.002414 0.034133 0.209154
300 0.001502 0.000860 0.023298 0.326737

0.6

30 0.051199 0.106753 0.521408 0.792553
50 0.074092 0.096603 0.312291 0.533632
100 0.024194 0.090398 0.235900 0.486868
300 0.014311 0.083461 0.153173 0.345446

0.9

30 0.027168 0.400452 1.257637 0.402331
50 0.014770 0.377873 0.909477 0.378850
100 0.012776 0.363326 0.723228 0.363368
300 0.001915 0.347842 0.559257 0.348042

1.5

30 0.949533 1.630906 1.067826 1.636527
50 0.179544 0.418188 0.198408 0.405825
100 0.089984 0.151520 0.096760 0.151246
300 0.029772 0.146888 0.030998 0.146937
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Table 2. MŜE(θ̂, β̂) of WTED for (θ < β)

θ β n MLE MOM JMLE JMOM

0.3

0.6

30 0.080939 0.011551 0.527006 0.376078
50 0.092989 0.007308 0.529633 0.390024
100 0.070987 0.004014 0.434396 0.343377
300 0.052375 0.001335 0.362341 0.501630

0.9

30 0.325985 0.019743 1.383439 0.654968
50 0.365213 0.012437 1.451409 0.651927
100 0.298262 0.006681 1.309858 0.567091
300 0.245109 0.002128 1.102416 0.793116

1.5

30 1.285960 0.046031 4.768370 1.562189
50 1.408427 0.029000 4.741966 1.523376
100 1.225951 0.015246 4.180342 1.410147
300 1.007223 0.004625 4.393253 2.778765

Table 3. MŜE(θ̂, β̂) of WTED for (θ > β)

β θ n MLE MOM JMLE JMOM

0.3

0.6

30 0.084390 0.097595 0.027526 0.312930
50 0.076125 0.090312 0.015638 0.337233
100 0.087171 0.086234 0.012708 0.318703
300 0.099032 0.081046 0.014098 0.427024

0.9

30 0.322163 0.358740 0.140374 0.587625
50 0.305024 0.346017 0.115282 0.612200
100 0.329448 0.339303 0.126611 0.599118
300 0.354893 0.330072 0.143642 0.697653

1.5

30 1.282350 1.389510 0.798006 1.639089
50 1.244456 1.364423 0.742012 1.662322
100 1.301840 1.351494 0.794438 1.662297
300 1.360526 1.333125 0.850731 1.730585

5. Applications

In this part of the study, a real data set of Mathematics score [1] was analyzed to com-
pare the performance of the proposed method for estimating the parameters of WTED.

Dataset 5.1. A real dataset of mathematics scores for 48 students in the slow-paced
course in 2003 in India was obtained from Gupta and Kundu [1]
29, 25, 50, 15, 13, 27, 15, 18, 7, 7, 8, 19, 12, 18, 5, 21, 15, 86, 21, 15, 14, 39, 15, 14, 70,
44, 6, 23, 58, 19, 50, 23, 11, 6, 34, 18, 28, 34, 12, 37, 4, 60, 20, 23, 40, 65, 19, 31.

For this dataset, n = 48 with a mean of X = 25.89 and a standard deviation of
s = 18.60. The distribution of this data was tested using the Kolmogorov-Smirnov test,
which revealed that WTED was a good fit (D = 0.125, p = 0.8363) where D is maximum
deviation from Kolmogorov-Smirnov test. From the Dataset 5.1, the MLE of θ and β
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(θ̂, β̂) based on Gupta and Kundu [1] are 0.2919 and 0.0685, respectively. It is obvious

that θ̂ > β̂. By applying the proposed methods which are MLE, MOM, JMLE, and

JMOM based on Newton-Raphson, the results in Table 4 indicated that θ̂ > β̂ in every
method. This result is in good agreement with Gupta and Kundu [1]. In the simulation
study, JMLE outperforms when θ > β. Therefore, the suitable estimator for this dataset
is JMLE.

Table 4. The estimation of θ and β

Gupta and Kundu MLE MOM JMLE JMOM

θ̂ 0.2919 0.34235 0.26486 0.31794 0.28107

β̂ 0.0685 0.06738 0.06899 0.06862 0.06810

The JMLE covered most of the PDF of the WTED of the data as shown in Figure 1.

Figure 1. A graph of the estimate probability density function of MLE,
MOM, JMLE, and JMOM for data set from [1]

Figure 1 shows that JMLE covers most of the PDF of the data. In comparison, the
MLE, MOM, and Gupta and Kundu [1] estimation methods provided similar coverage of
the PDF, while JMOM covered the least.

6. Conclusion

Parameters θ and β for the WTED were estimated by utilizing MLE, MOM, JMLE, and
JMOM. Their efficacies were compared by using a Monte Carlo simulation study based on
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their MŜE(θ̂, β̂) values. Parameters θ and β were considered simultaneously, for which
the non-closed form problem was solved using the Newton-Raphson approach. The results
indicate that when θ > β, the JMLE is the most suitable for parameter estimation since

it provided the lowest MŜE(θ̂, β̂) values in this scenario. Similarly, MLE and MOM are
the most suitable when θ = β and θ < β, respectively. Furthermore, the parameters of
a real dataset that followed WTED were estimated using the four estimation methods.
The results are in accordance with Gupta and Kundu [1].
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