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Abstract Given a real upper triangular matrix,

An =


a1 a1 · · · a1 a1
0 a2 · · · a2 a2
...

...
. . .

...
...

0 0 · · · an−1 an−1

0 0 · · · 0 an

, where n is a positive integer.

We obtain a general form for the mth power Am
n of the real upper triangular matrices An, where m

is any positive integer. Moreover, we demonstrate the other formulae of the mth power Am
n by using

Cornelius’ result [E.F. Cornelius, Identities for complete homogeneous symmetric polynomials, JP Journal

of Algebra, Number Theory and Applications 21 (1) (2011) 109–116]. Furthermore, we also demonstrate

a simple formula for the trace of the mth power Am
n of the real upper triangular matrix An.
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1. Introduction

For a square matrix A and a positive integer m, we define the mth power of A by
repeating matrix multiplication; that is, Am = A×A× · · ·×A, where there are m copies
of matrix A on the right-hand side. Matrix powers can be calculated explicitly using
the rule of matrix multiplication. However, this can be time-consuming for high powers,
as the multiplication must be performed many times. A triangular matrix is a special
kind of square matrix. There are two basic forms of triangular matrices: lower triangu-
lar matrices, which have all zero entries above the main diagonal, and upper triangular
matrices, which have all zero entries below the main diagonal. Triangular matrices are
easier to solve than other types of matrices and are therefore very important in numerical
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analysis. The calculation of the matrix power of a triangular matrix can be done more
efficiently than for other types of matrices. The calculation of matrix powers occurs in
many different mathematical frameworks, such as combinatorial sequences, linear differ-
ential equations, and statistics. Triangular matrices have attracted the interest of many
authors in these fields, who have developed methods and algorithms for calculating their
powers, see [1, 8–10].

Trace of an n × n matrix A = [aij ] is defined to be the sum of the elements on the
diagonal of A, that is

Tr(A) = a11 + a22 + · · ·+ ann.

The trace of powers of matrices arises in several fields of mathematics, such as matrix
theory and numerical algebra. The discussion about trace has been widely studied by
several researchers before.

Datta et al. [4] obtained an algorithm for the trace of the power of a squared matrix,
Tr
(
Ak
)
, where k is an integer and A is a Hassenberg matrix with a codiagonal unit. Chu

[3] demonstrated a symbolic calculation of the trace of powers of tridiagonal matrices.
Pahade and Jha [6] explained that the trace of the positive integer power of a real 2× 2
matrix is an equation of the general trace form of the matrices. Recently, Rahmawati et
al. [7] discussed the general formula for the power matrix Am

n with positive integer m,
where An is an n× n matrix of real number entries where each entry has the same value
in a row. This matrix is formulated as follows:

An =


a1 a1 · · · a1 a1
a2 a2 · · · a2 a2
...

...
. . .

...
...

an−1 an−1 · · · an−1 an−1
an an · · · an an


In this paper, we derive a general expression for the entries of n× n upper triangular

matrix Am
n for positive integer m, where An is a n× n upper triangular matrix:

An =


a1 a1 · · · a1 a1
0 a2 · · · a2 a2
...

...
. . .

...
...

0 0 · · · an−1 an−1
0 0 · · · 0 an


Moreover, we find the general form of the trace of positive power Am

n .

2. Preliminaries

In this section, we introduce some basic definitions, notation and well-known results
which we will use in the sequel.

The complete homogeneous symmetric polynomial of degree k in n variables x1, . . . , xn,
written hk(x1, . . . , xn) for k = 0, 1, 2, . . . , is defined by

hk(x1, x2, . . . , xn) =
∑

l1+l2+···+ln=k
lj>0

xl1
1 x

l2
2 · · ·xln

n ,

when an exponent is zero, the corresponding power variable is taken to be 1.
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The first few of these polynomials are

h0(x1, x2, . . . , xn) = 1,

h1(x1, x2, . . . , xn) = x1 + x2 + · · ·+ xn,

h2(x1, x2, . . . , xn) =
∑

1≤i≤j≤n

xixj ,

h3(x1, x2, . . . , xn) =
∑

1≤i≤j≤k≤n

xixjxk.

For each nonnegative integer k, there exists a unique complete homogeneous symmetric
polynomial of degree k in n variables.

In particular, any complete homogeneous symmetric polynomial of degree k in n vari-
ables, hk(x1, x2, . . . , xn) can be expressed as linear combination of complete homogeneous
symmetric polynomial of degree k−1, hk−1(x1, x2, . . . , xn), hk−1(x2, . . . , xn), . . . , hk−1(x1).

For example,

h3(x1, x2, x3) = x3
1 + x3

2 + x3
3 + x2

1x2 + x2
1x3 + x1x

2
2 + x2

2x3 + x1x
2
3 + x2x

2
3 + x1x2x3,

= x3(x2
3 + x2

1 + x2
2 + x1x3 + x2x3 + x1x2) + x2(x2

2 + x2
1 + x1x2) + x1(x2

1)

= x3h2(x1, x2, x3) + x2h2(x1, x2) + x1h2(x1).

In general, we have the following lemma.

Lemma 2.1. For each positive integer k, we have

hk(x1, x2, . . . , xn) = xnhk−1(x1, x2, . . . , xn)+xn−1hk−1(x1, x2, . . . , xn−1)+· · ·+x1hk−1(x1).

Proof. Let A be the set of all distinct monomial expression xt1
1 xt2

2 · · ·xtn
n , where t1, t2, . . . , tn

are nonnegative integer and

n∑
i=1

ti = k. Then the sum of all elements in the set A is

hk(x1, x2, . . . , xn).

Next, we define the following sets:
B1 is the subset of A containing xt1

1 , where t1 ≥ 1,

B2 is the subset of A containing xt1
1 xt2

2 , where t2 ≥ 1,

B3 is the subset of A containing xt1
1 xt2

2 xt3
3 , where t3 ≥ 1,

...
Bk is the subset of A containing xt1

1 xt2
2 · · ·x

tk
k , where tk ≥ 1,

...
Bn is the subset of A containing xt1

1 xt2
2 · · ·xtn

n , where tn ≥ 1.

Then B1 ∩B2 ∩ · · · ∩Bn = ∅ and A = B1 ∪B2 ∪ · · · ∪Bn.
The sum of all elements in the set B1 is x1hk−1(x1).

The sum of all elements in the set B2 is x2hk−1(x1, x2).

The sum of all elements in the set B3 is x3hk−1(x1, x2, x3).
...
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The sum of all elements in the set Bn is xnhk−1(x1, x2, x3, . . . , xn).
Therefore,

hk(x1, x2, . . . , xn) = xnhk−1(x1, x2, . . . , xn)+xn−1hk−1(x1, x2, . . . , xn−1)+· · ·+x1hk−1(x1).

This complete the proof.

In 2011, Cornelius [2] proved that any complete homogeneous symmetric polynomial
can be expressed as the sum of rational functions.

Theorem 2.2. [2]. The complete homogeneous symmetric polynomial of degree k in n
variables, x1, x2, x3, . . . , xn,

hk(x1, x2, . . . , xn) =
∑

1≤i1≤i2≤···≤ik≤n

xi1xi2 · · ·xik ,

can be expressed as the sum of rational functions:

hk(x1, x2, . . . , xn) =

n∑
l=1

xn+k−1
l∏n

m=1,m 6=l(xl − xm)
.

3. Main Results

In this section, we derive a general expression for the entries of n×n upper triangular
matrix Am

n of the real upper triangular matrix An, where m is any positive integer.

Theorem 3.1. Let n ≥ 2 be a positive integer. For real numbers a1, a2, . . . , an, define an
n× n upper triangular matrix An,

An =


a1 a1 · · · a1 a1
0 a2 · · · a2 a2
...

...
. . .

...
...

0 0 · · · an−1 an−1
0 0 · · · 0 an

 .

Then, for each positive integer m,

Am
n =


b
(m)
11 b

(m)
12 · · · b

(m)
1 n−1 b

(m)
1n

0 b
(m)
22 · · · b

(m)
2 n−1 b

(m)
2n

...
...

. . .
...

...

0 0 · · · b
(m)
n−1 n−1 b

(m)
n−1 n

0 0 · · · 0 b
(m)
nn

 ,

where b
(m)
ij = aihm−1(ai, ai+1, . . . , aj) for all i, j = 1, 2, . . . , n and j ≥ i.

Proof. For any positive integer m, let P (m) be the statement that

Am
n =


b
(m)
11 b

(m)
12 · · · b

(m)
1 n−1 b

(m)
1n

0 b
(m)
22 · · · b

(m)
2 n−1 b

(m)
2n

...
...

. . .
...

...

0 0 · · · b
(m)
n−1 n−1 b

(m)
n−1 n

0 0 · · · 0 b
(m)
nn

 ,
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where b
(m)
ij = aihm−1(ai, ai+1, . . . , aj) for all i, j = 1, 2, . . . , n and j ≥ i.

For the base step, m = 1, we have h0(x1, x2, . . . , xn) = 1, and ai = aih0(x1, . . . , xn) = b
(1)
ij

for all i, j = 1, 2, . . . , n and j ≥ i.
Hence P (1) holds.

Let k be a positive integer and suppose that P (k) holds. Then

Ak+1
n = Ak

nA
1
n

=


b
(k)
11 b

(k)
12 · · · b

(k)
1 n−1 b

(k)
1n

0 b
(k)
22 · · · b

(k)
2 n−1 b

(k)
2n

...
...

. . .
...

...

0 0 · · · b
(k)
n−1 n−1 b

(k)
n−1 n

0 0 · · · 0 b
(k)
nn




a1 a1 · · · a1 a1
0 a2 · · · a2 a2
...

...
. . .

...
...

0 0 · · · an−1 an−1
0 0 · · · 0 an



=


c11 c12 · · · c1 n−1 c1n
0 c22 · · · a2 n−1 a2n
...

...
. . .

...
...

0 0 · · · cn−1 n−1 cn−1 n

0 0 · · · 0 cnn


By using Lemma 2.1, then for i = 1, 2, . . . , n and j > i,

cij = aib
(k)
ii + ai+1b

(k)
i i+1 + · · ·+ ajb

(k)
ij

= ai(aihk−1(ai)) + ai+1(aihk−1(ai, ai+1)) + · · ·+ aj(aihk−1(ai, ai+1, . . . , aj))

= ai(aihk−1(ai) + ai+1hk−1(ai, ai+1) + · · ·+ ajhk−1(ai, ai+1, . . . , aj))

= aihk(ai, ai+1, . . . , aj) = b
(k+1)
ij .

Therefore, P (k + 1) holds, and the proof is complete.

The proof of the following corollary immediately follows from Theorem 3.1 and Theo-
rem 2.2.

Corollary 3.2. Let n ≥ 2 be a positive integer and let An be the upper triangular matrix
as defined in Theorem 3.1 where a1, a2, . . . , an are all distinct real numbers.
Then, for each positive integer m,

Am
n =


b
(m)
11 b

(m)
12 · · · b

(m)
1 n−1 b

(m)
1n

0 b
(m)
22 · · · b

(m)
2 n−1 b

(m)
2n

...
...

. . .
...

...

0 0 · · · b
(m)
n−1 n−1 b

(m)
n−1 n

0 0 · · · 0 b
(m)
nn

 ,

where

b
(m)
ij = ai

j∑
l=i

aj−i+m−1
l∏j

k=i,k 6=l(al − ak)
,

for all i, j = 1, 2, . . . , n and j > i.
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Now Theorem 3.1 can be applied to a particular lower triangular matrix,

Bn =


a1 0 · · · 0 0
a1 a2 · · · 0 0
...

...
. . .

...
...

a1 a2 · · · an−1 0
a1 a2 · · · an−1 an

 ,

by using (Bm
n )

T
=
(
BT

n

)m
and

(
BT

n

)T
= Bn.

Next, the following theorem shows a simple formula for trace of the mth power of the
real upper triangular matrix An.

Theorem 3.3. For positive integer n ≥ 2 and n×n upper triangular matrix An, defined
as

An =


a1 a1 · · · a1 a1
0 a2 · · · a2 a2
...

...
. . .

...
...

0 0 · · · an−1 an−1
0 0 · · · 0 an

 ,

where a1, a2, . . . , an are real numbers. Then, for each positive integer m,

Tr(Am
n ) =

n∑
i=1

ami .

Proof. It immediately follows from Theorem 3.1 and the definition of trace.

Example 3.4. For positive integer n > 2 and n×n upper triangular matrix An, defined
as

An =


1 1 · · · 1 1
0 2 · · · 2 2
...

...
. . .

...
...

0 0 · · · n− 1 n− 1
0 0 · · · 0 n

 ,

Then, by using Theorem 3.3, for any positive integer m,

Tr (Am
n ) =

n∑
k=1

km.

Note that the sums for m = 1, 2, . . . , 6 are
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n∑
k=1

k =
1

2

(
n2 + n

)
,

n∑
k=1

k2 =
1

6

(
2n3 + 3n2 + n

)
,

n∑
k=1

k3 =
1

4

(
n4 + 2n3 + n2

)
,

n∑
k=1

k4 =
1

30

(
6n5 + 15n4 + 10n3 − n

)
,

n∑
k=1

k5 =
1

12

(
2n6 + 6n5 + 5n4 − n2

)
,

n∑
k=1

k6 =
1

42

(
6n7 + 21n6 + 21n5 − 7n3 + n

)
.

Note that the sums

n∑
k=1

km can be directly computed by the Faulhaber’s formula

n∑
k=1

km =
1

m + 1

m∑
k=0

(
m + 1

k

)
Bk n

m−k+1,

where B0, B1, . . . , are the Bernoulli numbers, as defined by

B0 = 1, Bk = − 1
k+1

k−1∑
i=0

(
k + 1

i

)
Bi for all k ∈ {1, 2, . . .} .
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